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Figure 1. We meticulously collect a dataset capturing interactions involving multiple humans and multiple objects, named HOI-M3. This
extensive dataset comprises 181 million video frames recorded from 42 diverse viewpoints, covering a wide range of daily scenarios. It is
intended to facilitate various tasks related to human-object interaction perception and generation.

Abstract

Humans naturally interact with both others and the sur-
rounding multiple objects, engaging in various social activi-
ties. However, recent advances in modeling human-object
interactions mostly focus on perceiving isolated individuals
and objects, due to fundamental data scarcity. In this pa-
per, we introduce HOI-M3, a novel large-scale dataset for
modeling the interactions of Multiple huMans and Multiple
objects. Notably, it provides accurate 3D tracking for both
humans and objects from dense RGB and object-mounted
IMU inputs, covering 199 sequences and 181M frames of
diverse humans and objects under rich activities. With the
unique HOI-M3 dataset, we introduce two novel data-driven
tasks with companion strong baselines: monocular capture
and unstructured generation of multiple human-object inter-
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actions. Extensive experiments demonstrate that our dataset
is challenging and worthy of further research about multiple
human-object interactions and behavior analysis. Our HOI-
M3 dataset, corresponding codes, and pre-trained models
will be disseminated to the community for future research,
which can be found at https://juzezhang.github.
io/HOIM3_ProjectPage/

1. Introduction

Modeling human behaviors with surrounding objects within
contextual environments is a fundamental task in the vision
community, enabling numerous applications for gaming,
embodied AI, robotics, and VR/AR. Capturing such human-
object interactions recently received substantive attention.

With the aid of a wide range of available datasets [20, 34],
these years have witnessed the huge progress of data-driven
human motion modeling, from motion capture (MoCap) [27–
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29, 41, 64, 69] to recently emerging motion generation (Mo-
Gen) [3, 7, 9, 11, 12, 21, 23, 24, 30, 37, 38, 46, 49, 59, 66,
68, 70, 71]. Yet, the further 3D modeling of human-object
interactions (HOI) significantly falls behind, mainly due to
the scarcity of data. Specifically, recent available MoCap
datasets [4, 18, 63] for HOI mostly focus on interactions
between a single human and individual objects. Hence the
data-driven MoCap advances [19, 52, 54, 65] for HOI are
restricted to the single-person scenarios. They fall short of
modeling the interactions between multiple humans and ob-
jects, which is crucial for a comprehensive understanding of
how we humans and objects interact in social settings.

However, accurately capturing the motions of multiple
humans and objects remains challenging due to the severe
occlusion, especially for daily interactions within contextual
environments. First, it usually requires dome-like dense cam-
eras [6, 63] and even object-mounted Inertial Measurement
Units (IMUs) [55] to provide sufficient motion observations.
Second, even based on such dense and multi-modal input,
an accurate capture method remains far-reaching. It requires
a series of tedious and time-consuming stages, ranging from
pre-processing, i.e., human-object segmentation and sensor
alignment, to a robust joint optimization process, or even
manual correction for those extremely occluded cases. These
challenges hinder existing HOI methods to explore the multi-
human and multi-object scenarios, and hence solving this
data scarcity is a long-standing and urgent issue.

To tackle these challenges, in this paper, we present HOI-
M3 – a novel and timely dataset for modeling the interactions
of Multiple huMans and Multiple objects, as illustrated in
Figure 1. We adopt a dense and hybrid capture setting with
a robust human-object capture pipeline to accurately track
the 3D motions of various humans and objects, providing
more than 199 human-object inter-acting sequences cover-
ing 90 diverse 3D objects and 31 human subjects (20 males
and 11 females) across various environment. Noteworthy
features of our HOI-M3 dataset include 1) Multiple Hu-
mans and Objects: Each sequence involves a minimum
number of 2 persons and 5 objects, which, to the best of
our knowledge, is the first real-world 3D multiple human-
object datasets with accurate 3D MoCap. 2) High Quality:
Sequences are recorded within daily-style rooms with 42
synchronized camera views, and inertial measurement units
(IMUs) are embedded in each pre-scanned object to ensure
accurate human-object tracking labels. 3) Large Size and
Rich Modality: Our dataset records over 20 hours of in-
teractions with both RGB and inertial sensors, providing
segmentation annotations, pre-scanned object geometry, and
accurate HOI tracking labels.

Note that our HOI-M3 dataset is the first of its kind
to open up the research direction for data-driven multiple
human-object motion capture or even synthesis. The rich
annotations and multi-modality of our dataset also bring

huge potential for future direction for HOI modeling and
behavior analysis. To this end, based on our novel HOI-M3

dataset, we provide two strong baseline methods for two
novel downstream tasks: 1) monocular capture of multiple
HOI; 2) unstructured generation of multiple HOI. For the for-
mer, we introduce a novel single-shot learning-based method
to estimate multi-person and multi-object 3D poses. For
the latter, we tailor the diffusion models [16, 31] into the
realm of generating intricate social interactions. We conduct
detailed evaluations of our dataset and companion baseline
methods and provide preliminary results to indicate that cap-
turing or generating vivid motions of multiple human-object
interactions remains be challenging a direction. Our HOI-M3

dataset consistently serves as a data foundation and reliable
benchmark to facilitate future exploration. To summarize,
our main contributions include:
• We contribute a comprehensive motion dataset for multi-

person and multi-object interactions (HOI-M3), featuring
high quality, large size, and rich modality.

• We adopt a robust joint optimization to accurately track the
3D motions of both the humans and objects in our dataset,
from dense RGB and object-mounted IMU inputs.

• We introduce two novel tasks with companion baselines:
monocular multiple HOI capturing and generation, show-
casing their potential for further exploration.

• We will release our dataset, our code and pre-trained mod-
els to stimulate the research of human-object interactions.

2. Related Works
Single Human and Object Interaction. Several recent
studies[4, 18, 44, 45, 52, 54, 63, 65, 72] have tackled the
vital challenge of integrated modeling for interactions in-
volving the entire human body. Recently, a plethora of
works have delved into the examination of this relation-
ship, employing a range of interaction constraints such
as spatial arrangements[65], contact maps[4, 14, 45? ],
occlusion[52, 53], and adherence to physical plausibility[58].
The most relevant works[51] aim to jointly estimate human
pose and scene geometry from a single RGB image. How-
ever, this approach only considers the spatial layout between
a single person and multiple objects, without taking into
account movable objects. Nevertheless, the interactions we
engage in daily are intricate and diverse. Current methods
attempt to model these interactions by focusing on single
interaction, resulting in a biased representation. Compara-
bly, we propose a novel paradigm modeling the interactions
between multiple human and object interactions.
Human Interaction with Static Scene. Another kind of
work considers the holistic scene for interactions. Unlike
studies focusing on body-object interactions, these works
typically represent the entire environment as a static CAD
model, concentrating solely on interactions involving a sin-
gular human. Pioneer works such as PiGraphs[43], captured
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Figure 2. Overview of HOI-M3. (a) HOI-M3 across five daily scenarios(Bedroom, Dinning Room, Living Room, Fitness Room, Office),
(b) annotated masks corresponding to each subject(human, object), (c) tracking of multiple humans and multiple objects, (d) significant
number of pre-scanned object meshes.

with RGB-D sensors, suffer from inaccurately reconstructed
scenes. Succeed work, PROX[14], reconstruct human mo-
tions within scene from monocular RGB-D but still exhibit
noticeable inferiority. GTA-IM [5] exploits the game en-
gine to collect a synthetic dataset with restricted HSIs and
scene diversities. Recent work HUMANISE [50] synthesizes
extensive HSIs by aligning high-quality motions with real-
world 3D scenes in ScanNet [10]. In conclusion, these meth-
ods consider human activities within static surroundings,
overlooking broader engagements with dynamic objects.

Interaction Datasets. Numerous datasets are available for
the isolated study of humans [20, 35, 48] but few address
the contextual environment in which humans operate. A
limited number of recent works [3–5, 8, 14, 15, 17, 18, 22,
32, 43, 45, 50, 56, 63, 67] have focused on capturing hu-
mans with surrounding objects and scenes. Recent datasets
capture HOI using various methods such as optical mark-
ers [32, 45, 63], sparse RGB sensors [4, 18], IMUs [22, 67],
and even 76 RGB sensors [63], yet still fall short in address-
ing the complexities of real-world scenarios. Datasets focus-
ing on HSI capture interactions within static scenes [15, 50]
using RGBD [14] or synthesizing with a Meta Quest 2 head-
set [3] to construct scene constraints for interactions. Con-
sequently, the existing literature on interactions involving
multiple humans and objects is notably scarce. To bridge
this gap, we propose HOI-M3 for capturing multiple hu-

man and object interactions within a contextual environment,
facilitating various perception or generative HOI tasks.

3. HOI-M3 Dataset
3.1. Overview

We present the HOI-M3 dataset, designed to capture multiple
human-object interactions within a contextual environment.
As depicted in Table 1, the HOI-M3 dataset encompasses
interactions with large size and rich modality involving mul-
tiple humans and objects as shown in Figure 2. It includes
181 million frames featuring 46 subjects engaged in inter-
actions with 90 objects. The dataset provides dense-view
coverage at a resolution of 4K and a frame rate of 60 Fps.
We highlight the dataset’s advantages in terms of recording
times, sequence frames, object count, and interaction types,
addressing gaps in previous interaction datasets.

3.2. Data Capture System

To assemble the HOI-M3 dataset, we deployed 42 Z CAM
cinema cameras. Additionally, inertial measurement units
(IMUs) were strategically embedded into each pre-scanned
object to ensure precision in human-object tracking tasks.
Subsequently, publicly accessible tools [1] were employed
for the estimation of intrinsic camera parameters and extrin-
sic camera parameters.
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Datasets multi-person multi-object dynamic object # Recording # Frame(M) Resolution Fps Obj. Num. Social interact

HOI

PiGr [43] ✗ ✓ ✗ 2h 0.1 960 × 540 15 NA ✗

GRAB [45] ✗ ✗ ✓ 3.75 h 1.62 NA 120 51 ✗

BEHAVE [4] ✗ ✗ ✓ 2 h 0.15 2048 × 1536 30 20 ✗

InterCap [18] ✗ ✗ ✓ 6 h 0.07 1920 × 1080 30 10 ✗

GraviCap [8] ✗ ✓ ✓ NA 0.005 1200 × 877 24 4 ✗

D3D-HOI [56] ✗ ✗ ✓ 0.58 0.006 1280 × 720 3 8 ✗

COUCH [67] ✗ ✗ ✗ 3 h 0.324 2048 × 1536 30 4 ✗

NeuralDome [63] ✗ ✗ ✓ 4.3 h 71 3840 × 2160 60 23 ✗

CHAIRS [22] ✗ ✗ ✓ 17.3h 1.86 960 × 540 30 81 ✗

OMOMO [32] ✗ ✗ ✓ 10h NA NA NA 15 ✗

HSI

PROX [14] ✗ ✓ ✗ NA 0.1 1920 × 1080 30 NA ✗

SAMP [15] ✗ ✓ ✗ 100min 0.185 NA 30 7 ✗

RICH [17] ✗ ✗ ✗ NA 0.577 4096 × 2160 30 NA ✗

GTA-IM [5] ✓ ✗ ✗ NA 1 1920 × 1080 NA NA ✗

HUMANISE [50] ✗ ✗ ✗ 11.11h 1.2 512 × 512 NA NA ✗

CIRCLE [3] ✗ ✗ ✗ 10h 4.31 NA 120 NA ✗

Ours ✓ ✓ ✓ 20 h 180.5 3840× 2160 60 90 ✓

Table 1. Dataset Comparisons. We compare our proposed HOI-M3 dataset with existing publicly available HOI/HSI datasets. HOI-M3

exhibits the largest scale of interactions in terms of the number of frames (#Frame) and recording time. It is the first dataset featuring
multi-person and multi-object tracking. ”Obj. Num.” represents the number of objects.

3.3. Dataset Process Pipeline

Data Annotation. To collect an extensive and diverse
dataset, we conducted pre-scans of 90 commonly used every-
day objects spanning various categories. Polycam [39] was
employed as our scanning tool for this purpose. We applied
segmentation to both humans and objects within the scenes,
utilizing the recent Segment Anything Model (SAM) [26].
Leveraging SAM’s capabilities, we collaborated with profes-
sional human annotators to annotate the initial frame of each
camera view, ensuring thorough segmentation and broadcast-
ing the entire sequence. Our dataset will be accessible for
research purposes.

Synchronization and Calibration. To achieve synchroniza-
tion between RGB frames and the IMU signal, we instruct
the subject to perform a controlled jump at the start of each
capture sequence. Subsequently, we manually identify the
peaks in both the IMU signal and RGB frames, ensuring
temporal alignment between the visual and inertial infor-
mation. To calibrate the rigid offset between the IMU and
RGB systems, we follow these steps: Initially, an IMU is
embedded within a typical pre-scanned object, and a human
annotator marks three corresponding points in each camera
view to determine the object’s pose using a triangulation
algorithm. This process provides an estimate of the IMU-
to-RGB rigid rotation offset, facilitating the extraction of
per-frame rotations from IMU signals.

3.4. Human Motion Capture

Detection and Matching. With synchronized and calibrated
multi-view videos, we utilize the off-the-shelf 2D pose de-
tection model ViTPose [57] to identify 2D human keypoints.
Subsequently, we perform a matching process to establish
cross-view correspondences for humans observed from dif-
ferent views. Specifically, we formulate a cross-view affinity
matrix and address the multi-view matching problem us-
ing an established algorithm [13]. Following the matching
process, the 3D keypoint trajectories for each entity can be
reconstructed through triangulation.
SMPL Fitting. We employed SMPL [33] as the underlying
body model, offering a differentiable function M(·) to ma-
nipulate a mesh created by artists, consisting of N = 6090
vertices and K = 24 joints. Note that we utilized the off-the-
shelf toolbox Easymocap [2] for fitting a parametric model
to 3D keypoint.

3.5. Inertial-aid Multi-object Tracking

With the aim of developing a cost-effective scheme that
facilitates accurate tracking, we propose an inertial-aided
multi-object tracking method. In the context of 3D space,
each object is uniquely characterized by its 3D translation
T ∈ R3 and 3D rotation R ∈ SO(3). For a rigid object
mounted with an IMU, we can easily obtain each frame of
rotation. However, the drift error of IMUs tends to reduce
confidence as the duration of use extends. Additionally, cal-
ibration errors further exacerbate the decline in precision
during object tracking. To achieve precise object tracking,
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Figure 3. Monocular One-Stage Multiple HOI Capturing Pipeline. Given an input image, the pipeline predicts multiple maps: 1) the
human-object center heatmap predicts the probability of the human’s root position or object’s center position, 2) the human mesh map
contains the SMPL parameters and root depth, 3) the object mesh map contains the object 6D pose parameters and center depth. Through the
sampling process, multiple humans and objects can be captured within a single forward process.

we employ an optimization scheme that effectively estimates
the object’s rotation and translation. We assume the IMU pro-
vides plausible rotation RIMU

t , thus we only need to optimize
the translation Tt and rotation offset Roff

t . The 3D location
of the object mesh on a per-frame basis is represented as,

V j
t (R

IMU
t , Roff

t , Tt) = Roff
t RIMU

t O(cj) + Tt, (1)

where O(cj) represents the category cj mesh template. Tt

and Rt are the rigid translation and rotation with respect to
its pre-scanned template on each frame t. Roff

t is used to
eliminate the calibration offset. We use the following four
constraints: the object’s mask constraint Emask and offscreen
loss Eoffscreen:

Roff
t , Tt = argmin

R,T
(λmaskEmask + λoffscreenEoffscreen

+ λcollisionEcollision + λsmtEsmt),
(2)

where λmask, λoffscreen, λcollision and λsmt are coefficients of
energy terms.
Human object mask. Due to the lack of powerful object
keypoint detection tools, human and object masks are the
strongest evidence for object tracking. Thus, we impose the
mask loss as follows:

Ehomask = ∥
42∑
v=1

(Ihomask
v −DR(O(cj), R

IMU
t , Tt)∥22, (3)

where DR denotes differentiable rendering [25], Ihmask
j and

Iomask
v denote human and object masks of v-th view com-

puted from the SAM model.
Offscreen loss. To prevent the degenerate solution of mov-
ing the object offscreen, we regularize object within the field

of all camera views as:

Eoffscreen =

42∑
v=1

∑
[xv,yv,z][

max(xv − 1, 0) + max(−1− xv, 0)

+ max(yv − 1, 0) + max(−1− yv, 0)

+ max(−zv, 0) + max(zv − Zfar, 0)
]
,

(4)

where xv, yv represents the projected object mesh DR(Vt)
in the v-th view image coordinate normalized to [−1, 1],
z is the estimated depth of object and Zfar = 200 is a
hyperparameter of the far plane.
Collision constraint. Encouraging close proximity between
individuals and objects can exacerbate the issue of instances
occupying the same 3D space. To tackle this challenge, we
introduce a penalty for poses that result in human and/or
object interpenetration, employing the collision loss, as in-
troduced in [47, 60].
Smooth constraint. Per-frame fitting will damage the
smoothness of IMU signal. To encourage the motion es-
timated rotation to be as smooth as the original IMU signal,
we introduce a smooth constraint, which can be written as
follows:

Esmt = max(0,∥(Roff
t RIMU

t )−1Roff
t+1R

IMU
t+1∥2

− ∥(RIMU
t )−1RIMU

t+1∥2).
(5)

4. Downstream Tasks
Leveraging our dataset, we meticulously devised two robust
baseline methods for two novel downstream tasks: monocu-
lar capture of multiple HOI (Section 4.1) and unstructured
generation of multiple HOI(Section 4.2).
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4.1. Monocular Multiple HOI Capture

Monocular perception stands as one of the foundational tasks
in visual understanding. In this section, we elucidate how
HOI-M3 enhances the robustness analysis for scenarios in-
volving multiple humans and multiple objects. To this end,
we propose a one-stage method designed to estimate multi-
person and multi-object 3D poses in general scenes from
monocular inputs, as illustrated in Figure 3. Given an image
I , our pipeline reconstructs the body meshes of all individual
persons and the 6D poses of all objects within I . We depict
each person or object instance as a singular point in image
coordinates. With this representation, the pipeline predicts
multiple maps.
Human object center heatmap. We used a heatmap repre-
senting the 2D human body center and object center in the
image. Here we denote the root joint as body center points
and object center of mask as the center points. Each center
is represented as a Gaussian distribution in the human object
center heatmap.
Human mesh map. Following prior works [61], we utilize
the body mesh map to reconstruct the body mesh. Specifi-
cally, upon detecting a positive response in the root heatmap,
we perform regression on the body mesh representation using
features from the corresponding feature position, as illus-
trated in Figure 3. For human depth, we employ perspective
camera models to project the absolute camera-centric depth
of each person [62]. Consequently, we regress the root depth
similar to the body parameters. Adopting a method from a
previous study [73], we normalize the root depth by the size
of the field of view (FoV) as follows:

Ẑ = Z
w

f
, (6)

where Ẑ is the normalized depth, Z is the original depth, f
is the focal length, and w is the image width in pixels.
Object mesh map. Different from previous multi-stage
methodologies, we incorporate object information into a
feature map that utilizes the object mesh map for the recon-
struction of the object’s 6D pose, represented by R ∈ R3×3

and T ∈ R3. To enhance training stability, we employ a 6D
rotation representation for the rotation parameters. Analo-
gous to the human branch, we also devise an object depth
map to predict absolute depths for all objects in the image,
as illustrated in Figure 3.
Loss Functions. To supervise the network, we employ in-
dividual loss functions for different maps. The network is
ultimately supervised by the weighted sum of several loss
functions, formulated as follows:

Lsum = λthetaLtheta + λbetaLbeta + λobjectLobject+

λ3DL3D + λ2DL2D + λhmLhm + λdepthLdepth,
(7)

where Ltheta, Lbeta, Lobject represent the ℓ1 norm between
the predicted and ground truth SMPL parameters as well as

the object, respectively. L2D is the 2D keypoints loss that
minimizes the distance between the 2D projection from 3D
keypoints and ground truth 2D keypoints. Lhm is the mean
squared error (MSE) of the predicted and ground truth 2D
center keypoint computed from the projected 2D keypoints.
Lastly, λ(·) denotes the corresponding loss weights. Due to
page limitation, we have to defer more details of the loss
terms in the Appendix.

4.2. Multiple Interaction Generation

HOI-M3 offers a wealth of diverse interaction sequences
with synchronized ground truth capture. Motivated by the
recent remarkable progress in MoGen tasks, we illustrate
how our dataset contributes to this field. Currently, genera-
tive models have mainly been employed to generate single-
person motion diffusion or motion for single objects, with
no existing model for the generation of motions involving
multiple people and objects. We have meticulously designed
a diffusion model for the generation of motions involving
multiple people and objects to address this gap.
Multiple HOI representation. The parameters for individ-
uals and objects are denoted as x = [x1, x2, ..., xN ], where
xi ∈ R88 encompasses human pose θi ∈ R24×3, human
shape βi ∈ R10, human global translation Th

i ∈ R3, human
global orientation Rh

i ∈ R3 by axis-angle representation, ob-
ject translation T o

i ∈ R3, and object pose Ro
i ∈ R3. Given

that the maximum number of individuals in the HOI dataset
does not exceed 5, and the number of objects does not exceed
10, the dimension of our diffusion model is R500, with the
first 440 parameters representing 5 people and the last 60
parameters representing 10 objects.
Conditional Diffusion model. Referring to the typical im-
plementations of denoising diffusion probabilistic models
(DDPM) [16] and Ego-Ego [31], the structure of the multiple
interaction diffusion model is illustrated in Figure 4. The
high-level idea of the diffusion model is to design a forward
diffusion process that adds Gaussian noises to the original
data with a known variance schedule and learns a denois-
ing model to gradually denoise N steps given a sampled
xN from a normal distribution to generate x0. Specifically,
diffusion models comprise a forward diffusion process and
a reverse diffusion process. The forward diffusion process
gradually adds Gaussian noise to the original data x0. It is
formulated using a Markov chain of N steps:

q(x1:N |x0) :=

N∏
n=1

q(xn|xn−1). (8)

Each step is decided by a variance schedule using βn and is
defined as

q(xn|xn−1) := N (xn;
√
1− βnxn−1, βnI), (9)

Learning the mean can be reparameterized as learning to
predict the original data x0. The training loss is defined as a
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Figure 4. Multiple Interaction Generation Pipeline. Given multi-
ple object geometry, we employ Pointnet to extract the geometry
features and feed them forward with the features of the preset num-
ber of humans and objects using an MLP. The resulting features
are then fed into a conditional diffusion model to generate multiple
human-object interactions.

reconstruction loss of x0:

L = Ex0,n||x̂θ(xn, n)− x0||1. (10)

Here, we use the object geometry, the number of people and
objects as conditions to generate the entire interaction. Thus,
the number of people and objects is fed through an MLP as
embedding to the network. The object geometry is extracted
by Pointnet [40] to obtain the global feature. Due to page
limitations, we defer more details of the network structure
to the Appendix.

5. Experiments
5.1. Evaluation of the Multiple HOI Capturing

We evaluate the proposed monocular multiple HOI capturing
method on the HOI-M3 dataset, and compare the evaluation
result with two SOTA single HOI capturing methods [52, 65].
We use the same input image size of 512×512 for all the
methods to ensure a fair comparison.
Datasets and Evaluation Metrics. We train the Multiple
HOI Capturing model using BEHAVE [4], InterCap [18],
and HOI-M3, and perform evaluations on HOI-M3. In this
task, our goal is to estimate the pose of every human and
object in camera-centric coordinates. To assess the accuracy
of human poses, we employ the Percentage of Correct 3D
Keypoints (PCK), which calculates the percentage of cor-
rect joints within 15cm of the ground truth joint location.
For a more comprehensive evaluation of instant localization
ability, we additionally employ 3DPCKabs, which represents
the 3DPCK without root alignment, assessing performance

in absolute camera-centered coordinates [36]. Regarding
objects, we use chamfer distance and mean vertex to ver-
tex(v2v) to assess the accuracy of the object’s results. It’s
important to note that by ’match,’ we specifically mean that
we consider accuracy only for matched ground truths.
Monocular Multiple HOI Capturing Benchmark We com-
pare our evaluation results with two state-of-the-art single
HOI capturing methods [52, 65]. While these methods are
designed for single HOI cases, we compute the Intersection
over Union (IOU) for each bounding box. Then we select
the human-object pair with the best IOU to obtain their re-
sults. From Tab. 2, our proposed multiple HOI capturing
significantly surpasses existing methods. We observe that the
weak-projection camera model used in current single HOI
methods leads to inaccuracies in root depth. Consequently,
we are unable to calculate the PCKabs for these two methods.
Nevertheless, our method also demonstrates superiority in
PCKrel, highlighting its local pose estimation capabilities.
Regarding objects, our method exhibits lower chamfer dis-
tance compared to PHOSA and CHORE. It is noteworthy
that the aforementioned methods require the presetting of
the number of objects, resulting in identical performance for
both match and all predictions. We also show the qualita-
tive comparison in Figure 5, where it is clear that, despite
our method showing superior human and object quantitative
results, capturing vivid motions of multiple human-object
interactions remains a challenging direction.

5.2. Evaluation of the Multiple HOI Generation

Evaluation Metrics. We introduce two metrics, FID and
Pene, to evaluate this novel task. 1) FID is a metric used to
assess the quality of the generated image by comparing the
differences in the distribution of feature vectors extracted
from the generated and real images using Inception v3 mod-
els. The results demonstrate the remarkable performance of
our generation output. 2) Pene measures the average per-
centage of object vertices with non-negative human signed
distance function values.
Multiple HOI Generation Benchmark We evaluate our
model based on 20 sampling. The result shows in Tab. 3. For
a more intuitive comparison, we provide the visual results
of the generated motion in Figure 6, where we can clearly
see that the model trained on HOI-M3 can synthesize se-
mantically corresponding motions given object inputs and
specify the number of people and object. These results prove
the significant advantages of our dataset in generating such
diverse social interaction.

5.3. Limitations

While HOI-M3 is the first to provide possibilities for ex-
ploring varied relationships between interacting subjects,
equipped with capturing label of multiple persons and multi-
ple objects within an environment, we also want to highlight
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Ours Ground TruthPHOSA CHOREImage

Figure 5. Qualitative comparisons of monocular multiple interaction capture on HOI-M3 dataset with two state-of-the-art monocular HOI
capturing methods PHOSA [65] and CHORE [52].

All Matched

Human Object Human Object

Method PCKrel ↑ PCKabs ↑ Chamfero ↓ V2V↓ PCKrel ↑ PCKabs ↑ Chamfero ↓ V2V↓

PHOSA [65] 43.9 - 1454.3 691.4 48.8 - 1454.3 691.4
CHORE [52] 10.4 - 465.8 340.2 20.8 - 465.8 340.2
Ours 68.5 5.9 235.0 297.8 66.0 3.3 235.0 297.8

Table 2. Multiple HOI capture benchmark. ”Fit to input” represents the vanilla method that fits the object template to image and capture
human with Frankmocap [42]. The best results are in bold.

Figure 6. Qualitative results of multiple interaction generation:
We present the outcomes of two distinct sequences within a living
room environment, each defined by specific object geometries and
a predefined configuration of 2 persons and 5 objects.

Separated evaluation Joint evaluation

Method people objects Joint

FID 16.502 ± 0.044 10.609 ± 0.056 36.906 ± 0.087
Pene 1.452% 3.887% 9.265%

Table 3. Benchmark of multiple HOI generation on HOI-M3. ±
indicates the 95% confidence interval.

some potential limitations of this direction. Firstly, due to
hardware cost constraints, HOI-M3 is currently limited to
indoor settings, and extending the current setup to outdoor
environments, particularly in the wild, poses non-trivial chal-
lenges. Secondly, building such a dataset involves signifi-
cant human resources; thus, HOI-M3 only covers 5 common
scenes. Moreover, our dataset was collected under fixed

illumination conditions with few background variations, lim-
iting its generalization ability to other environments.

6. Conclusion

We have introduced HOI-M3, a pioneering dataset designed
for capturing interactions involving multiple humans and
objects within a contextual environment. Key features of
our HOI-M3 dataset include: 1) Multiple Humans and Ob-
jects, 2) high quality, and 3) large size with rich modalities.
Leveraging our dataset, we meticulously devised two ro-
bust baseline methods for downstream tasks: monocular
capture of multiple HOI and generation of multiple HOI.
We conduct comprehensive evaluations of our dataset and
companion baseline methods, presenting preliminary results
to indicate that capturing or generating vivid motions of
multiple human-object interactions remains a challenging
research direction. We expect that this research will boost
the advancement in the context of multiple HOI.
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