
HOIDiffusion: Generating Realistic 3D Hand-Object Interaction Data

Mengqi Zhang1∗ Yang Fu1∗ Zheng Ding1 Sifei Liu2

Zhuowen Tu1 Xiaolong Wang1

1UC San Diego 2 NVIDIA

Stable Diffusion OursInput

on the table on the beach in the snowon the table on the grass

Figure 1. (i) Left: Hand-object synthesis with Stable Diffusion model; (ii) Right: HOIDiffusion generates high-quality hand-object
interaction images conditioned on physical structures and detailed text description. The model disentangles the geometry from appearance,
exhibiting high generation diversity. Each row: We can fix the structure and control the style based on text inputs; Each column: We can
fix the style and control the structure based on 3D structural inputs.

Abstract
3D hand-object interaction data is scarce due to the

hardware constraints in scaling up the data collection pro-
cess. In this paper, we propose HOIDiffusion for generat-
ing realistic and diverse 3D hand-object interaction data.
Our model is a conditional diffusion model that takes both
the 3D hand-object geometric structure and text description
as inputs for image synthesis. This offers a more control-
lable and realistic synthesis as we can specify the structure
and style inputs in a disentangled manner. HOIDiffusion
is trained by leveraging a diffusion model pre-trained on
large-scale natural images and a few 3D human demonstra-
tions. Beyond controllable image synthesis, we adopt the
generated 3D data for learning 6D object pose estimation
and show its effectiveness in improving perception systems.
Project page: https://mq-zhang1.github.io/HOIDiffusion.

*Equal Contribution.

1. Introduction

Understanding how human hands interact with objects has
been a long-standing problem in computer vision. Recently,
researchers have tried to scale up such understandings
by collecting videos on hand-object interactions [10, 17].
Models trained with these datasets focus on performing
hand-object relational reasoning in 2D space. To enable
broader applications in robotics and VR/AR, more efforts
have been spent on collecting hand-object interaction data
with 3D annotations via multiple cameras [6] and new la-
beling approaches with prepared object CAD models [19].
However, such a data collection process is not scalable and
most datasets only contain dozens of objects.

Given the recent advancement of generative modeling
with diffusion process [25, 53], can we leverage them to
generate realistic 3D hand-object interaction data? While

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8521



state-of-the-art diffusion models such as Dall-E2 [44] and
Stable Diffusion [46] can generate realistic images given
text instructions, they still fail quite often when it comes to
capturing the details of how fingers are placed around the
object. As shown on the left side of Figure 1, Stable Diffu-
sion might not be able to output physically or geometrically
plausible interactions and sometimes there are more than
five fingers in a hand. Moreover, it is still unclear how to
configure image outputs beyond text instructions and make
the output correspond to 3D shapes and poses.

In this paper, we propose to generate 3D hand-object in-
teraction data, i.e., realistic images come with 3D ground-
truths at the same time. Beyond realistic generation, we
also enable controllable synthesis where the users can spec-
ify the geometry configuration and appearance in a disen-
tangled manner. We achieve this by introducing a two-stage
framework: We first synthesize the 3D geometric structure
(shape and pose) of the hand and the object, and then we
train a diffusion model conditioned on both the 3D struc-
ture and the text (indicating the style) to synthesize the cor-
responding RGB image. We visualize some synthesis re-
sults on the right side of Figure 1. In each row we generate
images with the same 3D structural configuration but with
different object and background styles; In each column, we
fix the styles and synthesize images with different geomet-
ric structures.

In the first stage of our framework, we generate a hu-
man grasp based on a given 3D object model. We apply the
pre-trained GrabNet [55] for this task, which takes the ob-
ject mesh as inputs for a Variational AutoEncoder and pre-
dicts different grasp poses as outputs. In the second stage,
we train a diffusion model conditioning the hand-object ge-
ometric configurations. We fine-tune the pre-trained Sta-
ble Diffusion model [46] with a few human demonstra-
tions from the DexYCB dataset [6]. We convert the hand-
object geometry to estimated surface normals, segmenta-
tion, and hand keypoint 2D projection as conditional in-
puts for the new diffusion model, specifying the structure
of the image to generate. The diffusion model will also
take text inputs for specifying appearance. During train-
ing, we apply a background regularization strategy to re-
duce the bias brought by DexYCB which comes with the
same clean background. The fine-tuned diffusion model
leverages both the rich appearance information from the
pre-trained model and the geometry information from the
new conditional variables.

In our experiments, our method outperforms previous
approaches on hand-object image synthesis with more phys-
ically plausible interactions. The disentangled design pro-
vides flexible control of geometry and appearance. Inter-
estingly, the model shows a strong generalization ability to
different text prompts when changing the foreground and
background appearance. We use several metrics to evaluate

generation fidelity to real datasets and visual alignment with
provided prompts. The results show an improvement com-
pared to baselines. Additionally, with a generated dataset
with both images and corresponding 3D geometry using our
pipeline, we can use it to train an object pose estimator as
a downstream application. Our experiments indeed show
such realistic synthesized data is very helpful in improving
the perception metrics.

2. Related work
Hand-Object Interaction Dataset. The understanding of
hand-object interactions has been a long-standing prob-
lem [1, 18, 39, 40, 54]. More recently, the data-driven
approaches [5, 12, 20, 21, 31, 38] have shown significant
advancement in hand-object shape reconstruction and pose
estimation. At the heart of this progress, is the collection
of hand-object interaction data. To obtain 3D annotations,
existing datasets [13, 19, 20, 55, 61] collect videos with at-
tached sensors or mocap markers to track hand pose or uti-
lize optimized algorithms to facilitate annotations. 2D an-
notations are also provided with manual labeling [6]. How-
ever, these approaches are time-consuming not scalable.
Recently more data collection pipelines [16, 32, 42, 60]
have taken advantage of detection and segmentation tech-
niques to automatically acquire annotations. However, even
though this method eases the difficulty, estimations may not
be precise enough, and manual annotations might still be
required for accurate 3D annotations. The diversity of the
data is also relatively small given the repetitive patterns in
videos. In this paper, we propose a new effective data gen-
eration method facilitated by generative models for hand-
object interaction images with full 3D annotations.
Hand Grasp Generation. Hand grasp generation given an
object model [2, 8, 9, 16, 26, 27, 63, 65] is of vital impor-
tance in our method to provide an ending pose for grasping
trajectory. Most approaches estimate or further refine the
grasping hand pose by predicting the contact map between
hands and objects [3, 16, 26]. Other methods [13, 27, 55]
predict the MANO parameter hand representation intro-
duced in [47] with variational autoencoder or implicit func-
tion architectures. Additionally, The hand parameter pre-
diction can be integrated as a component of the whole hu-
man body [56]. By taking advantage of these grasp predic-
tors, we are able to obtain satisfying ending poses for hand
trajectory generation.
Diffusion Models. Diffusion models [25, 46, 53] which
learn to denoise images from Gaussian distributions,
emerge recently and perform photo-realistic image synthe-
sis with more stable training process compared to other gen-
erative models [15, 28]. Many successive advancements oc-
cur in this field [11, 36, 37, 44, 50]. More relevantly, spe-
cial tokens are introduced [14, 49] to fine-tune the model,
enabling personalized text-to-image generation. With these
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Figure 2. Pipeline. We propose a two-stage pipeline to synthesize hand-object-interaction data. During the first stage, we utilize a
pretrained GrabNet to output 3D hand poses given by a single object model. Then in the second stage, we use those 3D hand poses along
with segmentation maps, normal maps and skeletons to conditionally generate high-quality HOI data.

amazing generation results, researchers [4, 59] start inves-
tigating the possibility of utilizing diffusion models as a
new source of data for classification or segmentation tasks.
Besides using text inputs, conditional generation with a
given layout or scratch achieves impressive performance af-
ter the appearance of CoAdapter [33] and ControlNet [64].
These works unveiled the large potential of diffusion mod-
els to control or edit images according to users’ demands.
However, these models still suffer from generating realistic
hand-object-interaction images, such as not being object-
agnostic, inaccurate geometry, and generating hands with
missing fingers or unnatural poses. In our work, we fo-
cus on how to utilize physical conditions, including normal,
hand skeleton projection and segmentation to construct a
3D-aware model for scalable hand-object-image generation
with flexible geometry and appearance control.

3. Method
In order to generate scalable hand-object-interaction im-
ages, three expectations need to be satisfied: (i) The model
should generate realistic images that are consistent with the
geometric description of the specified object. (ii) It should
retain the prompt-editing capabilities inherent in the sta-
ble diffusion model while incorporating controllable con-
ditions. (iii) The model should have a better generaliza-
tion ability to synthesize images of unseen instances or cat-
egories.

To meet the above requirements, we propose a two-stage
approach. For the first stage, our goal is to establish the con-
ditions, primarily the hand-grasping trajectory, for the sub-
sequent stage. Specifically, we utilized a generalizable VAE
model trained on large-scale 3D physical data to obtain the
ending pose and interpolated the trajectory using spherical
linear interpolation. For the second stage, we extracted mul-
tiple geometry structures either from the generated grasping

trajectory or from images with natural hand-grasping ac-
tions through rendering and off-the-shelf estimators to fine-
tune a controllable Stable Diffusion, which enables precise
pose control at inference. Furthermore, a background regu-
larization strategy is introduced in our pipeline to mitigate
edit ability degradation brought by finetuning. The entire
pipeline is shown in Figure 2.

3.1. Preliminary

Denoising diffusion model [25] is a kind of new generative
model with competitive performance and more stable train-
ing. It consists of two main processes: diffusion and de-
noising. In the forward process, randomly sampled noises
are added to original images, which can be mathemati-
cally simplified as q(xt|x0) = N (xt;

√
αtx0, (1 − αt)I),

where αt is hyperparameters control noise scheduling, and
αt =

∏t
s=1 αs. After T steps, the distribution shifted from

image space to approximate standard Gaussian distribution.
And U-Net model is trained to predict the added noise. Dur-
ing inference, an image is initialized from the Gaussian dis-
tribution and the model removes the noise within T steps,
with each step t formulated as

ϵ̂t = fθ(xt, t) (1)

where fθ is the U-Net model. The estimated image at the
next time step can be derived and written as

xt−1 =
1

√
αt

(xt −
1− αt√
1− αt

ϵ̂t) + σtz (2)

The simpler version of training loss is:||ϵ − fθ(
√
αtx0 +√

1− αtϵ, t)||2. Therefore diffusion models are able to gen-
erate photorealistic images.
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3.2. Hand Grasping Trajectory Generation

In the first stage of our framework, given a randomly trans-
formed object model, we require a hand-grasping trajectory
to effectively reach the object. To this end, we adopted an
interpolation method using GrabNet, a model for generat-
ing hand grasps conditioned on BPS (Body Part Segmen-
tation) [41] derived from object models. Through exten-
sive training on a large dataset, it has learned to accurately
map contact between hands and objects, showcasing strong
generalization capabilities for unseen scenarios. Utilizing
GrabNet, we can determine the final grasp hand MANO pa-
rameters, which include joint pose and hand shape. Given
the ending pose and the object’s position, we can approx-
imate an initial starting point—positioned vertically above
the contact surface and within a certain distance—using ze-
roed MANO parameters. Subsequently, we employ spher-
ical linear interpolation between this starting point and the
ending pose to create a smooth hand-grasping trajectory. As
shown in Figure 2 Stage 1, the grasping parameters can be
obtained along the trajectory and we could acquire different
ground-truth annotations such as segmentation, mask, and
depth maps through rendering.

3.3. Hand-Object-Interaction image Synthesis

Our Hand-Object-Interaction image synthesis module
mainly consists of two components: structure control and
appearance regularization, to disentangle the geometry and
appearance separately.
Structure Control Given the hand-grasp trajectory, we ex-
tract multiple geometric conditions and leverage the ad-
vanced Stable Diffusion models to generate realistic images
that are consistent with the given conditions. To precisely
control the hand-object image generation, three structure
conditions are distilled to control the generation. i) To syn-
thesize realistic hands without missing fingers which is the
problem encountered in original Stable Diffusion, hand po-
sition information is essentially required. Instead of directly
using MANO parameter vectors as guidance, we projected
the skeleton information onto the image space as visual con-
trol, which can be denoted as si. ii) Additionally, to mitigate
the inter-disturbance of hand object areas and degradation
in performance brought by occlusion, hand-object segmen-
tation (mi) is used to provide clear boundaries to separate
areas, and coarse object shape priors. iii) Finally, we also
apply an estimated normal map (ni) to seize the surface ge-
ometry with lighting. The forward process defined in Equa-
tion 1 can now be defined as ϵ̂it = fθ(x

i
t, t, [s

i,mi, ni]).
With the above controls, the structure information could be
disentangled from the appearance, and thus during the in-
ference, we could seamlessly synthesize an accurate image
with new poses.
Appearance Regularization With the above component,

we are capable of synthesizing images aligned with diverse
condition geometries during inference. However, a notori-
ous drawback of fine-tuning is its tendency to converge or
overfit quickly to the training dataset’s style, thereby signif-
icantly reducing image diversity. To mitigate this problem
and fully harness the capabilities of text-to-image diffusion
models for flexible style transformation via prompts, we
introduce an appearance regularization method combined
with classifier-free guidance [24] as shown in Figure 3.
Specifically, in addition to using the original Hand-Object
Interaction (HOI) training dataset, we synthesize batches
of high-quality scenery images with the pre-trained text-to-
image diffusion model. The prompts for these images are
generated by the large language model ChatGPT, forming
what we refer to as a “background buffer”. During training,
we intermittently utilize these background images for regu-
larization, ensuring it does not detrimentally impact perfor-
mance. Meanwhile, the paired blank conditions are applied
as classifier-free guidance, corresponding to the background
region in HOI data. The objective becomes:

L = Ex0,xr,ϵ,ϵr [||ϵ− fθ(
√
αtx0 +

√
1− αtϵ, t)||2

+wr||ϵr − fθ(
√
αtxr +

√
1− αtϵr, t)||2]

(3)

where wr is the regularization weight, which is set to 1
in our experiments. xr, ϵr are input from the background
buffer and corresponding added noise. In addition to the
buffer, we also use the large multimodal model LLaVA [30]
to caption our training images with detailed descriptions of
foreground appearance and background, forcing the model
aware of diverse texts with the assistance of the CLIP [43]
text encoder.

4. Experiment

4.1. Implementation Details

To achieve scalable synthesis and improve generalization
ability, the training dataset is required to encompass di-
verse backgrounds and comprehensive annotations. For
these purposes, the DexYCB dataset is selected for its high-
quality images from varied viewpoints of hand gestures,
with human demonstrations and diverse background set-
tings. To prevent overfitting and preserve the text-driven
editing ability of diffusion models, we adopt the learning
rate of 10−5 during training. About 50,000 steps prove
sufficient to achieve satisfactory generation quality. When
utilizing images from background buffers, we provide va-
cant skeleton projection and mask conditions, correspond-
ing to the background regions in HOI training data images.
This design also can be viewed as a classifier-free guidance
that drives the model aware of the condition control effects.
The entire training process costs approximately 12 hours on
eight A100 GPUs.
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Figure 3. Model Figure. We inject three conditional encoders into the stable diffusion model. We utilize both the HOI datasets and
high-quality background images to train HOIDiffusion. The background images are synthesized using the scenery prompts. The texts sent
to the model are output by LLaVA for detailed description.

4.2. Evaluation and Baseline Comparison

Baselines We compare the results with four baseline models
customized for our setting: (1) a fine-tuned LDM [46] with-
out condition modules, working as an unconditional gen-
eration task; (2) a modified DreamBooth [49] fine-tuned
model, with proposed specific token agnostically applied
to all object categories, complemented by regularization
data from our trained conditional stable diffusion; (3) Af-
fordance Diffusion [62]; (4) ControlNet with same multi-
ple condition input. It is important to mention that the Af-
fordance Diffusion model is only used for comparison on
contact recall evaluation, with quantitative results reported
from the original paper.
Image Synthesis Quality To assess the generation quality,
we adopt commonly used metrics FID [23] to evaluate the
fidelity of our generated images to real datasets. Addition-
ally, we also present the comparison results with baselines
on the Inception Score [51] and sFID [35]. Our reference
batch consists of 50k randomly selected images from the
training dataset in total. For the sample batch, we synthe-
size hand-grasping images corresponding to all randomly
rotated object models, some of which are unseen during
training. The total sample size is 5k. We refer readers to
Table 1 for a comprehensive overview of the comparison.
Appearance Alignment Furthermore, to demonstrate the
flexible control over object and background appearance,
we use another metrics CLIPScore [22] originally designed
for image captioning to automatically evaluate the align-
ment level between generated images and corresponding
prompts. We randomly sample 50 instances from all ob-
ject models with fixed structure conditions. Multiple ap-
pearance descriptions generated by ChatGPT are applied to
each instance. The results are shown in Table 1. Notably,
our method demonstrates superior overall quality of gener-
ated images, with higher fidelity to real data and improved

Method FID↓ sFID↓ IS↑ CLIPScore ↑

LDM [46] 63.71 119.10 6.81 0.68
DreamBooth [49] 134.40 92.82 7.99 0.75
ControlNet [64] 87.99 248.56 6.60 0.77

HOIDiffusion (Ours) 55.22 91.28 7.73 0.78

Table 1. Quantitative comparison with previous baseline meth-
ods. All models are trained on the DexYCB. We use FID to di-
rectly measure the synthesis quality of generated hand-object in-
teraction images. sFID is a recently proposed metric to evaluate
image quality using higher-level spatial features. IS is measured
for diversity and CLIPScore is to evaluate generated images align-
ment with provided prompts.

alignment with appearance-controlling texts.

Hand Pose Evaluation For hand-object-interaction images,
hand grasping status, and pose precision are of vital im-
portance for real-world applications. A fundamental cri-
terion for synthesized images is the geometric consistency
between our generated hands and the provided 2D skele-
ton projection, disregarding the depth dimension. On top
of that, these grasping images sometimes serve as visual
demonstrations for various downstream tasks, requiring the
exactly accurate contact status between the hand and ob-
ject in the ending pose image along the grasping trajec-
tory. Consequently, our model is evaluated with the base-
lines on two key perspectives: Hand contact recall and hand
re-inference accuracy. Specifically, we adopt a contact eval-
uation setup utilized in Affordance Diffusion [62]. An off-
the-shelf hand-object detector [52] is used to classify the
image’s in-contact status. Furthermore, to evaluate the re-
inference accuracy, we estimate the MANO parameters of
hands in images through a widely used single-view hand
pose estimator [48], from which we derive the predicted
hand joint positions. The percentage of correct keypoints
(PCK) is used to measure the accuracy of predicted key-
points representing the hand poses in our data. We evalu-
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Figure 4. Qualitative results on different structures. Generated images with the same background description but different physical
conditions (object shape, poses, and hand skeletons). With plain prompts, HOIDiffusion could generate more realistic images similar to
the style in training datasets.

Method
Hand Contact Recall %

PCK↑
Mug Bowl Bottle Can Mean↑

LDM [46] 79.12 78.89 73.00 60.64 72.91 0.15
DreamBooth [49] 79.12 62.22 78.00 75.53 73.72 0.10
ControlNet [64] 86.00 91.40 89.00 93.00 89.85 0.67
Affordance Diffusion [62] 73.00 90.00 90.00 - 84.33 -

HOIDiffusion (Ours) 92.31 97.78 94.00 97.87 95.49 0.85

Table 2. Evaluation metrics from hand perspective. Hand Con-
tact Recall is to evaluate whether the hand-ending pose is in close
contact with the object. PCK is used to measure the accuracy of
generated images’ keypoints

ate the pose precision on a subset of daily objects. As de-
lineated in Table 2, benefited from the geometry guidance,
our method manifests the capability to synthesize images
depicting accurate grasps and firm contacts, outperforming
previous methods in achieving higher mean contact recall
and PCK.

4.3. Geometry and Appearance Disentangle

The most important design in our model is to disentangle
the physical geometries from textures. Through this design,
we have observed the remarkable ability of our model to
control the generation process with novel object shapes and
previously unseen text descriptions. During training, our
model learns extensive shape priors from masks and nor-
mal map conditions, hence acquiring the capability to trans-
fer to unseen object instances seamlessly. Furthermore,
our model preserves the robust text editing ability, enabling
flexible style transformation over both background and ob-
ject appearance. In this subsection, we primarily focus on
and showcase the qualitative results of structure and style
manipulation.
Geometry Manipulation In Figure 4, we present the gen-
erated paired images of four daily seen objects: mug, can,
bottle, and bowl, given varying instance shapes, poses, and
hand skeletons. The left column of each pair is rendered

image in 3D space, from which physical conditions are ex-
tracted. Normal maps are obtained from an estimated depth
provided by the depth estimator MiDaS [45]. The skele-
ton and segmentation are also concurrently obtained during
rendering. Corresponding generated images are displayed
in the right column. All provided prompts follow the for-
mat: ”A hand is grasping a [object]”. The results exhibit
an overall generation style in a laboratory or stereo environ-
ment, consistent with the realistic appearance style in the
training dataset. From Figure 1, it is also evident that HOI
images generated from our model are more closely aligned
with the required geometry than baseline methods.
Background and object appearance control In this sec-
tion, we explore the text editing ability with fixed geome-
try. Through background regularization and classifier-free
guidance, our model exhibits the ability to depict diverse
background contents, retaining control over appearance us-
ing text prompts. We investigate the qualitative perfor-
mance of various text controls under identical physical con-
ditions, shown in Figure 5. Each column represents one
distinct background description. Notably, the generated im-
ages exhibit high fidelity to the provided prompts, maintain-
ing the layout and structure unchanged. This demonstrates
the ability of HOIDiffusion to effectively disentangle the
appearance from geometry structures, thus enabling flexi-
ble style transformation without geometry distortion. This
is essential in data construction, ensuring the precise align-
ment with input geometry and diverse range of visual ap-
pearances.

4.4. Applications

Video Generation The real hand-object interaction datasets
often exhibit data in video format, a complete fetching pro-
cess to the object. Collecting these video clips is a consid-
erable challenge. Some datasets [6, 60] comprising almost
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on the beach on the grass in the snow on the moon with night sky in the mountain
Figure 5. Synthesized images with diverse background descriptions. In addition to real-style synthesis, our model also allows users to
generate according to their preferences such as science fiction or general landscapes.

millions of images only contain no more than 10k videos,
thus video data is much more valuable. In experiments, we
observe the significant divergence in generated images be-
tween adjacent frames despite the similar provided condi-
tions and texts. This divergence results in dramatic flicker-
ing in directly concatenated videos. To this end, we lever-
age zero-shot video generation techniques in the diffusion
model to establish inter-consistency among frames. To be
more specific, the original self-attention layers in the U-Net
are refactored to cross-attention modules between an anchor
frame and current frames, This adjustment establishes the
awareness of the previous appearance style, ensuring video
consistency. In our experiments, we set the middle frame
as an anchor, and with all frames attend to both the anchor
image and themselves. This approach effectively mitigates
the flickering issue, synthesizing relatively smooth hand-
grasping trajectories. The video clip samples are shown in
Figure 6.
Downstream tasks Another interesting method to evaluate
the performance of HOIDiffusion, is to apply it in down-
stream tasks as a data augmentation method or new data
source. In this section, we explore the potential for improv-
ing categorical object 6D pose estimation tasks. Most mod-
els in this task are trained on dataset NOCS [58], consisting
of both synthetic and real data with annotations. Some mod-
els [7, 57] implicitly predict normalized object coordinate
space, and then utilize Umeyama algorithms to parse the
transformation matrix. Others [29] explicitly predict the ro-
tation, translation, and scale parameters. Despite differing
in module design, all these methods leverage RGB image
encoders to obtain the visual features. An interesting obser-
vation is that the synthesized images directly rendered from

object models appear too artificial, potentially affecting the
performance of the RGB encoder. Inspired by this, we sub-
stitute the synthesized images with our generated HOI im-
ages in the same poses, anticipating the reality brought by
our data could help enhance model performance. We exhibit
the results in Table 3. We choose two representative object
pose estimators for evaluation. The “original” model in the
table refers to training using an unchanged NOCS dataset,
and “our” model is trained using our mixed data.

5. Ablation Study
Two indispensable components of our design are precise
structural control and appearance regularization, effectively
improving model performance on geometry consistency
and diversity.
Structural Control In our approach, there are three crucial
structure conditions provided to the model and we investi-
gate the importance brought separately by these three mod-
ules. Results are presented in Table 4. Essentially, each con-
dition serves a distinct purpose: the normal map guides the
model in perceiving surface textures with lighting, which is
essential for maintaining geometry consistency; hand key-
point projection precisely depicts the pose of hand joints,
preventing the model from synthesizing multiple fingers or
distorted hands; hand-object segmentation provides a clear
boundary between different regions, avoiding interference
between hand and object areas. As presented in the re-
sults, our full model outperforms other incomplete versions
in quantitative evaluation.
Appearance Regularization Table 5 and Figure 7 demon-
strate the significance of appearance regularization in our
module. Without regularization, the finetuned model
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Figure 6. Zero-shot video generation of hand grasping trajectory. Images along the same line represent the sequential motion of
reaching an object. By leveraging temporal-level cross-attention, the frame flickering problem is mitigated.

Method IoU@25 IoU@50 IoU@75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

SPD
[34]

Original 82.9 75.3 48.6 17.7 19.9 38.8 48.3
Ours 82.5 71.1 47.0 21.1 23.2 43.8 54.5

DualPoseNet
[29]

Original 84.1 79.7 60.1 28.0 34.3 47.8 64.2
Ours 90.9 84.1 65.8 29.2 34.4 55.0 66.6

Table 3. Quantitative evaluation on NOCS. We use SPD and DualPoseNet and change the synthesized images in the dataset with our
generated images for training. Our performance improve on all metrics with DualPoseNet and all cm metrics with SPD which demonstrates
the good quality of our images and can be utilized for downstream tasks.

Method FID (1k) ↓
LDM (finetuned) 86.12
w/o estimated normal maps 82.40
w/o hand keypoint projection 81.93
w/o hand-object segmentation 78.57

HOIDiffusion(Ours) 77.64

Table 4. Ablation study on structural control. FID evaluation on
1,000 images of different types of missing modules to demonstrate
the necessity of all physical conditions. Our method outperforms
all others.

Method CLIPScore ↑
w/o regularization 0.66
HOIDiffusion(Ours) 0.79

Table 5. CLIPScore evaluation. Consistency is evaluated be-
tween provided prompts and generated images for different back-
grounds and instances.

quickly converges to the style in training datasets, mostly
in a laboratory/studio environment, as depicted in the first
line of Figure 7, This convergence impairs the model’s abil-
ity to generate diverse images, which is essential for data
generation. By incorporating appearance regularization us-
ing data generated from the pretrained model, HOIDiffu-
sion mitigates the drift to a fixed style and improves the
overall text-editing ability.

6. Conclusion
In this paper, we propose HOIDiffusion with precise ap-
pearance and structure control. We did experiments on ge-

Figure 7. Ablation study on appearance regularization. Dif-
ferent backgrounds are used as prompts with the same geometry
conditions to compare the text editing flexibility brought by the
regularization module.

ometry and appearance manipulation, and evaluated the per-
formance using FID, IS, and hand contact recall. The results
demonstrate better performance compared to baseline mod-
els. We apply the generated data for object 6D pose estima-
tion and show its effectiveness in possibilities to improve
perception systems.
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