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Figure 1. Functional diffusion. Our method is able to generate complicated functions with a continuous domain. From left to right, we
show 5 steps of the generating process. This particular example shows signed distance functions and we show the zero-isosurface of the
generated function in green. Furthermore, we visualize the function values on a plane, where the red colors mean larger and blue means
smaller.

Abstract

We propose functional diffusion, a generative diffusion
model focused on infinite-dimensional function data sam-
ples. In contrast to previous work, functional diffusion
works on samples that are represented by functions with a
continuous domain. Functional diffusion can be seen as
an extension of classical diffusion models to an infinite-
dimensional domain. Functional diffusion is very versatile
as images, videos, audio, 3D shapes, deformations, etc., can
be handled by the same framework with minimal changes.
In addition, functional diffusion is especially suited for ir-
regular data or data defined in non-standard domains. In
our work, we derive the necessary foundations for func-
tional diffusion and propose a first implementation based
on the transformer architecture. We show generative results
on complicated signed distance functions and deformation
functions defined on 3D surfaces.

1. Introduction

In the last two years diffusion models have become the
most popular method for generative modeling of visual
data, such as 2D images [34, 35], videos [13, 15], and 3D
shapes [3, 5, 16, 40, 41, 46, 47]. In order to train a diffu-
sion model, one needs to add and subtract noise from a data
sample. In order to represent a sample, many methods use
a direct representation, such as a 2D or 3D grid. Since dif-
fusion can be very costly, this representation is often used
in conjunction with a cascade of diffusion models [14, 35].
Alternatively, diffusion methods can represent samples in
a compressed latent space [34]. A sample can be encoded
and decoded to the compressed space using an autoencoder
whose weights are trained in a separate pre-process.

In our work, we explore a departure from these previous
approaches and set out to study diffusion in a functional
space. We name the resulting method functional diffusion.
In functional diffusion, the data samples are functions in
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Figure 2. Signed distance functions. We show a 3D shape on the
left and on the right, we visualize the signed distances sampled in
several parallel planes.

a function space (see an example function in Fig. 2). In
contrast to regular diffusion, we do not start with a noisy
sample, but we need to define a noise function as a starting
point. This noise function is then gradually denoised to ob-
tain a sample from the function space. To realize our idea
we need multiple different representations that are different
from regular diffusion. We employ both a continuous and
a sampled representation of a function. As the continuous
representation of a function, we propose a set of vectors that
are latent vectors of a functional denoising network. To rep-
resent a sampled function, we use a set of point samples in
the domain of the function together with the corresponding
function values. Both of these function representations are
used during training and inference. The method is initial-
ized by sampling a noisy continuous function that spans the
complete domain. Then we evaluate this function at dis-
crete locations to obtain a sampled representation. A train-
ing step in functional diffusion takes both the continuous
and sampled representation as input and tries to predict a
new continuous representation that is a denoised version of
the input function. This novel form of diffusion has multiple
interesting properties. First, the framework is very versatile
and can be directly adapted to many different forms of input
data. We can handle images, videos, audio, 3D shapes, de-
formations, etc., with the same framework. Second, we can
directly handle irregular data and non-standard domains as
there are few constraints on the function domain as well as
the samples of the sampled function representation. For ex-
ample, we can work with deformations on a surface, which
constitutes an irregular domain. Third, we can decouple the
representational power of the continuous and sampled func-
tion representation. Finally, we believe the idea of func-
tional diffusion is inherently technically interesting. It is a
non-trivial change and our work can lay the foundation for
a new class of diffusion models with many variations.

In summary, we make the following major contributions:
• We introduce the concept of functional diffusion, explain

the technical background, and derive the corresponding

equations.
• We propose a technical realization and implementation of

the functional diffusion concept.
• We demonstrate functional diffusion on irregular domains

that are challenging to handle for existing diffusion meth-
ods.

• We demonstrate improved results on shape completion
from sparse point clouds.

2. Related Work
2.1. Generative Models

Generative models have been extensively explored for im-
age data. We have seen several popular generative mod-
els in past years such as Generative Adversarial Networks
(GANs) [9], Variational Autoencoders (VAEs) [20] and Dif-
fusion Probabilistic Models (DPMs) [12]. GANs utilize an
adversarial training process. The versatility in generating
high-dimensional data has been proven by numerous appli-
cations and improvements. VAEs aim to learn a represen-
tation space of the data with an autoencoder and enable the
generation of new samples by sampling from the learned
space. However, the quality is often lower than GANs. This
idea is further improved in DPMs. Instead of decoding the
representation with a one-step decoder, DPMs developed
a new mechanism of progressive decoding. DPMs have
demonstrated remarkable success in capturing and gener-
ating complex patterns in image data [12, 14, 34, 35].

2.2. Diffusion probabilistic models

When DPMs were invented in the beginning, they showed
significant advantages in generating quality and diversity.
However, the disadvantages are also obvious. For exam-
ple, the sampling process is slower than other generative
models. Some works [17, 23, 24, 37] are dedicated to
solving the slow sampling problem. On the other hand,
these works [1, 33] are proposed to solve the cases of non-
Gaussian noise/degradation. However, our focus is to pro-
pose a new diffusion model for functional data. Com-
mon data forms like images can be seen as lying in a
finite-dimensional space. However, a function is generally
infinite-dimensional. It is not straightforward to adapt exist-
ing diffusion models for functional data. A direct solution
is a two-stage training method. The first stage is to fit a
network to encode functions with finite-dimensional latent
space. In the later stage, a generative diffusion model is
trained in the learned latent space. Many methods follow
this design [5, 28, 46]. On the other hand, SSDNerf [4]
combines both stages into one that jointly optimizes an
autodecoder and a latent diffusion model. However, the
method still trains diffusion in the latent space. The most
related work to our proposed method is DPF [48]. However,
DPF still works on data sampled on a discrete grid. Thus the
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f {xi}i∈C {xi, f(xi)}i∈C

Figure 3. Function approximation. We illustrate how to approx-
imate a function with its discretized state. Left: a function whose
domain X is a manifold. Middle: sampled points in the domain.
Right: the sampled points and the corresponding function values.
Different from DPMs which sample on a grid of a fixed resolution,
we do not have this restriction.

generated sample is still defined in a fixed resolution. Also,
DPF is time-consuming when sampling data of a large reso-
lution. Other related works [2, 7, 8, 10, 18, 22, 25] focused
on building mathematical background of diffusion models
in function space but did not show convincing practical re-
sults. We refer the reader to a recent survey of diffusion
models in various domains besides images [31].

2.3. Neural Fields

Neural networks are often used to represent functions with
a continuous domain. Here are some types of neural field
applications: 1) in computer graphics and geometry pro-
cessing, 3D shapes can be represented with implicit func-
tions and thus are suitable to be modeled with neural net-
works [5, 21, 26, 29, 30, 38, 39, 44, 46]; 2) 3D textured ob-
jects and scenes can be rendered with radiance fields [27]
which are also modeled with MLPs; 3) in physics, re-
searchers use neural networks to represent complex func-
tions which serve as solutions of differential equations [32].
Because of the universal approximation ability of neural
networks, neural fields often provide flexibility in handling
complex and high-dimensional data, and they can be trained
end-to-end using gradient-based optimization techniques.
Most importantly, neural fields can hold data sampled from
an infinite large resolution. We refer the reader to a recent
survey for more details on neural fields [43].

3. Methodology
We first introduce the definition of the functional diffusion
in Sec. 3.1. Then we show how to train the denoising net-
work in Sec. 3.2. Lastly, we show how we sample a function
from the trained functional diffusion models in Sec. 3.3.

DPM Proposed

Gaussian n ∈ RC Random function g : X → Y
Finite-dim x0 ∈ RC Infinite-dim f0 : X → Y

Noised xt ∈ RC Noised function ft : X → Y
—"— Context {xi, ft(xi)}i∈C
—"— Queries {xi, ft(xi)}i∈Q

Dθ : RC → RC Dθ : {f : X → Y} → {f : X → Y}

Table 1. Comparison of classical DPMs and the proposed
method. For DPMs, the data samples are finite-dimensional and
the denoiser is a function of the noised data xt. Our method
deals with infinite-dimensional functions with a continuous do-
main. Thus the denoiser Dθ is becoming a “function of a func-
tion”. This inspires us to seek a solution to find a way to process
infinite-dimensional functions with neural networks. Also, note
that DPM is a special case when Q = C.

3.1. Problem Definition

The training dataset D contains a collection of functions f0
with continuous domains X and range Y ,

f0 : X → Y. (1)

For example, we can represent watertight meshes as signed
distance functions f0 : R3 → R1. We also define function
set F where each element is also a function

g : X → Y. (2)

The function g works similarly to the noise in traditional
diffusion models. However, in functional diffusion, we re-
quire the “noise” to be a function. We can obtain a “noised”
version ft given f0 from D and g from F ,

ft(x) = αt · f0(x) + σt · g(x), (3)

where t is a scalar from 0 (least noisy) to 1 (most noisy).
We name ft as the noised state at timestep t. The terms
αt and σt are positive scalars. In DDPM [12], they satisfy
α2
t + σ2

t = 1. Thus αt is a monotonically decreasing func-
tion of t, while σt is monotonically increasing. VDM [19]
characterizes α2

t /σ
2
t as signal-to-noise ratio (SNR).

Our goal is to train a denoiser which can approximate:

Dθ[ft, t](x) ≈ f0(x). (4)

This is often called x0-prediction [19] in the literature
of diffusion models. However, other loss objectives also
exist, e.g., ϵ-prediction [12], v-prediction [36] and f -
prediction [17]. We emphasize that choosing x0-prediction
is important in the proposed functional diffusion which will
be explained later.

The objective is

Ef0∈D,g∈F,t∼T (t)

[
w(t)d (Dθ[ft, t], f0)

2
]
, (5)
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Algorithm 1 Training
1: repeat
2: g ∈ F ▷ noise function
3: f0 ∈ D ▷ training function
4: t ∼ T ▷ noise level
5: αt = 1/

√
t2 + 1, σt = t/

√
t2 + 1 ▷ SNR

6: Sample C ▷ context
7: Evaluate {g(xi)}i∈C and {f0(xi)}i∈C
8: Calculate the context {ft(xi)}i∈C with Eq. (3)
9: Sample Q ▷ query

10: Optimize Eq. (9) ▷ denoise
11: until convergence

Algorithm 2 Sampling

Ensure: Sample C and g ∈ F
1: Let ft = g
2: Evaluate {xi, ft(xi)}i∈C
3: for k ∈ {N,N − 1, . . . , 2, 1} do
4: tk = T (k), tk−1 = T (k − 1)

5: αt = 1/
√

t2k + 1, αs = 1/
√
t2k−1 + 1

6: σt = tk/
√
t2k + 1, σs = tk−1/

√
t2k−1 + 1

7: Predict {fs(xi)}i∈C with Eq. (11)
8: Let ft ← fs
9: end for

10: f0(x) = Dθ ({xi, ft(xi)}i∈C , t,x)

f1(x) ft(x) fs(x) f0(x)

{f1(xi)}i∈C {ft(xi)}i∈C {fs(xi)}i∈C {f0(xi)}i∈C

Figure 4. Inference chain. We show a simplified 4-steps gener-
ating process in Eq. (11). The arrows show how the data flows
during inference. x represents an arbitrary query coordinate. C is
the context set. The state fs(x) requires to know both the previous
state ft(x) and {ft(xi)}i∈C . Thus it is dependent on all previous
states f<s. f0(x) is the only exception because σ0 = 0. Thus
f0(x) is fully decided by the penultimate state {fs(xi)}i∈C .

where d(·, ·) is a metric defined on the function space {f :
X → Y} and w(t) is a weighting term. We summarize
the differences between the vanilla DPMs and the proposed
functional diffusion in Tab. 1.

3.2. Parameterization

Denoising network. The functional Dθ is parameterized
by a neural network θ. It is impossible to feed the noised
state function ft directly to the neural network as input.

In order to make the computation tractable, our idea is to
represent functions with a set of coordinates together with
their corresponding values. Thus we sample (discretize) a
set {xi ∈ X}i∈C in the domain X of ft. We feed this set to
the denoising network along with the corresponding func-
tion values {ft(xi)}i∈C (also see Fig. 3 for an illustration),

Dθ[ft, t](x) ≈ Dθ ({xi, ft(xi)}i∈C , t,x) . (6)

The design of the network Dθ varies for different applica-
tions. However, we give a template design in later sections.

Function metric. For the function metric d(·, ·), we
choose the l-2 metric,

d(Dθ[ft, t], f0) =

(∫
X
|Dθ[ft, t](x)− f0(x)|2 dx

)1/2

(7)
The approximation of the metric d(·, ·) is also done by sam-
pling (Monte-Carlo integration),

d (Dθ[ft, t], f0) ≈

(∑
i∈Q
|Dθ[ft, t](xi)− f0(xi)|2

)1/2

.

(8)
Thus our loss objective in Eq. (5) can be written as,

w(t)
∑
i∈Q
|Dθ ({xj , ft(xj)}j∈C , t,xi)− f0(xi)|2 . (9)

Pixel diffusion (DPMs trained in the pixel space) can be
seen as a special case of the model by sampling C on a fixed
regular grid and letting Q = C. DPF [48] uses the term
context for C and query for Q. Thus we also follow this
convention. We summarized how we design Q and C for
different tasks in Tab. 2.

Initial noise function. For now, we still do not know how
to choose the noise function set F = {g : X → Y}. In
DPMs, the noise is often modeled with a standard Gaussian
distribution. Gaussian processes are an infinite-dimensional
generalization of multivariate Gaussian distributions. Thus,
it is straightforward to use Gaussian processes to model the
noise functions. However, in our practical experiments, we
find sampling from Gaussian processes is time-consuming
during training. Thus, we choose a simplified version. In
the case of Euclidean space, we sample Gaussian noise on
a grid in X . Then other values are interpolated with the val-
ues on the grid. If the domain X is a non-Euclidean mani-
fold which is difficult to sample, instead we define the noise
function in the ambient space of X . In this way, we defined
a way to build the function set F . During training, in each
iteration, we sample a noise function g from this set.

To sum up, the training algorithm can be found in Algo-
rithm 1.
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Task Input Domain Space Output Range Space Condition |C| |Q|
3D Shapes Coordinates R3 SDF R1 Surface Point Clouds 49152 2048

3D Deformation Points on Manifold M Vector R3 Sparse Correspondence 16384 2048

Table 2. Task designs. We show the two main tasks used to prove the efficiency of the proposed method.

Cross Attention

K
,
V

Q

Context 1 Condition

Self Attention Cross Attention

K
,
V

Q

Context 2 Condition

Self Attention · · · Cross Attention

K
,
V

Q

Context L Condition

Self Attention

Queries

Cross Attention
K,V

Q

Target

Time embedding Time embedding Time embedding

AdaLN AdaLN AdaLN

Figure 5. The network design of the SDF diffusion model. The context set is split into L smaller ones. They (and optionally conditions
such as sparse surface point clouds) are fed into different stages of the network by using cross-attention. The time embedding is injected
into the network in every self-attention layer by adaptive layer normalization. After L stages, we obtain the representation vector sets and
they will be used to predict values of arbitrary queries. For SDFs, we optimize simple minimum squared errors.

g : X → Y

f0 : X → Y

{xi}i∈C

{g(x)i}i∈C

{f0(x)i}i∈C

{ft(x)i}i∈C
σt

αt

Figure 6. Evaluation of the context {xi, ft(xi)}i∈C . We sample
a set of points {xi}i∈C in the domain X . We evaluate the values
both in the noise function g and the ground-truth function f0. This
is how Eq. (3) works.

3.3. Inference

We adapt the sampling method proposed in DDIM [37] for
the proposed functional diffusion. As shown in Eq. (3), the
generating process is from timestep t = 1 (most noisy) to
t = 0 (least noisy). We start from an initial noise function
f1 = g ∈ F . Given the noised state ft at the timestep t, we

obtain the “less” noised state fs where 0 ≤ s < t ≤ 1,

fs = αs Dθ[ft, t]

estimated f0

+σs

(
ft − αtDθ[ft, t]

σt

)
estimated g

. (10)

We can also write,

fs(x) =
σs

σt
ft(x)+

(
αs − σs

αt

σt

)
Dθ ({xi, ft(xi)}i∈C , t,x)

(11)
We sample a set C and evaluate {xi, ft(xi)}i∈C in ev-

ery denoising step. The Eq. (11) shows how the one-step
denoised function fs is obtained. We recursively apply the
denoising process from ft to fs. In the end, we obtain the
generated sample f0. More importantly, to obtain interme-
diate function values fs(x) for an arbitrary x, we need to
know ft(x), and thus all previous states for x. However,
when we are denoising the last step of the generation pro-
cess, σs = 0, which means the generated function f0(x)
is only dependent on the penultimate state of the function
{xi, fs(xi)}i∈C (also see Fig. 4). With this observation, we
can obtain the generated function values without knowing
the intermediate states except the penultimate one. During
inference, we only need to denoise the context set. This is a
key property of the proposed method which can accelerate
the generation/inference.
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GT Input 3DS2VS Ours

Figure 7. SDF diffusion results. We show ground-truth meshes
and the input sparse point cloud (64 points) on the left. We com-
pare our results with 3DS2VS. Since our model is probabilistic, we
can output multiple different results given different random seeds.
Our results are detailed and complete. However, the traditional
method struggles to reconstruct correct objects.

On the contrary, DPF needs to denoise the ft(x) in ev-
ery denoising step t. While our method only needs to de-
noise a small context set C. In practice, we often sam-
ple a signed distance function with a high-resolution grid
G3 (e.g., 1283). This is complicated for DPF because
the number of queries is G3 × T where T is the num-

Source Target Queries 3DS2VS Ours

Figure 8. Deformation diffusion results. In the left, we show
both the source and the target frame and the sparse correspondence
(small spheres on the body surface).

ber of denoising steps (T = 16 in our experiments). For
our method, the number of queries is |C| × T +G3 where
G3 ≫ |C| = 49152. The difference is even more significant
when at higher resolution like G = 256 or G = 512. The
sampling algorithm is summarized in Algorithm 2.

4. Results: 3D Shapes
In computer graphics, 3D models are often represented with
a function f : R3 → R1 where the input x is a 3D co-
ordinate and the output y is the signed distance to the 3D
boundary ∂Ω, i.e., y = dist(x, ∂Ω) when x ∈ Ω and
y = −dist(x, ∂Ω) when x ∈ X \ Ω. The signed dis-
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Noise Function Generated Function-Generating Process

Figure 9. Generating process of SDFs. We show the generating process of 3 samples. In the far left, the initial noise functions are shown.
In the far right, we show the generated samples. To make the visualization clear, we only show the zero-isosurface. However, the functions
are actually densely defined everywhere in the space.

Noise Function Generated Function-Generating Process

Figure 10. Generating process of SDFs. In the top row, we show multiple isosurfaces of each intermediate step of the generating process.
They are [−0.5,−0.2,−0.1,−0.05,−0.01, 0, 0.05, 0.1, 0.2] from outer to inner. They are cut with a plane to show the inner structure. In
the bottom row, we show the zero-isosurface for comparison.

tance function (SDF) satisfies the partial differential equa-
tion (PDE), a.k.a., Eikonal equation,

|∇f(x)| = 1,

f(x) = q(x), ∀x ∈ ∂Ω,
(12)

where q(x) is the boundary condition. The task of predict-
ing SDFs given a surface point cloud is equivalent to solving
this PDE with a given boundary condition (the surface point
cloud). This problem is solved in prior works. But most
works focus on surface reconstruction only by predicting
binary occupancies [26, 30, 44, 45] or truncated SDFs [29].
Thus they are not really solving this equation and cannot be
used in some SDF-based applications such as sphere trac-
ing [11]. This is a challenging task according to prior works.
We choose the task to show the capability of the proposed
method.

4.1. Experiment design

We choose a sparse observation of the boundary condition
(surface point cloud) which only contains 64 points as the
input of the model. We compare our method with Occ-
Net [26] and the recently proposed 3DShape2VecSet [46].
As an example to show how the proposed method works,
we first show how the noised state is obtained in Fig. 6. The
context is then fed into the denoising network (see Fig. 5).

4.2. Results comparison

We show visual comparisons in Fig. 7. Apparently, our
method shows a significant advantage over prior methods

in this task. We not only output detailed and full meshes but
also show the multimodality of the proposed method. How-
ever, prior works are unable to give correct reconstructions,
thus also proving this task is challenging given the sparse
observation.

We also show some quantitive comparison in Tab. 3.
Chamfer distances and F-scores are commonly used in sur-
face reconstruction evaluation [6, 26, 45, 46]. Furthermore,
we design two new metrics. As discussed above, we are ac-
tually solving a partial differential equation. Thus, we can
define the two metrics,

EIKONAL(f) =
1

|EX |
∑
i∈EX

∥|∇f(xi)| − 1∥2 , (13)

BOUNDARY(f) =
1

|EΩ|
∑
i∈EΩ

∥f(xi)− q(xi)∥2 , (14)

where EIKONAL reflects that if the solutions satisfy the
Eikonal equation and BOUNDARY shows if the solutions
satisfy the boundary condition. EX is a set sampled in the
bounding volume which contains 100k points and EΩ is a
set sampled on the surface which also contains 100k points.
Our method leads a large margin over existing methods in
all metrics. This is also consistent with what is shown in the
visual comparison.

4.3. Generating process

In Fig. 9 and Fig. 10, we show the intermediate noised func-
tion obtained during the generating process. Unlike simi-
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Noise Function Generated Function-Generating Process

Source

Target ?

Se
ed

s

Figure 11. Deformation Fields. In the far left, we show the source and target frame along with the sparse correspondence. We show
3 samples generated given the same condition. In each frame, we show the deformation field on the surface. However, to simplify the
visualization, the colors only indicate the magnitudes of deformation while ignoring the directions. The three samples started from different
functions. But in the end, the model outputs almost the same deformation fields.

Chamfer ↓ F-Score ↑ Boundary ↓ Eikonal ↓
OccNet 0.166 0.531 0.019 0.032

3DS2VS 0.144 0.608 0.016 0.038
Proposed 0.101 0.707 0.012 0.024

Table 3. SDF diffusion results. The task is SDF prediction given
sparse observations on the surface. We show two commonly used
metrics, Chamfer distances and F-scores. Additionally, we show
the two newly proposed metrics based on the definition of partial
differential equations.

lar methods proposed before which predict binary occupan-
cies or truncated SDFs, we can generate raw SDFs directly
which can be directly used in some SDF-based applications.

5. Results: 3D Deformation

The task is defined as follows: given meshes sampled in
a dynamic shape sequence, and limited (32) sparse corre-
spondence between two meshes (see Fig. 8), we want to
predict a deformation field. Specifically, the deformation
field takes a point on the surface of the source frame as in-
put and outputs a deformation vector which should map the
point to the target frame. The network design is similar to
the Fig. 5. However, we only use 16384 points in the con-
text set because the data is simpler than a complicated SDF.
We also adapt the method 3DS2VS here to do the deforma-
tion field prediction. From the visual results in Fig. 8, we
can see that our method can show vivid surface deforma-
tion, while 3DS2VS is unable to map source points to the
target frame especially when the motion is large. We also
show the quantitative comparisons in Tab. 4.

In Fig. 11, we show what the generated deformation
fields look like. Given the same condition, three sampling
processes are visualized.

MSE (×104) ↓
3DS2VS 13.32
Proposed 6.91

Table 4. Quantitative results in deformation field generation.
The numbers are evaluated using minimum squared error between
the predicted deformation and the ground-truth.

6. Conclusions

We proposed a new class of generative diffusion models,
called functional diffusion. In contrast to previous work,
functional diffusion works on samples that are represented
by functions. We derived the necessary foundations for
functional diffusion and proposed a first implementation
based on the transformer architecture.

Limitations. During our work, we identified two main
limitations of our method. First, functional diffusion re-
quires a fair amount of resources to train. However, other
diffusion models also share the same issue. We would ex-
pect that significantly more GPUs would be required to train
on large datasets such as Objaverse-XL. Therefore, it may
be interesting to explore cascaded functional diffusion in
future work. Second, our framework has an additional pa-
rameter, the sampling rate of the sampled function represen-
tation. During training, it is beneficial but also necessary to
explore this hyperparameter.

Future works. In future work, we also would like to ex-
plore the application of functional diffusion to time-varying
phenomena, such as deforming, growing, and 3D textured
objects. Furthermore, we would like to explore functional
diffusion in the field of functional data analysis (FDA) [42]
which studies data varying over a continuum.
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