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Figure 1. Semantic segmentation results on S3DIS [1] and ScanNet [9] from RGB-D cameras and SemanticKITTI [2] from LiDAR. For
all methods, we trained collectively on three datasets. Our method outperforms other methods with better detailed structures.

Abstract

Point clouds captured by different sensors such as RGB-
D cameras and LiDAR possess non-negligible domain gaps.
Most existing methods design different network architec-
tures and train separately on point clouds from various
sensors. Typically, point-based methods achieve outstand-
ing performances on even-distributed dense point clouds
from RGB-D cameras, while voxel-based methods are more
efficient for large-range sparse LiDAR point clouds. In
this paper, we propose geometry-to-voxel auxiliary learn-
ing to enable voxel representations to access point-level
geometric information, which supports better generalisa-
tion of the voxel-based backbone with additional interpre-
tations of multi-sensor point clouds. Specifically, we con-
struct hierarchical geometry pools generated by a voxel-
guided dynamic point network, which efficiently provide
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auxiliary fine-grained geometric information adapted to
different stages of voxel features. We conduct experiments
on joint multi-sensor datasets to demonstrate the effective-
ness of GeoAuxNet. Enjoying elaborate geometric infor-
mation, our method outperforms other models collectively
trained on multi-sensor datasets, and achieve competitive
results with the-state-of-art experts on each single dataset.

1. Introduction
Point cloud analysis has attracted widespread attention
due to its growing applications, such as autonomous driv-
ing [20, 45, 51] and robotics [4, 40]. Unlike images which
are represented by regular pixels, 3D point clouds are ir-
regular and unordered. These characteristics aggravate the
inconsistency on density and sampling patterns of point
clouds captured by different sensors, such as RGB-D cam-
eras [1, 9, 33] and LiDAR [2, 5, 34].
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Typically, points generated from RGB-D pictures are
equally distributed and dense, while points scanned by Li-
DAR are sparse and uneven. The diversity on input data
hinders the construction of universal network architectures.
For point clouds from RGB-D cameras, point-based meth-
ods [28, 29, 54] usually gather local information via group-
ing and aggregating neighborhood features to extract de-
tailed spatial information. Since neighbors are not stored
contiguously in point representations, indexing them re-
quires the costly searching operations [24], which limits
the application of these methods on large scale LiDAR
point clouds. To address this challenge, voxel-based meth-
ods [12, 25, 31] leverage the regular 3D convolution to ob-
tain the contiguous memory access pattern. However, the
resolution of voxels is constrained by the memory and be-
comes lower at deeper stages, resulting in loss of local in-
formation [35]. An intuitive idea is to ensemble both point-
based and voxel-based methods [24, 35, 52], yet they are
still confronted with either high time-consumption or the
lack of detailed geometric features, which fail to simultane-
ously process large scale point clouds from different sensors
with fine-grained spatial information while maintaining ef-
ficiency.

In this paper, we propose GeoAuxNet to provide point-
level geometric information for voxel representations in an
efficient manner with geometry-to-voxel auxiliary learning.
The support of elaborate geometric features introduces ad-
ditional point-level information, which cannot be fully ex-
ploited by voxel-based backbones. Motivated by the ob-
servation that the local geometric structures present high
similarity at each stage of the network, we construct hi-
erarchical geometry pools to learn auxiliary sensor-aware
point-level geometric priors corresponding to different lay-
ers for sensor-agnostic voxel features. To update our geom-
etry pools, we present a voxel-guided dynamic point net-
work, where we leverage prior knowledge in voxel features
to guide high quality spatial feature extraction. Then, we
fuse elaborate geometric features in the pools into voxel
representations via our designed geometry-to-voxel auxil-
iary mechanism. For large-scale point clouds, the hierarchi-
cal geometry pools store representative point-level features
at different stages, which efficiently provide complemen-
tary geometric information without using the point-based
networks during inference time.

We conduct extensive experiments on multi-sensor
datasets, including S3DIS [1] and ScanNet [9] from RGB-
D cameras as well as SemanticKITTI [2] captured by Li-
DAR, to demonstrate the efficiency and effectiveness of our
method. With a shared weight of backbone, our method
outperforms other models trained on joint datasets from dif-
ferent sensors and achieves competitive performance with
experts on single dataset. As shown in Figure 1, we
trained MinkowskiNet [8], SPVCNN [35], PPT [43] and

GeoAuxNet on the above three datasets collectively, where
our method preserve better detailed structures for point
clouds from various sensors.

2. Related Works
3D Scene Understanding. Since images are composed of
regular pixels, point clouds generated from RGB-D cam-
eras are well-distributed and dense. Voxelization on dense
point clouds ignore detailed structure information. To di-
rectly learn from points, Qi et al. [27] first proposed Point-
Net to process point clouds through shared multi-layer per-
ceptions (MLP) to get a global representation. Yet this
method lacks the ability to comprehend local geometric
features. Therefore, PointNet++ [28] built a hierarchical
architecture to gather local information via grouping and
aggregating neighborhood features. Following up MLP-
based works [7, 29] focused on designing effective learn-
ing schemes to capture spatial features. Other methods
also introduced specific convolution operations [3, 19, 36,
48], graph-based representations [22, 39] and self-attention
mechanism [11, 16, 42, 49, 54] to explore the relation-
ship between points. Apart from cameras, LiDAR is also
a widely used sensor to collect point clouds. Some meth-
ods [15, 26, 41, 53] focused on projecting point clouds to
2D grids to utilize 2D CNN. However, 3D to 2D projection
limits the representation quality of geometric structures [50]
due to the sacrifice of 3D spatial information [48]. Point
based methods have high time consumption because of the
large scale and the sparsity of these point clouds. Voxel-
based methods [12, 13, 17, 56, 57] show more robustness
against the sparsity. In view of the sampling characteristic
of LiDAR, Zhu et al. [56] introduced cylinder coordinate
system, for nearby regions have greater density than farther
away regions. Similarly, Lai et al. [17] proposed spheri-
cal transformer to aggregate information from dense close
points to sparse distant ones. Voxel-based networks main-
tain efficiency when processing scene-level point clouds,
but ignore some detailed spatial structures.

Universal Learning from Multiple Data Sources. Large
language models achieve remarkable progress on many nat-
ural language processing systems through pretraining on
extremely large text corpora [10], which enables founda-
tion models to process data across domains, involving mul-
tiple languages, various majors, diverse application sce-
narios and so on. In 2D computer vision, joint learn-
ing across domains improve model robustness for detec-
tion [38, 47, 55], depth estimation [30] and semantic seg-
mentation [18, 37]. Wang et al. [38] proposed a universal
object detector through a domain-attention mechanism. But
they did not model the training differences between differ-
ent datasets. Universal-RCNN [47] modeled the class re-
lations by designing a inter-dataset attention module to in-
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Figure 2. The pipeline of our GeoAuxNet. For a complete scene point cloud PC and a local point patch P ⊆ PC , our voxel-based
backbone first voxelizes PC and conducts sparse convolutional operations. The voxel-guided hypernetwork takes relative positions, voxel
features and a stage latent code as input to provide weights and biases for the point network. Then, we encode the spatial information
for P with the point network and aggregate local features to generate geometric feature candidates. Following the update strategy, we
construct hierarchical geometry pools. The geometry-to-voxel mechanism fuses geometric features stored in the pools to enable voxel
representations to access point-level geometric information. We repeat the above process several times to extract effective representation
hierarchically and predict the results with a voxel decoder for the primary task and a point decoder for the auxiliary task. The dotted
line stands for the course of the auxiliary learning which is ignored during inference to ensure efficiency. Geo-to-Vox is abbreviation of
Geometry-to-Voxel.

corporates graph transfer learning for propagating relevant
semantic information across multiple datasets. CDCL [37]
pointed out that convolution filters can be shared across do-
mains without accuracy loss, while normalization operators
are not appropriate to share in view of the bias of statis-
tics. Recently, Wu et al. [43] introduced point prompt train-
ing to optimize a learnable domain-specific prompt with
language-guided categorical alignment, but processed point
clouds from RGB-D and LiDAR separately. However, point
clouds captured by different sensors have diverse density
and distributions, which limits the exploration of the uni-
versal network on multiple data sources.

Auxiliary Learning. Auxiliary learning aims to achieve
outstanding performance on a single primary task with the
assist of auxiliary tasks and has shown many successful ap-
plications in a wide range of fields, including knowledge
distillation [46], transfer learning [14] and reinforcement
learning [21]. For instance, DCAN [6] learned an aux-
iliary contour detection task for more accurate segmenta-
tion, while Araslanov investigated the joint learning of im-
age classification and semantic segmentation. In 3D vision,
MonoCon [23] introduced monocular contexts as auxiliary
tasks in training for 3D object detection. Nevertheless,
the inherent relationship between point-level features and
voxel-level features is still under exploration to better lever-
age the advantages of two domains without any requirement

of additional data.

3. Method
The overall framework of GeoAuxNet is illustrated in Fig-
ure 2. To generate point-level geometric features, we
propose a voxel-guided hypernetwork to produce weights
and biases for the point network. Then, point features
are grouped and aggregated to extract fine-grained local
features, which are employed to update geometry pools.
For voxel-based backbone, we introduce geometry-to-voxel
auxiliary mechanism to access elaborate spatial information
in our hierarchical geometry pools.

3.1. Voxel-guided Dynamic Point Network

Point-based methods are mostly confronted with high time-
consumption towards large scale point clouds, since the far-
thest point sampling (FPS) and k-nearest neighbors (kNN)
algorithms in these networks have a time complexity of
O(n2). Therefore, to efficiently process large scale point
clouds, input points are voxelized and passed through sparse
convolution operations to extract voxel features in our
voxel-based backbone.

To generate point-level geometric information effi-
ciently, we train our point network on local point patches
instead of complete scene point clouds. However, less train-
ing data weakens the ability of the point network to extract
local features. Considering that our voxel-based branch are
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trained on complete voxelized point clouds, we treat voxel
features as prior knowledge to instruct the learning of local
geometric information. Yet, points inside a voxel share the
same voxel feature, which ignores detailed difference be-
tween points. Thus, we also introduce relative coordinates
to depict diversity of points within the same voxel. On ac-
count of the hierarchical architectures of both the point net-
work and the voxel-based backbone with several stages, we
optimize a learnable latent code s for each stage during our
auxiliary learning.

Given a local point patchP = {pi, 1 ≤ i ≤ N} ∈ RN×3

with point features FP = {fP
i , 1 ≤ i ≤ N}, each point pi

belongs to a voxel v with the voxel feature fV . Here v ∈ R3

stands for the center coordinate of the voxel. Then, we can
obtain the weight and bias for point pi:

wi = hw(hp(pi − v), fV)⊙ hs(s), (1)

bi = hb(hp(pi − v), fV)⊙ hs(s), (2)

where hp and hs are MLPs to project relative positions and
the stage latent code to specific dimensions, and hw and hb

are hypernetworks to generate the weight and bias. Hence,
new point features can be formulated as:

f̂P
i = MLP(wi ⊙ fP

i + bi). (3)

To extract local geometric information, we use kNN algo-
rithm to select k nearest neighbor points and employ a max-
pooling function to aggregate each local group. In this man-
ner, we generate a set of geometric feature candidates for
hierarchical geometry pools.

3.2. Hierarchical Geometry Pools

The voxel branch ignores some detailed spatial structures
due to voxelization. Motivated by the similarity of geomet-
ric structures in 3D space, we establish a pool to store typ-
ical geometric patterns. The pool contains n typical spatial
structure features FD = {fD

i , 1 ≤ i ≤ n}. The max size of
the pool is set to N . In Section 3.1, we generate a set of ge-
ometric pattern candidates FS = {fS

i , 1 ≤ i ≤ m}. When
updating the pool, we first calculate the similarity between
FS and FD:

si = max
1≤j≤N

si,j , (4)

where

si,j =
fS
i · fD

j

∥fS
i ∥∥fD

j ∥
. (5)

Specifically, if si ≥ ϵ, fS
i is merged into the geometry pool

FD:

t = argmax
1≤j≤N

si,j , (6)

f̂D
t = λfD

t + (1− λ)fS
i , (7)

Algorithm 1 Update Pools

Input: New features FS , geometry pool FD, maximum
size of the pool N , threshold ϵ, update rate λ

Output: New pool F̂D

Compute si for 1 ≤ i ≤ m according to Eq. 4
for i← 1 to |FS | do

if si ≥ ϵ then
t← argmax1≤j≤N si,j
fD
t ← λfD

t + (1− λ)fS
i

FS ← FS \ {fS
i }

end if
end for
if |FS |+ |FD| ≤ N then
FD ← FD ∪ FS

else
F̂S ← randomly select N − |FD| features from FS

FS ← FS \ F̂S

FD ← FD ∪ F̂S

for i← 1 to |FS | do
t← argmax1≤j≤N si,j
fD
t ← λfD

t + (1− λ)fS
i

end for
end if

where ϵ is a threshold and λ stands for the update rate. Oth-
erwise, we append the new features to the geometry pool. If
the total number of features is more than N , we randomly
select N − n new features and add them to the pool. The
rest new features following Eq. 7 are merged into existing
patterns. Our update strategy is illustrated in Algorithm 1.

Since voxel representations at various stages contains
different level information, we introduce hierarchical geom-
etry pools to store representative point-level features cor-
responding to different stages. We also enlarge the size
of pools for deeper stages due to more complex geometric
structures with larger receptive field sizes.

3.3. Geometry-to-Voxel Auxiliary

After we update the geometric pool, we use geometric pat-
terns stored in FD ∈ RN×C to generate fine-grained local
information for each voxel following a cross-attention op-
eration. Given voxel features FV = {fV

i , 1 ≤ i ≤ M} ∈
RM×D, the geometric fine-grained feature fG

i for fV
i ∈ FV

is formulated by:

qi = hQ(f
V
i ) ∈ R1×s, (8)

K = hK(FD) ∈ RN×s, (9)

V = hV (FD) ∈ RN×t, (10)

fG
i = softmax

(
qiK

⊤
√
s

)
V ∈ R1×t, (11)
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where hQ, hK , and hV stand for projections. Then, we con-
catenate fG

i with fV
i as the new voxel feature and employ

sparse convolution operations. In this manner, we can pro-
vide complementary geometric information without using
the point-based networks during inference stage.

3.4. Overall Architecture

Given a point cloud PC
i with features FC

i and a local point
patchPi ⊆ PC

i withFP
i ⊆ FC

i from sensor Si, we voxelize
all points to obtain voxel coordinates Vi with voxel features
FV

i . Points obtained from RGB-D cameras usually possess
colors and normal vectors, while points captured by LiDAR
always possess intensity. Thus, we introduce sensor-aware
input embedding. Specifically, we embed Pi from sensor
Si by:

F̂P
i = hP

Si
(FP

i ), (12)

F̂V
i = hV

Si
(FV

i ), (13)

where hP
Si

means shared MLPs on points and hV
Si

means
sparse convolution operations on voxels. Then, we learn
voxel features and point features following the extraction
strategy in Section 3.1 and update hierarchical geometry
pools using Algorithm 1. We fuse point-level geometric
information to voxel representation via geometry-to-voxel
auxiliary mechanism. Our auxiliary task is to predict point
labels for local point patches with point branch and point
decoder. Therefore, the final loss function is formulated as:

L = Lv + µLp, (14)

where Lv and Lp stand for per-voxel and per-point cross
entropy loss and µ is the weight of the point loss.

3.5. Discussion

In this section, we highlight previous point-voxel net-
works [24, 35, 52] which combine a point-based branch
and a voxel-based branch together to leverage the advan-
tages of both efficient voxel representations and elaborate
point features. Additionally, we compare our GeoAuxNet
with these methods. PVCNN [24] and PVT [52] rely on
point-based networks to extract high quality representa-
tions with time-consuming searching or attention mecha-
nisms, while SPVCNN [35] does not explore detailed lo-
cal geometric information. Since the interaction between
two branches in these methods only contains voxelization
and devoxelization operations, they fail to benefit from
both voxel representations and point-level elaborate fea-
tures. Our GeoAuxNet preserves hierarchical sensor-aware
geometry pools as the bridge to enable voxel representations
to absorb point-level local geometric information without
using the point network during inference.

4. Experiments

We validate our proposed GeoAuxNet across point clouds
from multiple sensors. In Section 4.1, we train various
methods on joint datasets including S3DIS [1], ScanNet [9]
and SemanticKITTI [2]. In Section 4.2, we analyze the
effectiveness of our sensor-aware hierarchical geometry
pools. In Section 4.3, we compare GeoAuxNet with typ-
ical point-based and voxel-based methods to demonstrate
the efficiency of our designed geometry-to-voxel auxiliary
learning. In Section 4.4, we ablate different design choices
of our voxel-guided dynamic point network.

4.1. Semantic Segmentation

Dataset. We conduct semantic segmentation experiments
on the joint data of three datasets: S3DIS [1] and Scan-
Net [9], which are generated from RGB-D cameras, and Se-
manticKITTI [2], which is captured by LiDAR. The S3DIS
dataset comprises 271 rooms from six areas in three distinct
buildings, which are densely sampled on the surfaces of the
meshes and annotated into 13 categories. Model perfor-
mance evaluation is typically done using results from Area
5. The ScanNet dataset comprises 1,613 scene scans recon-
structed from RGB-D frames. It is divided into 1,201 scenes
for training, 312 scenes for validation, and 100 scenes for
benchmark testing. SemanticKITTI consists of 22 point
cloud sequences, where sequences 00 to 10, 08 and 11 to 21
are used for training, validation and testing. After merging
classes with distinct moving status and discarding classes
with very few points, a total of 19 classes are selected for
training and evaluation.

Implementation Details. Our voxel-based backbone is
built on MinkowskiNet [8] with the batch normalization op-
erations proposed by PPT [43]. The voxel size is set to
0.05m. We train our methods as well as MinkowskiNet
SPVCNN [35] and PPT [43] on joint input data [1, 2, 9]
captured by RGB-D cameras and LiDAR collectively. We
also fine tune our method on three datasets separately. For
the sake of fairness, we set the number of parameters of
MinkowskiNet, SPVCNN, PPT and GeoAuxNet to about
60M. We use SGD optimizer and OneCycleLR [32] sched-
uler, with learning rate 0.05 and weight decay 10−4. We
adopt OneCycleLR [32] scheduler with 5% percentage of
the cycle spent increasing the learning rate and a cosine an-
nealing strategy. We train all models with data augmenta-
tion used in PPT [43]. We set λ in Eq. 7 to 0.1, µ in Eq. 14
to 0.1, threshold for geometry pool update ϵ to 0.9. The
total number of iterations is equal to the sum of necessary
iterations for all datasets. The sampling ratio across S3DIS,
ScanNet and SemanticKITTI is set to 2:2:5. The number
of points for the auxiliary branch does not exceed 2 × 104.
The max size of hierarchical geometry pools for each stage
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Table 1. Semantic segmentation results on three benchmarks including S3DIS [1], ScanNet [9] and SemanticKITTI [2]. We train
SPVCNN [35], PPT [43] and GeoAuxNet on the joint training data of three datasets and also compare with experts [16, 17, 29, 35, 54, 56] on
each single dataset. We report the class-average accuracy (mAcc, %) and class-wise mean IoU (mIoU, %). The type stands for point-based
(p) or voxel-based (v) methods, where p→v means the geometry-to-voxel auxiliary learning.

Method Type Params. S3DIS Area5 ScanNet SemanticKITTI
Test mIoU Test mAcc Val mIoU Val mAcc Val mIoU Val mAcc

PointTransformer [54] p 11.4M 70.4 76.5 70.6 -
StratifiedFromer [16] p 18.8M 72.0 78.1 74.3 -
PointNeXt [29] p 41.6M 70.5 77.2 71.5 -
SPVCNN [35] p+v 21.8M 63.8 -
Cylinder3D [56] v 26.1M 64.3 -
SphereFormer [17] v 32.3M 67.8 -

MinkowskiNet [8] v 60.9M 18.8 21.3 25.6 30.5 36.0 41.2
SPVCNN [35] p+v 61.0M 58.6 62.3 56.7 60.4 52.0 56.7
PPT [43] v 63.0M 30.4 34.6 16.5 27.4 25.0 31.2
PPT † [43] v 63.0M 67.9 73.2 69.6 77.5 61.8 68.9
GeoAuxNet p→v 64.7M 69.5(+1.6) 74.5(+1.3) 71.3(+1.7) 79.3(+1.8) 63.8(+2.0) 69.3(+0.4)

† The original PPT with language-guided categorical alignment fails to converge on the joint training data. We use decoupled projection
heads to employ PPT on multi-sensor datasets.

is set to 32, 64, 128, 256 separately.

Results Comparison. As shown in Table 1, GeoAuxNet
surpasses other methods which are trained on three datasets
jointly. Our methods outperforms SPVCNN [35], which
does not utilize its point branch to extract local informa-
tion, by more than 10% in mIoU on each dataset. PPT [43]
introduces different datasets as prompts to collaboratively
train a single model on multiple datasets from the same
sensor type. The language-guided alignment of PPT suf-
fers from the large domain gap caused by different sen-
sors, which fails to converge on the joint training datasets.
Therefore, we replace it by the decoupled alignment with
separate heads for each dataset, which is also defined in
PPT [43]. We construct sensor-aware geometry pools to
address this issue and outperform PPT by about 2% in
mIoU on each dataset. Besides, we also compare with
experts trained on each single dataset. We achieve com-
petitive results with point-based methods on datasets from
RGB-D cameras. More specifically, we even outperform
PointTransformer in validation mIoU of ScanNet. Despite
training on inter-domain datasets from different sensors,
GeoAuxNet has a higher accuracy on SemanticKITTI than
SPVCNN [35], and attain encouraging performances even
compared with recent state-of-the-art expert [17]. Although
we do not introduce any specific designs such as point-
wise attention mechanism [16, 54] and cylinder coordinate
system [56] for sparse LiDAR point clouds, the quantita-
tive results demonstrate the effectiveness of geometry-to-

voxel auxiliary learning by constructing hierarchical geom-
etry pools to provide auxiliary sensor-aware point-level ge-
ometric priors for voxel representations.

4.2. Hierarchical Geometry Pools

In this section, we further conduct experiments on our hi-
erarchical geometry pools. First, we analyze the similarity
of geometric structures in 3D space. Second, we discuss
the appropriation to represent geometric information with
our geometry pools. Finally, we study the construction of
sensor-aware pools for different sensors.

Similarity of Geometric Structures. Local geometric
structures possess similarity in 3D space. For example, pla-
nar structures exist in desks, chairs and airplanes. These
spatial structures are not unrelated but consistent. To further
analyze the similarity of geometric structures learned by
networks, we train our point encoder on ModelNet40 [44].
For each point, we use kNN to search 16 nearest neighbors
and aggregate them via a max-pooling function to generate
local geometric features. We select a center point marked as
a purple star in Figure 3a and Figure 3c, and calculate the
cosine similarity between its features and other point fea-
tures. Specifically, the wing and the tail of the plane in Fig-
ure 3a have similar local structures, resulting in high simi-
larity of features in Figure 3b. Figure 3d and Figure 3f show
the same phenomenon at different stages in the network,
where planar structures are similar to each other, while dif-
ferent from the chair legs. Since features from deeper lay-
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(a) (b) (c) (d) (e) (f)

Figure 3. Visualization of the cosine similarity between features. The purple star is the selected point, and the green star is the point with a
significantly similar feature to the purple star. We calculate the cosine similarity between the feature of the red star and other features and
visualize them in image (b), (d) and (f). The nearest neighbors of the purple and green stars are marked red in image (a), (c) and (e). (a),
(b), (c) and (e) are generated from the first stage of the point network and (e), (f) are from the second stage.

(a) Stage One (b) Stage Two

(c) Stage Three (d) Stage Four

Figure 4. Statistical results of cosine similarity between hierarchi-
cal geometry pools and point-level features extracted by the point
network from point clouds in S3DIS [1] at different stages.

ers possess larger receptive field sizes due to grouping and
aggregating operations and comprise more geometric infor-
mation, our hierarchical pools contain more geometric fea-
tures for deeper layers.

Representativeness of Geometry Pools. To demonstrate
the representativeness of our pools, we calculate cosine sim-
ilarity between all features in a scene from S3DIS [1] ex-
tracted by the point encoder and the features stored in the
pool. For each stage, given the geometry pool FD =
{fD

i , 1 ≤ i ≤ N} and all features in a scene FS =
{fS

i , 1 ≤ i ≤ M}, the similarity si between fS
i and FD

is formulated as:

si = max
1≤j≤N

fS
i · fD

j

∥fS
i ∥∥fD

j ∥
, (15)

where ∥ · ∥ stands for L2 norm. The distribution of simi-
larities is shown in Figure 4. From the statistical data, most
features have cosine similarity higher than 0.85, which indi-
cates that each feature can find a similar feature among our

(a) (b)

Figure 5. Cosine similarity between geometry pools. (a) shows the
similarity between geometry pools of S3DIS [1] and ScanNet [9].
(b) shows the similarity between geometry pools of S3DIS [1]
and SemanticKITTI [2]. Intra-sensor geometry pools in (a) have
higher similarity than inter-sensor geometry pools in (b).

learned representatives in the pool. In this manner, we avoid
using point-based network to process large scale points to
generate fine-grained features for each voxel. Our hierar-
chical pools contain typical geometric features of scenes.
Therefore, we can fuse point-level geometry information
stored in our pools into voxel representations via geometry-
to-voxel auxiliary mechanism efficiently.

Sensor-aware Pools for Multiple Sensors. Motivated by
the diversity of density and sampling patterns of point
clouds from various sensors, we construct different geom-
etry pools to preserve relevant geometric information for
diverse sensors. We investigate another two strategies: (i)
shared geometry pools across sensors and (ii) different ge-
ometry pools for different datasets. We calculate the co-
sine similarity between features from different pools. As
shown in Figure 5, geometry pools from the same sensor
possess higher similarity than those from different sensors.
As shown in Table 2, training with shared geometry pools
across sensors leads to a significant decrease on perfor-
mance due to the inherent diversity of geometric structures
from different sensors, while sharing geometry pools with
datasets from the same sensor serves as data augmentation
to improve the effectiveness of the geometry pools.
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Table 2. Ablation study of sensor-aware geometry pools. “Shared
intra-sensor” means the geometry pools which are shared for point
clouds from the same sensor, while different for point clouds from
different sensors. “Shared inter-sensor” means the geometry pools
shared for different sensors. “Shared intra-dataset” means the ge-
ometry pools are different for different datasets. We report mIoU
and mAcc on Area 5 of S3DIS [1].

Methods mIoU (%) mAcc (%)

Shared intra-sensor 69.5 74.5
Shared inter-sensor 61.4(−8.1) 68.3(−6.2)

Shared intra-dataset 67.5(−2.0) 73.3(−1.2)

Table 3. Efficiency analysis. We report the inference time and
throughput on pre-processed data from S3DIS dataset.

Method Params.
Inference
Time (ms)

Throughput
(ins./sec.)

PointNet++ [28] 1.0M 378.7 108
PT [54] 7.8M 1079.7 34
PTv2 [42] 3.9M 4732.2 12
MinkowskiNet [8] 60.9M 45.4 898
SPVCNN [35] 61.0M 48.4 682
PPT [43] 63.0M 80.4 251
GeoAuxNet 64.7M 51.8 572

4.3. Efficiency of GeoAuxNet

We validate the efficiency of GeoAuxNet compared with
other typical point-based [42, 54] and voxel-based meth-
ods [8, 43]. We focus on the mean inference time and
throughput by employing a standardized pre-processed
point cloud with instance labels from S3DIS Area 5 dataset
as the input on a single NVIDIA A40 GPU. Initially, the
device undergoes a “warm-up” phase, where the model is
fed with the input point cloud ten times consecutively to
eliminate any latency associated with data loading. Subse-
quently, the model is subjected to an additional 300 itera-
tions of input feeding to calculate mean inference time. To
effectively quantify the throughput, we measure the num-
ber of instances that a model processes per second. This
systematic approach ensures a thorough and reliable assess-
ment of our GeoAuxNet and other state-of-the-art methods.

In Table 3, we show the number of parameters, infer-
ence time and throughput for typical point-based and voxel-
based networks. Specifically, our GeoAuxNet outperforms
the expert model of PointTransformer [54] which is trained
on ScanNet [9] individually in mIoU with 16.8× through-
put and 20.8× inference speedup. Even compared with
the simple PointNet++ [28] whose parameter size is 1/68
of ours, GeoAuxNet has less inference time and higher
throughput. Besides, our method has similar inference
time and throughput to voxel-based methods but achieve

Table 4. Ablation study of our voxel-guided hypernetwork. We
report the mIoU and mAcc on Area 5 of S3DIS [1].

Methods mIoU (%) mAcc (%)

Vanilla 63.3 68.7
+ voxel-guided 66.0(+2.7) 72.5(+3.8)

+ relative positions 66.8(+0.8) 73.2(+0.7)

+ stage latent code 67.6(+0.8) 73.3(+0.1)

better performance according to the results in Table 1.
GeoAuxNet surpasses PPT [43] on each benchmark about
2% in mIoU with 2.3× throughput and 1.6× inference
speedup. Our method maintains efficiency for large scale
point clouds, while achieves encouraging performances on
datasets from multiple sensors.

4.4. Voxel-guided Hypernetworks

To investigate the architecture design of our voxel-guided
hypernetwork, we conduct ablation studies on S3DIS se-
mantic segmentation. We first introduce a vanilla point net-
work which learns the weight and bias directly. Then, we
adopt a hypernetwork taking voxel features as input to gen-
erate weights and biases for the point network. We further
take account of the relative positions of points. Finally, we
optimize learnable stage latent codes to instruct the infor-
mation of different layers. We train these four models on
S3DIS dataset. As shown in Table 4, the exploration of
voxel features provides significant guidance for the point
network to learn high quality geometric information, lead-
ing to an increase in test accuracy by 2.7% in mIoU and
3.8% in mAcc. Relative positions and stage latent codes
also improve the performance of our methods.

5. Conclusion
In this paper, we propose GeoAuxNet for multi-sensor point
clouds with designed geometry-to-voxel auxiliary learning.
We construct hierarchical geometry pools to learn auxiliary
sensor-aware point-level geometric priors at different lay-
ers for sensor-agnostic voxel features. To generate our ge-
ometry pools, we also introduce a voxel-guided dynamic
point network to leverage voxel prior knowledge for elab-
orate point features extraction. Our proposed geometry-
to-voxel auxiliary builds a bridge between point-level and
voxel-level features in an efficient manner without using the
point network during inference time. Experimental results
have shown the effectiveness and efficiency of our methods.
We hope this work will inspire future research towards uni-
versal representation learning for point clouds.
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