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Abstract

Instance segmentation of point clouds is a crucial task in
3D field with numerous applications that involve localizing
and segmenting objects in a scene. However, achieving sat-
isfactory results requires a large number of manual annota-
tions, which is time-consuming and expensive. To alleviate
dependency on annotations, we propose a novel framework,
FreePoint, for underexplored unsupervised class-agnostic
instance segmentation on point clouds. In detail, we rep-
resent the point features by combining coordinates, colors,
and self-supervised deep features. Based on the point fea-
tures, we perform a bottom-up multicut algorithm to seg-
ment point clouds into coarse instance masks as pseudo la-
bels, which are used to train a point cloud instance segmen-
tation model. We propose an id-as-feature strategy at this
stage to alleviate the randomness of the multicut algorithm
and improve the pseudo labels’ quality. During training,
we propose a weakly-supervised two-step training strategy
and corresponding losses to overcome the inaccuracy of
coarse masks. FreePoint has achieved breakthroughs in un-
supervised class-agnostic instance segmentation on point
clouds and outperformed previous traditional methods by
over 18.2% and a competitive concurrent work UnScene3D
by 5.5% in AP. Additionally, when used as a pretext task
and fine-tuned on S3DIS, FreePoint performs significantly
better than existing self-supervised pre-training methods
with limited annotations and surpasses CSC by 6.0% in
AP with 10% annotation masks. Code will be released at
https://github.com/zzk273/FreePoint.

1. Introduction

Instance segmentation on point clouds aims to segment and
recognize objects in a 3D scene, serving as the foundation
for a wide range of applications such as autonomous driv-
ing, virtual reality, and robot navigation. This task has re-
ceived increasing attention [6, 13–16, 19, 22, 23, 37, 43, 52]
for the availability of large-scale point cloud datasets [4,
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Figure 1. We propose a novel framework for unsupervised point
cloud instance segmentation. In detail, we cluster points based
on coordinates, colors, and self-supervised deep features. Then
we use the clustered pseudo masks to perform a step-training and
improve the unsupervised segmentation quality further.

12, 28, 40]. Most of the previous works focus on fully-
supervised point cloud segmentation, which requires a large
number of bounding boxes and per-point annotations to
achieve satisfactory results. However, the annotations of
point clouds are labor-intensive. For example, labeling an
average scene in ScanNet takes about 22.3 minutes [12].

To relieve the annotation requirements, some weakly-
supervised 3D segmentation methods [8, 24, 51, 55, 56]
and semi-supervised 3D segmentation methods [7, 20] have
been proposed. Besides, some works explore unsuper-
vised pre-training methods for 3D point clouds [18, 50, 57],
mainly focusing on data-efficient scene understanding and
achieving satisfactory results when fine-tuning on down-
stream tasks with limited annotations. These works, how-
ever, still rely on considerable box, point annotations, or a
certain proportion of mask annotations to achieve compet-
itive results. A concurrent work Unscene3D [34] explores
unsupervised 3D class-agnostic instance segmentation for
indoor scenes. It shows promising results while still having
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large room for improvement in accuracy.
In this work, we propose a novel framework FreePoint

for unsupervised point cloud instance segmentation, which
can be split into three parts: (1) preprocessing and point fea-
ture extraction; (2) pseudo mask label generation by point
feature based graph partitioning; (3) step-training using the
pseudo labels. We first adopt plane segmentation algo-
rithm repeatedly to split a point cloud scene into foreground
points and background points. Then, for foreground points,
we use a self-supervised pre-trained backbone to generate
deep-learning feature embeddings for each point. To en-
hance our feature representation, we add coordinates and
colors as extra point features. Our main motivation is that
the geometry and color features are helpful for point cloud
segmentation. These information has been widely adopted
by some traditional point-clustering methods [2, 31, 35, 36].
To generate pseudo mask labels, we solve a bottom-up mul-
ticut [11] problem based on the affinities of point features
and constructed point graphs. We propose an id-as-feature
strategy at this stage to alleviate the randomness of the mul-
ticut algorithm and improve the pseudo labels’ quality. This
strategy is, in essence, an ensemble of multiple runnings
of RAMA. We also adopt down-sampling and up-sampling
here to make the computation affordable. These pseudo
masks are used to train an existing instance segmentation
model. In our work, we choose Mask3D [37] for its ef-
ficiency and good performance. Since the pseudo masks
are inaccurate and the training can be unstable, we propose
a weakly-supervised two-step training strategy and corre-
sponding losses to alleviate this problem. The overview of
FreePoint is shown in Figure 1.

We evaluate our method on unsupervised class-agnostic
instance segmentation. In this setting, our method shows
surprising results without any annotations, surpassing previ-
ous SOTA by a large margin. Apart from directly acquiring
the class-agnostic instance masks, our method can also be
used for unsupervised pre-training on 3D point clouds. The
learned parameters of the backbone can be used to initial-
ize a supervised instance segmentation model and improve
final results with limited annotations.

Our contributions in this paper are three-fold:
• We propose a novel framework, FreePoint, for unsuper-

vised point cloud instance segmentation with deep net-
works. Freepoint generates pseudo labels based on solv-
ing a graph partitioning problem and then uses these
pseudo labels to train a 3D instance segmentation model.
Our work opens up possibilities for advancing the field.

• We make great efforts to overcome many difficulties
brought by the lack of manual annotations. To gener-
ate pseudo labels of higher quality, we first propose a hy-
brid feature representation for point affinity computation.
Then we design an id-as-feature strategy to alleviate the
randomness of the graph partitioning method. For bet-

ter use of the noisy pseudo labels, we further propose a
carefully designed two-step training strategy and corre-
sponding losses to overcome pseudo labels’ noise.

• We evaluate FreePoint’s performance on unsupervised
class-agnostic point cloud instance segmentation. It sur-
passes traditional unsupervised segmentation methods by
over 18.2%, and even outperforms the competitive con-
current work UnScene3D [34] by 5.5% in AP. We also
evaluate FreePoint’s performance as a pretext task. For
example, when fine-tuning on S3DIS dataset with 10% la-
beled masks, FreePoint outperforms training from scratch
by +8.2% AP and CSC by 5.8% AP.

2. Related work
Point cloud instance segmentation Early works on point
cloud instance segmentation focus on grouping points based
on their affinities [13, 44, 45]. They use dense labels to train
point feature encoders and segment point clouds by mea-
suring the point affinities. 3D-SIS [17] and 3D-BoNet [52]
extract bounding box proposals and classify them. Recent
works prefer to group points based on predicted seman-
tics and object centers [6, 14, 15, 19, 23]. Mask3D [37] is
the first Transformer-based approach to challenge this task.
We choose it as our step-training model for its high effi-
ciency. The above works highly rely on per-point labels
to achieve good results. However, acquiring such labels
is labor-intensive. Some 3D instance segmentation works
have been proposed these years to alleviate dependency on
costly manual annotations. [7, 18, 20, 24, 51, 51, 55, 56]
assume a sparse number of points is annotated and [8] use
only bounding box labels. However, they still rely on con-
siderable annotations to achieve competitive results.

Unsupervised segmentation and detection In 2D im-
ages, several works explore unsupervised object detec-
tion [10, 26, 38, 39, 48], instance segmentation [46, 47],
and semantic segmentation [9, 21, 42]. In object detection
area, some works [26, 38, 48] use spectral methods to dis-
cover and segment main objects in a scene. They first con-
struct an adjacency matrix using spatial features, color fea-
tures, or features from pre-trained backbones. Then the ma-
trix’s eigenvectors and eigenvalues are computed to decom-
pose the image. Recently, a few works [46, 47] have ex-
plored unsupervised instance segmentation for 2D images
and achieved satisfactory results. UnScene3D [34] has ex-
plored unsupervised 3D instance segmentation for indoor
scenes. It operates on a basis of geometric oversegmenta-
tion to generate pseudo labels and refines them through self-
training as many 2D works. UnScene3D shows promising
results while still having large room for improvement in ac-
curacy. The main difference between our method and this
work lies in: (1) utilizing only 3D color and geometric fea-
tures instead of multimodal features from 2D and 3D pre-
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training backbones; (2) designing a two-step training strat-
egy instead of a multi-round self-training strategy which is
very time-costing.

3D feature representation Traditional methods [2, 31]
use features like coordinates, colors and normals to de-
scribe each point in a scene. Following the tendency of un-
supervised pre-training in 2D field, various works [3, 18, 27,
30, 50, 53, 54, 57] have been proposed recently to represent
3D features, but mostly focusing on single-object classifi-
cation tasks on ShapeNet [5] or ModelNet [49]. Only a few
works [18, 50, 57] focus on large-scale indoor point cloud
datasets, which are important for multi-object segmentation
tasks and contain far more than only one object. [18] mainly
explores how to address downstream tasks in a data-efficient
semi-supervised way rather than using full annotations. As
a result, many works on instance segmentation and seman-
tic segmentation train their model from scratch and can not
benefit from 3D pre-training.

3. Method

Our pipeline, as shown in Figure 2, can be split into three
parts: (1) preprocessing and point feature extraction; (2)
pseudo mask label generation by point feature based graph
partitioning; (3) step-training using the pseudo labels. Con-
cretely, we first apply plane segmentation to separate the
foreground points and background points. Then, for fore-
ground points, we combine both traditional features (i.e.,
coordinates and colors) and self-supervised deep-learning
embeddings to represent their features. Based on it, we
construct an undirected graph G = (V,E,A) viewing the
points as vertices V and their connections as edges E. A
is an affinity cost vector measured by the affinities between
point features. After this, a multicut algorithm is adopted to
decompose G into coarse instance masks. Finally, we use
the coarse masks to perform step-training with our proposed
weakly-supervised loss and step-training strategy.

3.1. Preprocessing and point feature extraction

Preprocessing It is difficult to directly cluster the point
clouds into instance masks and backgrounds in the unsu-
pervised setting, since numerous inconspicuous objects are
integrated into nearby backgrounds. However, we find that
for indoor point cloud datasets, backgrounds include floors,
walls, and ceilings, which are usually large and flat surfaces
and thus can be easily removed. So we apply plane seg-
mentation [58] to filter out major surfaces in a scene and
consider them as backgrounds. In detail, we run a non-
parametric plane segmentation algorithm several times for
a scene. Each fitted plane will be projected and compared
with its corresponding surface of the whole indoor scene’s
bounding box and we will compute the IOU. If the IOU

is larger than a threshold, it will be seen as part of the
background and removed from the scene. After this step,
the original input point cloud Vfull ∈ RN×6, which con-
tains coordinate and color information, is divided into two
subsets: foreground point cloud Vfg ∈ RNfg×6 and back-
ground point cloud Vbg ∈ RNbg×6. Since segmenting back-
grounds is not the goal of instance segmentation, we only
use Vfg for the next feature extracting and point cloud seg-
menting step.

We then perform farthest point sampling [32] to down
sample Vfg into Vsampled ∈ RNsampled×6. This step is
important for that: (1) it can reduce the computation cost
of the following point cloud segmenting process and make
the pseudo label generation on raw points affordable; (2)
this down-sampling can make the point distribution more
sparse. Because of the sparsity, the sampled points are far-
ther from each other in feature space, which is beneficial
for our point cloud segmenting method described in Sec-
tion 3.2.

Feature extraction Since our segmenting method is
based on the affinity between the feature representation of
each point, we should find a way to make points closer in
feature embedding space if they belong to the same ob-
ject and farther otherwise. We first use self-supervised pre-
trained backbones to encode points. However, we find it dif-
ficult to encode points discriminatively using deep-learning
features alone, which means even points belonging to dif-
ferent instances can be close to each other in the feature
embedding space.

Before the era of deep learning, some methods [2, 31]
use traditional features to cluster points. For example, Su-
pervoxel [31] uses features like coordinates and colors to
measure the affinities between points and cluster them ac-
cordingly. Inspired by it, we use both traditional features
and deep-learning features to represent each sampled point
and measure their affinities in our work.

3.2. Point cloud segmenting

Preliminary Minimum-cost multicut [11] problem aims
to decompose an undirected graph G = (V,E,A) into a
set of point subsets {V1, . . . ,Vk} where V1 ∪ . . .∪Vk =
V and Vi ∩ Vj = ∅ ∀i ̸= j. Edges that straddle distinct
clusters which decomposes G form the cut δ(V1, . . . ,Vk).
A ∈ RE is an affinity cost vector. Each edge (u, v) ∈ E has
a cost A(u,v). We need to find a decomposition cut of the
undirected graph G that agrees as much as possible with the
affinity cost vector, minimizing the whole cost of cut. So if
more edge cost values are negative, G will be decomposed
into more clusters.

Segmenting In our work, we select RAMA [1], a rapid
bottom-up multicut algorithm on GPU, to segment point
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Figure 2. Overview. For inputted point clouds, we first use plane segmentation to filter out backgrounds. Then we represent the features for
points by combining self-supervised deep features and traditional features. After that, we construct a graph and compute the edge affinity
costs between points. Based on the graph, we apply a multicut algorithm to segment point clouds into coarse instance masks. These
masks are adopted as pseudo labels to train a 3D instance segmentation model with our proposed weakly-supervised loss and step-training
strategy.

clouds. Each vi ∈ V is connected to the closest k1
points {ui1 , ..., uik1

} ∈ V by edges (vi, uij ) ∈ E, where
j ∈ {1, . . . , k1}. Affinity cost vector A is the affinities
of both deep features and traditional features. For deep-
learning feature embeddings F ∈ RNsampled×dim, we cal-
culate their cosine similarities:

A(i,j),emb = Cos(Fi,Fj). (1)

We split Vsampled into point coordinates P ∈
RNsampled×3 and point colors C ∈ RNsampled×3. Then we
compute L2 distance respectively in XYZ space and RGB
space:

A(i,j),xyz = − ∥ Pi,Pj ∥2,A(i,j),rgb = − ∥ Ci,Cj ∥2 .
(2)

These three affinities are all normalized to have a mean
value of 0 and variance of 1. The total affinity can be written
as:

A = α1Aemb + α2Axyz + α3Argb, (3)

where α1, α2, α3 are the weights to balance the importance
of different affinities. G will be sent to RAMA [1] based on
A and the output is pseudo instance labels.

However, due to the characteristics of this bottom-up
segmenting method, the generated coarse masks have ran-
domness. We design an id-as-feature strategy to solve this
problem and improve the pseudo labels’ quality. This strat-
egy is, in essence, an ensemble of multiple generation re-
sults. Concretely, each time t we run RAMA, every point in

Vsampled will have an assigned pseudo instance label idt.
We run RAMA multiple times T and concatenate every idt
to form a new feature for each point in Vsampled. For these
id-generated features IDF ∈ RNsampled×T , their similari-
ties will be computed as:

A(i,j),id =
1

T

T∑
t=1

I [IDFi [t] = IDFj [t]] (4)

We run RAMA again based on Aid and then preliminary
pseudo instance labels Lsampled ∈ RNsampled are formed.
To recover to original size, we use knn to find the closest
k2 points and corresponding labels in Vsampled for each
point in Vfg . By majority voting of the k2 points, we ob-
tain Lfg ∈ RNfg . Then we annotate points in Vbg as back-
ground and concatenate it with Lfg to obtain final pseudo
labels L ∈ RN . The pipeline of pseudo-label generation is
shown in Figure 3.

As mentioned before, RAMA generally segments the
scene into more objects if more edge values are negative.
When running RAMA based on A, we will add different
hyper-parameters σlow, σhigh to affinity:

Afinal = A+ {σlow, σhigh}. (5)

By changing σ, we generate coarse masks of two dif-
ferent segmenting levels. One is able to localize and iden-
tify most objects in the scene but fails to generate com-
plete masks for instances. We denote these masks as base

28257



Input Down Sample Graph Construction

MulticutUp SamplePseudo Labels

Figure 3. Pseudo-label Generation. In this figure, we show the
complete pipeline of pseudo-label generation. For simplicity, we
set k1 = k2 = 2.

masks. To overcome base masks’ defects, we generate
under-segmented masks with a relatively higher σ. They
will be in good use for the next step following our weakly-
supervised two-step training design. It is worth mentioning
that when running RAMA based on Aid, σ is automatically
chosen to keep the number of generated instances approxi-
mately the same as the average instance number of T run-
nings of RAMA based on Afinal.

3.3. Training with coarse masks

To further refine the coarse masks, we aim to train a point
cloud instance segmenter using these masks as pseudo la-
bels. In our work, we choose Mask3D [37], a Transformer-
based model for semantic instance segmentation, for its
good performance and efficiency. Coarse masks are of-
ten inaccurate, so directly using them to train an instance
segmenter in a fully-supervised way will cause unsatisfac-
tory results. Therefore we propose two designs to solve
this problem, including a new weakly-supervised loss and
a step-training strategy.

Loss for weakly-supervised training In the original im-
plementation of Mask3D [37], they use both dice loss Ldice

and binary cross entropy loss LBCE as mask loss to train.
However, our pseudo labels are inaccurate, so using such
per-point loss directly may lead to sub-optimal results. So
we propose to use these coarse masks as a kind of weak
annotation and design a weakly-supervised loss.

Inspired by [8, 41, 46], we believe mask centers and
bounding boxes are important for weakly-supervised train-
ing. Mask centers can help to localize instances. We com-
pute the mean value of normalized coordinates in a pre-
dicted mask m and target mask m∗ along each axis to
get prediction center cmean ∈ (xc, yc, zc) and target cen-
ter tmean ∈ (xt, yt, zt). Our model is trained to minimize

the Euclidean distance between cmean and tmean:

Lmean = Euclidean(avg(m), avg(m∗)). (6)

We further propose a bounding box loss. Bounding box
supervision enforces predictions with the correct sizes and
locations. This design can further improve our work’s per-
formance. For implementation, we pick the maximum and
minimum value along each axis for a predicted mask and a
target mask to get two boundary point pairs (cmax, tmax)
and (cmin, tmin). The Euclidean distance of each pair is
summed to be our bounding-box loss. The loss can be writ-
ten as:

Lbox = sum(Euclidean(max(m),max(m∗)),

Euclidean(min(m),min(m∗))).
(7)

We compute the above losses directly on points with-
out voxelization. Then the weighted sum of each term in
weakly-supervised loss and fully-supervised loss will be
our final loss, which can be written as:

L = λdiceLdice + λBCELBCE

+ λmeanLmean + λboxLbox,
(8)

where λdice, λBCE , λmean, and λbox are the weights to
balance the importance of different loss terms.

Step training strategy In section 3.2, we observe that our
segmenting method can generate masks of different seg-
menting levels. For base masks, the scene will be generally
split into object parts. More instances can be identified and
localized in this situation, but they lack complete masks.
For the under-segmented setting, the scene has fewer in-
stance proposals, which means we will have more masks
covering a whole object. However, instances in this setting
are always mistakenly connected with nearby instances es-
pecially when they share similar features.

We wonder which kind of masks we should use to
achieve better results. Both coarse masks have insurmount-
able defects if adopted as pseudo labels alone. There-
fore, we explore a novel training strategy so that over-
segmented and under-segmented masks can compensate for
each other’s shortcomings and significantly improve final
results. Concretely, we use base masks as pseudo labels for
the first training step. At this stage, the model is trained
to segment points of similar features, regardless of whether
they belong to object parts or whole objects. For the second
training step, we use under-segmented masks instead. With
only a few epochs, the model learns to connect mistakenly
segmented object parts into a whole object. This step can
improve the results of the first step by a large margin with
little time cost.

However, the under-segmented masks which contain
multiple objects may harm the model’s performance. At

28258



this stage, we propose an undersegmentation-ignore design
to relieve this problem. Concretely, during the bipartite
matching stage of the training of Mask3D, we ignore the
match if the matched pseudo mask contains more than cer-
tain times the points of the predicted mask. This design
is based on the insight that the model can already predict
approximately correct masks and doesn’t need much refine-
ment. It ensures the model completes instance masks within
a reasonable range.

The improvement in accuracy matches our intuition. The
model is first trained to encode points and segment point
clouds at a low level. Even though the pseudo labels we
use in this step are over-segmented, the model can learn rel-
atively good point feature representations and predict ob-
ject parts. Then we use under-segmented masks to teach the
model how to connect objects and predict complete instance
masks.

4. Experiments
Implementation details For point downsampling in pre-
processing, we downsample the whole point cloud to the
half of the number of original points and set k1 = k2 = 4.

Datasets We evaluate our work on two publicly available
indoor 3D instance segmentation datasets ScanNet [12] and
S3DIS [4]. The ScanNet dataset altogether contains 1613
scans, divided into training, validation and testing sets of
1201, 312, 100 scans respectively. We use the 20-class
benchmark provided by the dataset. The S3DIS dataset
contains 3D scans of 6 areas with 271 scenes in total.
The dataset consists of 13 classes for instance segmenta-
tion evaluation. For unsupervised instance segmentation,
we train on the training set. We report both evaluation re-
sults on the training set following UnScene3D [34] and the
validation set.

Evaluation Metrics We use standard average precision as
our evaluation metrics. AP50 and AP25 denote the scores
with IoU thresholds of 0.5 and 0.25 respectively. AP de-
notes the average scores with IoU threshold from 0.5 to 0.95
with a step size of 0.05. We evaluate only instance mask AP
values without considering any semantic labels.

4.1. Main Results

Unsupervised instance segmentation We mainly com-
pare our work with a concurrent work [34], which is
a recently proposed unsupervised instance segmentation
method for indoor 3D scenes. It operates on a basis
of geometric oversegmentation to generate pseudo labels
and refines them through multi-round self-training as many
works. We also compare FreePoint with some tradi-
tional clustering methods including DBSCAN [33], HDB-

Instance GT Instance pred

Figure 4. Qualitative results on ScanNet. FreePoint shows sur-
prisingly good performance without any annotations.

Method Train set Val set
AP AP50 AP AP50

DBSCAN [33] 3,2 4.1 3.3 3.6
HDBSCAN [25] 1.6 5.5 1.9 5.4
Nunes et al. [29] 2.3 7.3 2.1 6.9
UnScene3D [34] 13.3 - - -
UnScene3D* [34] 15.9 32.2 - -
FreePoint (Ours) 21.4 38.7 18.9 36.4

Table 1. Unsupervised class-agnostic instance segmentation on
ScanNet train split and validation split. We report average preci-
sion (AP) with different IoU thresholds. We mainly compare our
method with some traditional clustering methods for point clouds
and some recently proposed deep-learning-based methods. ’*’
means the method utilizes both 2D features and 3D features. ’-’
means the result is not provided by the original paper and we don’t
have access to the code to evaluate it by ourselves. Our method
improves significantly over baselines.

SCAN [25] and a method originally proposed for outdoor
autonomous vehicles [29]. The visualization results are
shown in Figure 4.

We report the result in Table 1. It is worth noting that
UnScene3D utilizes both 3D pretraining deep features and
2D pretraining deep features while we only use the former.
For a fairer comparison, we also show the result of Un-
Scene3D which only uses 3D features from the same pre-
training method CSC [18] as FreePoint. Our method sur-
passes previous methods by a significant margin.

Fine-tuning on semantic instance segmentation Since
our work is unsupervised, it can also be seen as a pre-
training pretext task. Apart from unsupervised class-
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Pre-train AP AP50 AP25

10
%

m
as

ks

Train from scratch 34.7 47.6 56.3
Supervised 36.9 50.1 55.5

PointContrast [50] 36.1 (-0.8) 49.4 (-0.7) 56.8 (+1.3)
DepthContrast [57] 36.8 (-0.1) 49.0 (-1.1) 57.3 (+1.8)

CSC [18] 37.1 (+0.2) 50.7 (+0.6) 57.1 (+1.6)
FreePoint (Ours) 42.9 (+6.0) 54.6 (+4.5) 61.1 (+5.6)

20
%

m
as

ks

Train from scratch 44.1 54.3 61.1
Supervised 45.7 55.2 61.4

PointContrast [50] 44.4 (-1.3) 54.8 (-0.4) 61.7 (+0.3)
DepthContrast [57] 45.2 (-0.5) 54.9 (-0.3) 62.4 (+1.0)

CSC [18] 46.3 (+0.6) 56.4 (+1.2) 61.5 (+0.1)
FreePoint (Ours) 47.4 (+1.7) 60.2 (+5.0) 65.9 (+4.5)

Table 2. Supervised semantic instance segmentation with lim-
ited instance masks. “Supervised” denotes the process of fully-
supervised pre-training on ScanNet, succeeded by fine-tuning
on S3DIS. In contrast, other methods employ unsupervised pre-
training. The numerical values in brackets indicate the relative
performance changes of unsupervised pre-training compared to
their supervised counterparts.

Pre-train AP AP50 AP25

10
%

sc
en

es

Train from scratch 30.1 41.2 52.2
Supervised 32.4 41.8 52.3

PointContrast [50] 31.0 (-1.4) 42.2 (+0.4) 53.5 (+1.2)
DepthContrast [57] 32.2 (-0.2) 41.5 (-0.3) 53.7 (+1.4)

CSC [18] 32.7 (+0.3) 42.7 (+0.9) 54.4 (+2.1)
FreePoint (Ours) 37.2 (+4.8) 48.1 (+6.3) 59.3 (+7.0)

20
%

sc
en

es

Train from scratch 42.1 49.5 58.3
Supervised 44.8 51.7 59.6

PointContrast [50] 43.7 (-1.1) 50.8 (-0.9) 60.5 (+0.9)
DepthContrast [57] 44.0 (-0.8) 51.6 (-0.1) 62.1 (+2.5)

CSC [18] 44.4 (-0.4) 52.9 (+1.2) 61.0 (+1.4)
FreePoint (Ours) 48.1 (+3.3) 56.6 (+4.9) 64.3 (+4.7)

Table 3. Supervised semantic instance segmentation with lim-
ited fully annotated point clouds. “Supervised” denotes the pro-
cess of fully-supervised pre-training on ScanNet, succeeded by
fine-tuning on S3DIS. In contrast, other methods employ unsuper-
vised pre-training. The numerical values in brackets indicate the
relative performance changes of unsupervised pre-training com-
pared to their supervised counterparts.

agnostic instance segmentation, we further evaluate our
work’s performance as an unsupervised pre-training model.
As shown in Table 2, FreePoint pre-training significantly
outperforms other unsupervised pre-training methods [18,
50, 57] by a large margin, and even suppress the supervised
pre-training by 6.0% AP and 1.7% AP and when using 10%
and 20% training masks respectively.

We also compare the pre-training methods with different
amounts of full-scene annotations. As shown in Table 3, we
conduct fine-tuning experiments with only limited scenes
available. Our work can still achieve satisfactory results.

Method AP AP50 AP AP50

Traditional 6.3 10.4 10.3 21.6
PointContrast [50] 7.6 13.3 15.7 27.9
CSC [18] 7.9 13.4 16.5 30.8
FreePoint (Ours) 8.5 15.3 18.9 36.4

Table 4. Different feature representation methods for generat-
ing base masks. We report the accuracy of both base masks (left
block) and final results (right block). Our strategy has the best
performance.

FreePoint pre-training outperforms other unsupervised pre-
training methods, and even the supervised pre-training by
4.8% AP and 3.3% AP, when using 10% and 20% full-scene
annotations respectively.

4.2. Ablation Study

In this part, we conduct ablation experiments to show the
effectiveness of each designed component.

Different feature representations We explore results on
different kinds of point feature representations. For features
generated by various self-supervised pre-training encoders,
we compare their performance in generating coarse masks
and final instance segmentation results. Then we combine
the best performer with traditional features and find the ac-
curacy can be further improved. The comparison between
different feature representations is shown in Table 4.

Segmenting methods Owning relatively good feature
representation, there are many existing ways to seg-
ment point clouds and generate coarse masks accordingly.
We compare some methods including Supervoxel [31],
FreeMasks, a method proposed by [46], and spectral [26]
methods. For each method, we adapt them to the ScanNet
dataset and tune parameters to achieve good results as far as
we can.

We observe that FreeMasks and spectral methods, which
have proven successful in unsupervised object detection or
segmentation tasks in the 2D field, fail to transfer to point
clouds as shown in Figure 5. These two methods have
two main defects due to their shared top-down mechanism.
Firstly, they can only identify and localize partial objects
in a crowded and cluttered 3D scene. Secondly, it is hard
for these non-distance-based segmenting methods to dis-
tinguish different objects of the same semantic information
even if they are far away from each other. The above two
defects do not have much impact on some 2D images since
they generally contain only one or a few dominant objects.
But point cloud scenes are not this case. Point clouds usu-
ally have many similar objects in each scene, leading to
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Input FreeMasks_3D Spectral RAMA

Figure 5. Comparison with segmenting methods originally for
2D unsupervised instance segmentation. Recent methods [26,
46] for 2D unsupervised instance segmentation fail to deal with
crowded and cluttered point cloud scenes due to their top-down
mechanism.

Method AP AP50 AP AP50

Supervoxel [31] 2.4 3.5 3.8 6.9
FreeMasks 3D [46] 2.9 3.2 - -
Spectral [26] 2.3 4.8 - -
RAMA 5.4 10.6 13.8 24.7
RAMA-5 8.3 14.7 17.6 35.0
RAMA-10 8.5 15.3 18.9 36.4

Table 5. Segmenting methods. We report the accuracy of both
base masks (left block) and final results (right block). ‘-’ means
failing to converge. The number after RAMA is running times T
for evaluation of our id-as-feature strategy.

unsatisfactory results. RAMA’s bottom-up mechanism re-
lieves the above problems in essence. We also explore the
effectiveness of our id-as-feature strategy and the impact of
the running times T of RAMA when adopting this strategy.
For each method, we report the accuracy of coarse masks
and final predictions. Results are shown in Table 5.

Weakly-supervised learning design. To validate the ef-
fectiveness of our weakly-supervised design including dif-
ferent loss terms and undersegmentation-ignore method, we
first evaluate the result of using fully-supervised loss(i.e.,
Dice loss and BCE loss) alone, discovering that directly
adopting such loss leads to unsatisfactory results. We also
find that only using our proposed weakly-supervised loss
terms is even much worse than only using fully-supervised
loss terms. This may be attributed to that terms for weak
supervision contain too little information, unable to match
low-quality predictions with ground truth at the early train-
ing stage. Each loss term and undersegmentation-ignore de-
sign are validated in Table 6.

Method AP AP50

combination(default) 18.9 36.4
- w/o Lmean 14.3 30.6
- w/o Lbox 15.2 31.4
- w/o Lmean and Lbox 14.0 28.5
- w/o Ldice and LBCE 7.8 15.7
- w/o undersegmentation-ignore 16.8 36.3

Table 6. Weakly-supervised learning design. Each design con-
tributes to the final results.

Method AP AP50

base masks 8.5 15.3
under-segmented masks 9.1 12.5
train with base masks 14.2 30.5
train with under-segmented masks 6.4 13.8
Ours 18.9 36.4

Table 7. Training strategy. Our two-step training strategy signif-
icantly improves the accuracy.

Training strategy As mentioned in section 3.2, we can
generate coarse masks of different segmenting levels by
changing parameters when running RAMA. Base masks
are generally over-segmented while can identify and lo-
calize most objects in the scene. Therefore after training
with the base masks, we further train the model with under-
segmented masks with only a few epochs. In Table 7 we
report AP and AP50 to evaluate our design’s effectiveness.

5. Discussion and Conclusion
In this work, we propose an effective framework FreeP-
oint for unsupervised class-agnostic point cloud instance
segmentation. FreePoint achieves satisfactory results com-
pared with previous methods in this underexplored field,
which proves this task is worthy of further exploration.
In our experiment, we also find that top-down segment-
ing methods proposed in previous 2D unsupervised instance
segmentation works fail to be directly adopted by point
clouds as shown in Figure 5. Developing a novel unsu-
pervised segmenting method for cluttered 3D indoor scenes
may be promising. We hope our work can provide insights
for future unsupervised point cloud learning works.
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let, and Jean Ponce. Localizing objects with self-supervised
transformers and no labels. arXiv:2109.14279, 2021. 2

[40] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. In CVPR, pages 1746–1754,
2017. 1

[41] Zhi Tian, Chunhua Shen, Xinlong Wang, and Hao Chen.
Boxinst: High-performance instance segmentation with box
annotations. In CVPR, pages 5443–5452, 2021. 5

[42] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic seg-
mentation by contrasting object mask proposals. In ICCV,
pages 10052–10062, 2021. 2

[43] Thang Vu, Kookhoi Kim, Tung M Luu, Thanh Nguyen, and
Chang D Yoo. Softgroup for 3d instance segmentation on
point clouds. In CVPR, pages 2708–2717, 2022. 1

[44] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. Sgpn: Similarity group proposal network for 3d point
cloud instance segmentation. In CVPR, pages 2569–2578,
2018. 2

[45] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and
Jiaya Jia. Associatively segmenting instances and semantics
in point clouds. In CVPR, pages 4096–4105, 2019. 2

[46] Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz,
Anima Anandkumar, Chunhua Shen, and Jose M Alvarez.
Freesolo: Learning to segment objects without annotations.
In CVPR, pages 14176–14186, 2022. 2, 5, 7, 8

[47] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra.
Cut and learn for unsupervised object detection and instance
segmentation. arXiv:2301.11320, 2023. 2

[48] Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Mao-
mao Li, Shell Xu Hu, James L Crowley, and Dominique
Vaufreydaz. Tokencut: Segmenting objects in images and
videos with self-supervised transformer and normalized cut.
arXiv:2209.00383, 2022. 2

[49] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, pages 1912–1920, 2015. 3

[50] Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In ECCV, pages
574–591. Springer, 2020. 1, 3, 7

[51] Xun Xu and Gim Hee Lee. Weakly supervised semantic
point cloud segmentation: Towards 10x fewer labels. In
CVPR, pages 13706–13715, 2020. 1, 2

[52] Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen
Wang, Andrew Markham, and Niki Trigoni. Learning ob-
ject bounding boxes for 3d instance segmentation on point
clouds. NeurIPS, 32, 2019. 1, 2

[53] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In CVPR, pages
19313–19322, 2022. 3

[54] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-m2ae:
multi-scale masked autoencoders for hierarchical point cloud
pre-training. arXiv:2205.14401, 2022. 3

[55] Yachao Zhang, Zonghao Li, Yuan Xie, Yanyun Qu, Cuihua
Li, and Tao Mei. Weakly supervised semantic segmentation
for large-scale point cloud. In AAAI, pages 3421–3429, 2021.
1, 2

[56] Yachao Zhang, Yanyun Qu, Yuan Xie, Zonghao Li, Shanshan
Zheng, and Cuihua Li. Perturbed self-distillation: Weakly
supervised large-scale point cloud semantic segmentation. In
ICCV, pages 15520–15528, 2021. 1, 2

[57] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan
Misra. Self-supervised pretraining of 3d features on any
point-cloud. In ICCV, pages 10252–10263, 2021. 1, 3, 7

[58] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A
modern library for 3d data processing. arXiv:1801.09847,
2018. 3

28263


