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Figure 1. (a) Illustration of our GoodSAM, leveraging instance masks and boundary information provided by SAM, coupled with seg-
mentation logits from the teacher assistant, to obtain reliable ensemble logits for knowledge adaptation to our student. (b) Our GoodSAM
outperforms SOTA methods [37, 41, 42] across various model parameter ranges. Notably, GoodSAM-M achieves comparable performance
to the SOTA methods with only 3.7M parameters.

Abstract

This paper tackles a novel yet challenging problem: how
to transfer knowledge from the emerging Segment Any-
thing Model (SAM) – which reveals impressive zero-shot
instance segmentation capacity – to learn a compact
panoramic semantic segmentation model, i.e., student,
without requiring any labeled data. This poses consider-
able challenges due to SAM’s inability to provide semantic
labels and the large capacity gap between SAM and the
student. To this end, we propose a novel framework, called
GoodSAM, that introduces a teacher assistant (TA) to
provide semantic information, integrated with SAM to
generate ensemble logits to achieve knowledge transfer.
Specifically, we propose a Distortion-Aware Rectification
(DAR) module that first addresses the distortion problem of
panoramic images by imposing prediction-level consistency
and boundary enhancement. This subtly enhances TA’s
prediction capacity on panoramic images. DAR then
incorporates a cross-task complementary fusion block to
adaptively merge the predictions of SAM and TA to obtain
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more reliable ensemble logits. Moreover, we introduce
a Multi-level Knowledge Adaptation (MKA) module to
efficiently transfer the multi-level feature knowledge from
TA and ensemble logits to learn a compact student model.
Extensive experiments on two benchmarks show that our
GoodSAM achieves a remarkable +3.75% mIoU improve-
ment over the state-of-the-art (SOTA) domain adaptation
methods, e.g., [41]. Also, our most lightweight model
achieves comparable performance to the SOTA methods
with only 3.7M parameters.

1. Introduction
The burgeoning demand for omnidirectional scene under-
standing has stimulated the popularity of 360◦ cameras,
making them highly suitable and popular for applications,
such as self-driving [6, 21, 22, 41]. This has inspired in-
tensive recent research endeavors [8, 36, 42] for addressing
scene understanding tasks, especially panoramic semantic
segmentation. Generally, Equirectangular Projection (ERP)
is commonly adopted to represent the 360◦ data in 2D pla-
nar representation 1 to align spherical data with the existing

1In this paper, omnidirectional and panoramic images are interchange-
ably used, and ERP images often indicate panoramic images.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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deep learning pipelines. However, ERP images often suffer
from distortion and deformation problems, induced by the
non-uniformly distributed pixels[1]. Also, there is a scarcity
of well-annotated datasets, which poses a challenge in train-
ing effective models for panoramic segmentation.

Therefore, research has been conducted to transfer
knowledge from the labeled pinhole image domain to the
unlabeled panoramic image domain via unsupervised do-
main adaptation (UDA) [9, 36, 37, 41, 42]. These methods
can be primarily divided into three groups: pseudo label-
ing [9, 34], adversarial training [11, 42] and prototypical
adaptation [37, 38]. However, they require labeled 2D im-
ages for training or adopting multi-branch designs [29, 42],
thus leading to considerable computational costs. Recently,
foundational models have undergone a significant develop-
ment [7, 14, 20]. Large visual models (LVMs), such as
the Segment Anything Model (SAM) [7] – trained on very
large datasets (over 1 billion masks on 11 million images)
have received great attention. The exceptional zero-shot in-
stance segmentation performance on unseen datasets and
tasks makes SAM exceptional in serving as a foundational
model for many segmentation tasks [12, 23, 39].

In this paper, we tackle a novel problem: how to trans-
fer the instance segmentation knowledge from SAM to learn
a more compact panoramic semantic segmentation model
(i.e., student) without requiring any labeled data? This
poses considerable challenges to directly apply SAM for
panoramic semantic segmentation due to two reasons: 1)
SAM’s inability to provide semantic labels, and 2) the sub-
stantial capacity gap between SAM and the student model.
These obstacles render the task of learning a compact stu-
dent model non-trivial. To this end, we propose a novel
framework, named GoodSAM to learn a compact student
model. Our key insight is to introduce a teacher assistant
(TA) to 1) provide semantic labels, enabling to generate the
ensemble logits with SAM, and 2) bridge the capacity gap
with the student for effective knowledge adaptation.

Our GoodSAM enjoys two key technical contributions.
Specifically, we first propose a Distortion-Aware Rectifi-
cation (DAR) module to generate reliable ensemble logits
(Sec. 3.1). DAR module optimizes ensemble logits from
three aspects, see Fig. 1 (a). Firstly, we leverage an overlap-
ping sliding window strategy [10] to alleviate the adverse
effects of the ERP image’s large Field of View (FoV) on
the performance of both SAM and TA. Secondly, we im-
pose prediction-level consistency for overlapping regions
between two adjacent windows and boundary enhancement,
using the boundary information provided by SAM, to en-
hance TA’s ability to address the inevitable distortion and
object deformation in the ERP images. Finally, we pro-
pose a cross-task complementary fusion (CTCF) block,
which adaptively combines SAM’s instance masks and
TA’s semantic labels to obtain high-quality ensemble log-

its. Upon obtaining reliable and distortion-aware ensemble
logits, we then introduce the Multi-level Knowledge Adap-
tation (MKA) module to facilitate the learning of a compact
panoramic segmentation student model (Sec. 3.2). MKA
facilitates multi-level and multi-scale knowledge transfer
from TA and ensemble logits, encompassing both whole-
image scale and window-based scale to bridge the capacity
gap between SAM and the student model and improve the
performance of our compact student model.

We conducted extensive experiments to validate our
method. As shown in Fig. 1 (b), our GoodSAM outper-
forms SOTA UDA methods across various model parameter
ranges. Our GoodSAM’s small version, with approximately
25 million parameters, achieves an impressive 3.75% per-
formance improvement compared to SOTA methods with
a similar parameter count. Meanwhile, our GoodSAM’s
tiny version achieves comparable performance to the SOTA
methods while using only 3.7 million parameters.

In summary, our contributions are as follows: (I) Our
work serves as the first attempt to learn an efficient
panoramic semantic segmentation model from SAM. (II)
We propose the GoodSAM framework which incorporates
DAR and MKA modules to obtain reliable ensemble log-
its and conduct effective knowledge transfer for panoramic
segmentation, respectively. (III) We demonstrate the effec-
tiveness of our proposed GoodSAM framework, achieving
SOTA performance on panoramic semantic segmentation
tasks while maintaining a compact model size.

2. Related Work
Panorama Image Semantic Segmentation. The first line
of works [15, 25, 27–30] on panoramic semantic segmen-
tation are based on the supervised learning. However,
since there is no sufficient panoramic image datasets ex-
ist, most of the existing panoramic image semantic segmen-
tation methods are based on unsupervised domain adap-
tation (UDA) [44, 45]. Recent research endeavors have
been focused on the UDA for panoramic semantic segmen-
tation approaches, which can be divided into three types,
including the pseudo labeling [9, 34, 40], adversarial train-
ing [11, 36, 42] and prototypical adaptation [37, 38, 43]
methods. Differently, we introduce SAM to the panoramic
semantic segmentation task, aiming at transferring the in-
stance segmentation knowledge of SAM to learn a compact
student model, assisted by a TA model.
Segment Anything Model (SAM) It stands as a foundation
model for segmentation tasks [7]. SAM leverages a dataset
of 11 million diverse, high-resolution images, accompanied
by 1.1 billion meticulously annotated high-quality segmen-
tation masks for training. This remarkable dataset empow-
ers SAM with robust zero-shot instance segmentation ca-
pacity. SAM has been applied to diverse domains, such as
medical image segmentation [12, 18, 23, 39], image editing
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Figure 2. Overview of GoodSAM framework, consisting of three models: SAM, teacher assistant, and student. Our method has two main
technical components: the Distortion-Aware Rectification (DAR) module and the Multi-level Knowledge Adaptation (MKA) module.

[32, 35], and tracking [4, 26]. However, SAM is limited
in providing semantic information, coupled with its pro-
hibitive parameters and domain gap. This poses a chal-
lenge for directly achieving panorama semantic segmenta-
tion. To address this, we introduce a TA model that lever-
ages SAM’s high-quality instance masks to generate reli-
able ensemble logits, enabling us to learn a compact yet
effective panoramic segmentation model.
Knowledge Adaptation. Some methods leverage the ex-
pertise of multiple teachers and the similarities between
their domains to improve the performance of a student
model [5, 13, 19]. The knowledge adaptation lies in iden-
tifying the trustworthy knowledge of the teacher’s expertise
that can be applied effectively in the target domain. How-
ever, existing methods exhibit limitations, such as the risk
of the student excessively relying on a teacher’s biases, and
challenges in generalizing knowledge across tasks or un-
seen data. Consequently, directly applying these methods to
our panoramic segmentation task is impractical. Intuitively,
we propose CTCF block to adaptively combine the outputs
from SAM and TA to obtain more reliable ensemble log-
its. Meanwhile, we propose the MKA module that utilizes
TA’s outputs and th ensemble logits from the DAR module
to perform multi-level and multi-scale knowledge transfer.

3. Methodology
Overview. An overview of our framework is shown
in Fig. 2. Given an unlabeled panoramic image x ∈
RH×W×3, we aim to train a compact panoramic semantic
segmentation model (i.e., student) FS under the guidance of
SAM FT (i.e., teacher) and the assistance of the teacher as-

sistant (TA) FTA. Note that the TA aims to bridge the capac-
ity gap between SAM and the student during training. To
mitigate the impact of ERP’s large FoV, we employ an over-
lapping sliding window strategy to extract n local patches
{Wi}n−1

i=0 from the input ERP images. Since the distortion
in horizontal pixel distribution is more severe than the ver-
tical one, we choose to do horizontal window sliding. By
setting the sliding window movement stride, we can obtain
the overlapping area Oi between two horizontally adjacent
windows Wi and Wj . Subsequently, patches are input to
both SAM FT and TA FTA, yielding their respective pre-
dictions Ii and Si. Furthermore, the overlapping area Oi is
exclusively input to FT to derive the corresponding bound-
ary map (Bi

SAM ). For the student model FS , we input the
ERP image x to obtain the semantic prediction map PS . The
challenges lie in: 1) effectively fusing the predictions from
SAM FT and TA FTA to obtain more reliable ensemble log-
its Ei as the supervision for student model FS ; 2) effectively
performing knowledge adaptation from ensemble logits Ei

and FTA to our compact student FS . To this end, we in-
troduce the GoodSAM framework consisting of two key
technical modules: Distortion-Aware Rectification (DAR)
Module (Sec. 3.1) and Multi-level Knowledge Adaptation
(MKA) Module (Sec. 3.2). We now describe these modules
in detail.

3.1. Distortion-Aware Rectification (DAR) Module
DAR module aims to generate ensemble logits based on
SAM and TA. Specifically, as ERP images, in contrast to
2D images, possess a large FoV and distortion problem, im-
pacting the performance of SAM and TA. We introduce the
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Figure 3. Overview of the proposed boundary enhancement
block. In (a), it represents the condition where the pixels at the
same positions in all three images are boundary pixels. In (b), it
represents the condition where pixels at the same positions are not
on the boundary. Additionally, (a) demonstrates the optimization
of the boundary enhancement loss for Bi

TA and Bj
TA.

consistency constraint and boundary enhancement. More-
over, SAM and TA generate different kinds of segmentation
maps: SAM provides instance masks, while TA produces
semantic maps. Therefore, we propose the cross-task com-
plementary fusion block. We now illustrate the details.
Consistency Constraint. It aims to help TA generate
distortion-aware semantic maps. For the adjacent patches
Wi and Wj , due to distortion of ERP, FTA’s predictions
Si and Sj for the overlapping area Oi between Wi and Wj

may exhibit discrepancies. Therefore, the purpose of the
constraint is to minimize the discrepancies in the overlap-
ping area. For simplicity, we utilize the mean squared error
(MSE) loss to ensure the consistency of predictions. As
such, we can enhance the FTA’s sensitivity to local distor-
tions. Formally, the consistency constraint loss LCC is:

LCC = MSE(Wi(Oi),Wj(Oj)), (1)
where the Wi(Oi) denotes the TA’s prediction within the
overlapping area for the i th window.
Boundary Enhancement Block. Due to SAM’s strong
zero-shot capability to provide relatively accurate bound-
ary maps, we propose a boundary enhancement block to re-
fine boundary pixels in TA’s predictions, inspired by [17].
By improving TA’s accuracy in predicting boundary pixels,
we aim to alleviate the impact of distortion and object de-

formation on TA. This block comprises two components:
boundary refinement strategy and boundary-enhanced loss.

As depicted in Fig. 3(a), for two adjacent windows Wi

and Wj , we obtain two separate boundary maps Bi
TA and

Bj
TA of the overlapping area Oi. The boundary refinement

strategy is proposed to identify reliable boundary pixels (de-
noted as green, blue and orange points) within the overlap-
ping area by combining Bi

TA, Bj
TA, and Bi

SAM of SAM to
obtain the refined boundary map Bi

ref . The detailed Algo-
rithm for this strategy can be found in the Supplmat.

Specifically, for the input boundary map Bi
TA, we first

iterate through its boundary pixels and find corresponding
pixels in Bj

TA and Bi
SAM at the same positions. If the cor-

responding pixels at the same positions are all on the bound-
ary (See Fig. 3 (a)), then the pixel is considered a reliable
boundary pixel. For cases that do not meet the above con-
dition, we find corresponding pixels in Bi

SAM at the same
positions and identify the nearest boundary pixel (the pink
point) in the vertical direction (See Fig. 3 (b)).

Subsequently, we locate pixels at the same positions
(pink points) in Bi

TA and Bj
TA, and for each pixel, perform

softmax on its logits (1 × 1 × C, where C is the number
of categories). We calculate the difference in the top two
softmax values for each corresponding pixel in Bi

TA and
Bj

TA, denoting them as Di and Dj respectively. When ei-
ther Di or Dj has a value less than α, we determine that the
boundary pixel from Bi

SAM exhibits the characteristics of
the boundary pixel in the other two boundary maps as well.
Thus, we define the SAM boundary pixel (pink point) as re-
liable. The parameter α determines the influence strength
of SAM boundary pixels. Finally, if none of the above
conditions are met, we decide to retain the boundary pix-
els of Bi

TA as reliable pixels. This way, we attain a refined
boundary map Bi

ref with all reliable boundary pixels for
Oi, which is utilized for updating TA FTA and student FS .

Next, we introduce a boundary-enhanced loss (See Fig. 3
(a)) to encourage TA’s boundary pixel predictions to align
closely with the refined boundary map:

LT,TA
bd =

H×W∑
k=1

(|Bi
ref −Bi

TA|+ |Bi
ref −Bj

TA|)
Co

, (2)

where Co denotes the total boundary pixel counts of Bref

and k denotes the k-th pixel in the boundary map. This
explicitly mitigates boundary pixel prediction errors caused
by the distortion of ERP.
Cross-Task Complementary Fusion (CTCF). To obtain
more reliable ensemble logits Ei for window-based regions,
we propose the CTCF block, as shown in Fig. 2. It adap-
tively fuses SAM FT ’s instance mask outputs Ii with TA
FTA’s semantic segmentation outputs Si. The objective of
the fusion is to assign the highest-confidence semantic la-
bel to each instance mask based on the logits Si from TA
(See Fig. 2). Different from directly finding the most fre-
quent or area-dominant semantic label [2, 3], we define dis-
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tinct area proportion thresholds for masks of different sizes
and adaptively select the most reliable label. Specifically,
for each instance mask Km

i from SAM, we assess the in-
stance mask area. For larger and smaller instance masks,
we set the threshold θ to a smaller value to facilitate obtain-
ing the most frequently occurring label. For medium-sized
masks, we increase θ to a larger value to ensure the acqui-
sition of a more accurate semantic label. Then, we identify
the top three semantic labels in descending order of quan-
tity within the corresponding area in TA’s predictions. If
the label coverage rate (lcr) of the most prevalent seman-
tic label Ymax exceeds the θ, we directly assign the most
prevalent label as the semantic label for the current instance
mask Km

i . If the coverage rate of the most prevalent la-
bel falls below θ, we delve into the three semantic labels
and calculate their Shannon entropy (SE) using the logits
Si from TA. The label with the minimum entropy is chosen
as the highest-confidence semantic label Yinstance for the
Km

i . The formulation is as follows:

Yinstance =


Ymax, lcr(Ymax) ≥ θ,

Yargmin{SE(Ya)}, 0 < lcr(Ya) < θ,
(3)

where a belongs to the top three semantic labels occupying
the instance mask. The detailed pseudo-code can be found
in the Supplmat. Through the CTCF block, DAR produces
high-quality ensemble logits by adaptively merging the pre-
dictions based on windows from both SAM and TA.

Due to the fusion process potentially resulting in varying
prediction confidences among masks, we obtain a weight
map (Mi) with spatial dimensions identical to Wi in the fu-
sion process. Specifically, we assign higher weight (1) to
masks with higher overlap between instance masks and se-
mantic logits and lower weight (0) to masks that require SE
for label assignment. The ensemble logits and weight maps
obtained by the CTCF block can assist the TA and the stu-
dent in achieving better supervision for patch predictions.

3.2. Multi-level Knowledge Adaptation Module
After addressing the distortion problem with our DAR mod-
ule, we then propose the MKA module to learn a compact
student module with TA FTA’s output logits Si and the
ensemble logits Ei from the DAR module for multi-level,
multi-scale (whole-image and patch) knowledge adaptation.
To effectively transfer knowledge from the whole-image
scale prediction of the TA FTA to the student model FS , we
concatenate predictions of non-overlapping patches to gen-
erate the entire ERP semantic prediction map Sw

TA. There-
fore, when the entire image is directly fed to the student
model FS , resulting in the prediction map Pw

S . We use
the Cross-Entropy (CE) loss (Eq.(5)) to guide the student
in aligning its predictions with Sw

TA at whole-image scale:.

LTA,S
ce = LCE(S

w
TA, P

w
S ). (4)

For the obtained ensemble logits Ei based on the patch
Wi, we use another CE loss to guide the student’s prediction

logits at the corresponding window position P i
S to mimic

Ei. As the CTCF block returns the weight maps Mi corre-
sponding to the higher confidence masks based on the fu-
sion mechanism, we first combine weight maps with en-
semble logits to obtain higher confidence masks Ei

H . Then
we perform knowledge adaptation simultaneously using en-
semble logits Ei and higher confidence masks Ei

H . There-
fore, the loss for patches knowledge from Ei and Ei

H trans-
fer to the student FS and TA FTA can be formulated as:

LT,S
CE =

H×W∑
k=1

(LCE(P
k
i , E

k
i ) + λMiLCE(P

k
i , E

k
i )), (5)

LT,TA
CE =

H×W∑
k=1

(LCE(S
k
i , E

k
i ) + λMiLCE(S

k
i , E

k
i )), (6)

where λ is the hyper-parameter. By considering higher con-
fidence masks Ei

H , we can enhance the learning of both the
student and TA towards the reliable ensemble logits during
the update process. This helps mitigate the impact of noisy
labels generated by SE in lower confidence masks on both
the student and TA. The patches supervision not only assists
the student in refining the segmentation of large objects but
also contributes to improved recognition of smaller objects.

Additionally, we utilize the refined boundary map Bi
ref

obtained from DAR to supervise the student’s boundary
map (Bi

S) in the corresponding overlapping area Oi, en-
hancing the student’s awareness of boundaries.

LT,S
bd =

H×W∑
k=1

|Bi
ref −Bi

S |
Co

. (7)

Therefore, the total loss employed for the student FS com-
prises three components:

Lstudent = LTA,S
CE + LT,S

CE + LT,S
bd . (8)

The total loss for the TA FTA is formulated as follows:

LTA = LT,TA
CE + LCC + LT,TA

bd . (9)

4. Experiments
4.1. Datasets and Implementation Details

Dataset. We leverage two benchmark datasets Wild-
PASS [31] and DensePASS [11] to assess the segmentation
performance of the GoodSAM. The resolution of images in
both datasets utilized is 400×2048.
Implementation details. We train the proposed frame-
work with PyTorch in 4 NVIDIA A6000 GPUs. We keep
SAM frozen during our experiments and utilize it solely for
providing instance masks and boundary information. For
the TA and student models, we opt for the fine-tuned Seg-
former [24] series, encompassing B0-B5 variants, which
come in six different sizes and exhibit varying performance
levels in 2D image semantic segmentation. We set the win-
dow size as 400×512, with stride 256. The hyper-parameter
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Figure 4. Example visualization results from the DensePASS test set: (a) Input panorama image, (b) Segformer-B5 [24] without sliding
window sampling, (c) DPPASS-S [42], (d) DATR-S [41], (e) GoodSAM-S, (f) Ground truth.

Method P. (M) mIoU Road S.W. Build. Wall Fence Pole Tr.L. Tr.S. Veget. Terr. Sky Person Rider Car Truck Bus Train M.C. B.C.

ERFNet [16] - 16.65 63.59 18.22 47.01 9.45 12.79 17.00 8.12 6.41 34.24 10.15 18.43 4.96 2.31 46.03 3.19 0.59 0.00 8.30 5.55
PASS(ERFNet) [28] - 23.66 67.84 28.75 59.69 19.96 29.41 8.26 4.54 8.07 64.96 13.75 33.50 12.87 3.17 48.26 2.17 0.82 0.29 23.76 19.46
Omni-sup(ECANet) [30] - 43.02 81.60 19.46 81.00 32.02 39.47 25.54 3.85 17.38 79.01 39.75 94.60 46.39 12.98 81.96 49.25 28.29 0.00 55.36 29.47
P2PDA(Adversarial) [36] - 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02
PCS [33] 25.56 53.83 78.10 46.24 86.24 30.33 45.78 34.04 22.74 13.00 79.98 33.07 93.44 47.69 22.53 79.20 61.59 67.09 83.26 58.68 39.80
Trans4PASS-T [37] 13.95 53.18 78.13 41.19 85.93 29.88 37.02 32.54 21.59 18.94 78.67 45.20 93.88 48.54 16.91 79.58 65.33 55.76 84.63 59.05 37.61
Trans4PASS-S [37] 24.98 55.22 78.38 41.58 86.48 31.54 45.54 33.92 22.96 18.27 79.40 41.07 93.82 48.85 23.36 81.02 67.31 69.53 86.13 60.85 39.09
DPPASS-T [42] 14.0 55.30 78.74 46.29 87.47 48.62 40.47 35.38 24.97 17.39 79.23 40.85 93.49 52.09 29.40 79.19 58.73 47.24 86.48 66.60 38.11
DPPASS-S [42] 25.4 56.28 78.99 48.14 87.63 42.12 44.85 34.95 27.38 19.21 78.55 43.08 92.83 55.99 29.10 80.95 61.42 55.68 79.70 70.42 38.40
DATR-M [41] 4.64 52.90 78.71 48.43 86.92 34.92 43.90 33.43 22.39 17.15 78.55 28.38 93.72 52.08 13.24 77.92 56.73 59.53 93.98 51.52 34.06
DATR-T [41] 14.72 54.60 79.43 49.70 87.39 37.91 44.85 35.06 25.16 19.33 78.73 25.75 93.60 53.52 20.20 78.07 60.43 55.82 91.11 67.03 34.32
DATR-S [41] 25.76 56.81 80.63 51.77 87.80 44.94 43.73 37.23 25.66 21.00 78.61 26.68 93.77 54.62 29.50 80.03 67.35 63.75 87.67 67.57 37.10

GoodSAM-M(ours) 3.7 55.93 79.57 51.04 86.24 43.42 44.86 30.92 26.60 20.62 77.79 25.43 92.99 53.77 25.84 82.01 70.94 62.29 91.93 58.24 38.25
GoodSAM-T(ours) 14.0 58.21 80.06 53.29 89.75 44.91 46.98 31.13 27.81 19.83 79.58 25.72 93.81 55.44 26.99 84.54 73.07 68.41 93.99 67.36 43.39
GoodSAM-S(ours) 25.4 60.56 80.98 52.96 93.22 48.17 51.28 33.51 28.09 20.15 81.64 30.97 95.21 55.13 29.01 87.89 75.28 69.37 94.98 73.28 49.64

Table 1. Per-class results of the SOTA panoramic image semantic segmentation methods on DensePASS test set. (P.: Param.)

α is set to 0.3. For medium-sized masks, the area range is
from 100 to 1000. The thresholds θ for masks of different
areas are set to 0.5 and 0.7. The hyper-parameters of weight
for reliable masks are set to 0.2. More details can be found
in the supplmat.

4.2. Comparisons with Existing Works

We first compare GoodSAM with previous panoramic se-
mantic segmentation methods, including ERFNet [16],
PASS [28], Omni-sup [30], P2PDA [36], PCS [33],
Trans4PASS [37], DPPASS [42], and DATR [41], on the
DensePASS dataset. As shown in Tab. 1, our GoodSAM-
M, GoodSAM-T, and GoodSAM-S consistently exhibit
superior performance at their respective parameter lev-
els. Specifically, Our GoodSAM-S outperforms DATR-
S, DPPASS-S, and Trans4PASS-S by 3.75% IoU, 4.28%

IoU, and 5.34% IoU, respectively, which yields SOTA per-
formance. Additionally, GoodSAM-M achieves a com-
petitive mIoU of 55.93% mIoU with just 3.7 million pa-
rameters, which is comparable to DATR-T and surpasses
Trans4PASS-T. For the segmentation performance of each
class, our GoodSAM-S outperforms the others in the major-
ity of classes, including ‘building’ (+5.42% IoU), ‘fence’
(+5.5% IoU), and nearly all types of transportation (e.g.,
‘car’ with +5.93% IoU). Fig. 4 shows visual comparisons
of GoodSAM-S with other methods on the Densepass eval-
uation set. This showcases that our GoodSAM-S can gen-
erate distortion-aware and boundary-enhanced logits under
the supervision of SAM and TA.

Tab. 2 presents the experimental results on the WildPASS
validation dataset. Our GoodSAM outperforms the existing
methods based on Segformer B1 and B2 backbones. Specif-
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Method Backbone mIoU(%)

Source domain Supervised Segformer-B1 [24] 47.90
Segformer-B2 [24] 54.11

Trans4PASS-T [37] Segformer-B1 54.67
Trans4PASS-S [37] Segformer-B2 62.91

DPPASS-T [42] Segformer-B1 60.38
DPPASS-S [42] Segformer-B2 63.53

GoodSAM-M(ours) Segformer-B0 58.65
GoodSAM-T(ours) Segformer-B1 62.42
GoodSAM-s(ours) Segformer-B2 65.18

Table 2. Experimental results of the SOTA panoramic image se-
mantic segmentation methods on WildPASS test set.

Input 𝑥 𝑆!Segformer-B5

𝐼!SAM𝐸!Ensemble Logits CTCF Block

Figure 5. Effectiveness of the CTCF block.

ically, our GoodSAM-T outperforms DPPASS-T by 2.04%
mIoU on the Segformer-B1 backbone, and our GoodSAM-
S surpasses DPPASS-S by 1.65% mIoU on the Segformer-
B2 backbone. This indicates that, even with an expanded
number of evaluation images, our GoodSAM consistently
achieves superior performance.

4.3. Ablation Studies and Analysis

4.3.1 Effectiveness of DAR module

Tab. 3 illustrates the effectiveness of each component of our
framework. We choose Segformer-B5 as the TA model and
Segformer-B0 as the student model.
1) Effectiveness of sliding window sampling. The perfor-
mance comparison before and after employing sliding win-
dow sampling for the DAR module reveals a significant per-
formance gap. This is attributed to Segformer being trained
on 2D images, and when directly applied to ERP images
with larger FoV characteristics, the model shows a substan-
tial decline in performance. Specifically, the performance
gap is nearly twice as significant without the sliding win-
dow strategy (B5: 27.62% mIoU vs. 53.86% mIoU, B0:
15.88% mIoU vs. 39.35% mIoU).
2) Effectiveness of CTCF. We evaluate the CTCF block
based on the non-overlapping sliding window strategy. We
propose CTCF to obtain patch ensemble logits and then re-
build the entire ERP prediction map at corresponding posi-
tions. As shown in Tab. 5, the mIoU of the ensemble logits
currently stands at 55.88% mIoU, surpassing TA’s perfor-
mance by 2.02% mIoU. Furthermore, as we utilize LT,TA

ce

to update TA based on patch ensemble logits, we observe
a continuous improvement(+5.1% mIoU) in ensemble log-

With
Boundary Enhancement

Without
Boundary Enhancement GT

Prediction

Boundary
Map

Input
𝑥

𝑃!

𝐵!

Figure 6. Effectiveness of the boundary enhancement block.

its performance alongside the enhancement of TA’s perfor-
mance. Fig. 5 demonstrates the visual differences between
the segmentation map produced by Segformer-B5 as TA and
the ensemble logits obtained through CTCF block, high-
lighting the effectiveness of our CTCF block.
3) Effectiveness of consistency constraint. we now ablate
the consistency constraint based on the overlapping slid-
ing window. Introducing the consistency constraint LCC

to implicitly mitigate the inconsistencies in overlapping re-
gions between adjacent windows caused by distortion sig-
nificantly improves the TA’s performance(+1.18% mIoU).
4) Effectiveness of boundary enhancement. We propose
the boundary enhancement block to leverage the boundary
information provided by SAM, enhancing TA’s ability to
predict boundary pixels. As revealed by Tab. 3, the intro-
duced boundary-enhanced loss boosts TA’s performance by
2.42% mIoU (from 60.07% mIoU to 62.49% mIoU). The
right part of visualization results in Fig. 4 demonstrates our
superior boundary segmentation performance for ‘fence’
and ‘sidewalk’ compared to previous methods. Meanwhile,
Fig. 6 also illustrates the impact of the boundary enhance-
ment block on student predictions. These experiment re-
sults indicate that our boundary enhancement block ex-
plicitly assists TA and student in increasing awareness of
boundaries and addressing distortion problem.

4.3.2 Effectiveness of MKA module

For the MKA module, as shown in Tab. 3, we observe that
the performance of the student is only 15.88% mIoU when
the entire ERP image is directly input. However, as we
update the student using TA’s logits, the performance in-
creases to 50.90% mIoU with the improvement of TA’s per-
formance. Furthermore, by supervising the semantic logits
of the student in the corresponding region using window-
based ensemble logits, the performance of our student im-
proves by 3.22% mIoU. Finally, by further constraining the
student’s boundary pixel prediction results with the refined
boundary map obtained from DAR, our student’s perfor-
mance has been elevated to 55.93% mIoU. This indicates
the effectiveness of MKA in endowing GoodSAM with
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SAM and TA TA Student mIoU

SW CTCF LT,TA
ce LCC LT,TA

bd LTA,S
CE LT,S

CE LT,S
bd E.S. TA Student

- - - - - - - - - 27.62 15.88√
- - - - - - - - 53.86 15.88√ √

- - - - - - 55.88 53.86 15.88
√ √ √

- -
√

- - 60.68 58.89 49.88√ √ √ √
-

√
- - - 60.07 50.07√ √ √ √ √ √
- - - 62.49 50.90

√ √ √ √ √ √ √
- - 62.49 54.12√ √ √ √ √ √ √ √

- 62.49 55.93

Table 3. Ablation of loss functions during the training process.
E.S. represents ensemble logits.

distortion-aware and boundary-aware capabilities.

4.3.3 Other Analysis

Hyper-parameters analysis in sliding window sampling.
Tab. 4 presents the effects of four different window sizes
and step sizes with Segformer-B2. We observe that TA
exhibits the best performance (53.86%) when the window
size is 400×512. Meanwhile, the ensemble logits obtained
after fusion with SAM achieve the highest performance
(55.88%). For the sliding window stride, we find that as
the stride decreases, the overlapping area between adjacent
windows increases, resulting in an increase in the number
of windows and training overhead for TA. Therefore, based
on Tab. 4, due to constraints on training resources, when
the stride is set to 256, TA achieves the highest perfor-
mance(60.07%) under the constraints of LT,TA

CE and LCC .
Analysis about CTCF module. We introduce the CTCF
block to adaptively combine the outputs of SAM and TA,
obtaining patch ensemble logits. Now, we evaluate our
CTCF by comparing it with current methods that combine
instance masks and semantic logits [2, 3]. SSA [2] assigns
the label of the instance mask as the label that appears most
frequently in the corresponding region of the semantic map.
The fusion mechanism in SEPL [3] is similar to SSA. They
analyze each instance mask, selecting the label if it occupies
more than half of the area in the corresponding region of the
semantic map or if the distribution is almost covered by the
instance mask. However, we analyze the instance masks of
different sizes during the experiment. We observe that the
comparable coverage rate between the top two labels of-
ten occurs in medium-sized masks, which increases the risk
of errors if the label with the highest rate is directly cho-
sen. Therefore, we set different thresholds for different area
sizes and incorporate SE to identify the highest-confidence
label, ensuring an adaptive fusion of instance masks and se-
mantic logits. Tab. 5 illustrates that our fusion mechanism
enhances the robustness and accuracy of the fusion process
compared to the other two methods.
Hyper-parameter analysis in the loss functions. When
transferring knowledge from window-based ensemble log-
its to the TA and student, we assign higher weights to the

Window Size 400×1024 400×512 400×256 400×128

mIoU 52.45 53.86 53.29 52.79

Strides 512 400 320 256

mIoU 58.89 59.68 59.73 60.07

Table 4. Ablation about threshold window size and the step size of
the sliding windows.
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Figure 7. Ablation study for λ of knowledge tranfer from ensem-
ble logits to our student.

B0 B1 B2 B3 B4 B5

SSA [2] 39.28 40.28 47.93 49.13 52.19 54.32

Fusion SEPL [3] 39.68 40.75 48.98 50.37 52.53 54.58
CTCF 40.68 41.75 49.7 52.89 54.13 55.88

Student B2 - - - 57.16 59.02 60.56

Table 5. Ablation of fusion ways and different TA model.

instance masks with high confidence for the CTCF block.
Fig. 7 shows that with λ set to 0.2, our GoodSAM can more
efficiently extract correct knowledge from ensemble logits.
The impact of TA selection. We assess the impact of differ-
ent TAs on the training of the student. As shown in Tab. 5,
we observe that as the performance of TA improves, our stu-
dent’s performance also increases. Specifically, when TA is
Segformer-B5, our student achieves a performance gain of
+3.4% mIoU compared to TA being Segformer-B3. This
improvement is attributed to Segformer-B5’s ability to pro-
vide more comprehensive and accurate semantic logits.

5. Conclusion and Future Work
In this paper, we designed a comprehensive framework for
lightweight panorama semantic segmentation, which lever-
ages the assistance of SAM and TA. By addressing the
distortion and large FoV problems in panoramic images
and bridging the capacity gap between SAM and the stu-
dent model, our GoodSAM produced distortion-aware and
boundary-enhanced logits, surpassing SOTA UDA methods
across various model parameter levels.
Future work: It would be worthwhile to fine-tune SAM
to realize a foundational segmentation model suitable for
panoramic images. Additionally, we plan to investigate
methods for distilling SAM’s zero-shot capabilities into our
compact segmentation model.
Acknowledgment: This paper was supported by the
Guangzhou 2024 Applied Basic Research Project (Co-
funded by Municipal Schools (Institutes) and Enterprises)
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