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Figure 1. We propose HumanRef, a reference-guided 3D human generation framework. Our HumanRef is capable of generating 3D clothed
human with realistic, view-consistent texture and geometry from a single image input.

Abstract

Generating a 3D human model from a single refer-
ence image is challenging because it requires inferring tex-
tures and geometries in invisible views while maintaining
consistency with the reference image. Previous methods
utilizing 3D generative models are limited by the avail-
ability of 3D training data. Optimization-based meth-
ods that lift text-to-image diffusion models to 3D genera-
tion often fail to preserve the texture details of the refer-
ence image, resulting in inconsistent appearances in dif-
ferent views. In this paper, we propose HumanRef, a
3D human generation framework from a single-view in-
put. To ensure the generated 3D model is photorealis-
tic and consistent with the input image, HumanRef intro-
duces a novel method called reference-guided score distil-
lation sampling (Ref-SDS), which effectively incorporates
image guidance into the generation process. Furthermore,
we introduce region-aware attention to Ref-SDS, ensuring
accurate correspondence between different body regions.
Experimental results demonstrate that HumanRef outper-
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forms state-of-the-art methods in generating 3D clothed hu-
mans with fine geometry, photorealistic textures, and view-
consistent appearances. Code and model are available at
https://eckertzhang.github.io/HumanRef.github.io/.

1. Introduction
Clothed human reconstruction from single or multi-view
images has received significant attention in the fields of
computer vision and graphics due to its potential appli-
cations in virtual reality, movie industry, and immersive
games [22, 71]. Unlike reconstruction using videos [1–3]
or multi-view images [5, 6, 9, 54, 59], which allows for in-
ferring 3D information from multi-view inputs, reconstruct-
ing a 3D human from a single view input is considerably
more challenging. This task not only requires the recon-
structed 3D clothed human to exhibit consistency in geom-
etry and texture with the input view but also involves gen-
erating plausible geometry and texture that are not directly
visible in the input. Therefore, compared to reconstruction,
this task faces even greater challenges in human generation.

One approach to generating 3D human models from sin-
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gle images is by training a 3D generative model using 3D
scanned human datasets. However, methods in this cate-
gory [60, 61] tend to be more successful in generating ge-
ometry rather than texture, as textures are too diverse to be
learned from limited 3D data. For example, ICON [61] and
ECON [60] primarily estimate geometry, while PaMIR [72]
and PIFu [49] tend to produce blurred textures when ap-
plied to in-the-wild data. Another approach to address the
lack of 3D training data is to lift a 2D model pretrained
on a large dataset to 3D. DreamFusion [42] is a pioneering
work in this direction, leveraging the prior knowledge in
a pretrained text-to-image diffusion model to supervise the
optimization of 3D objects using a score distillation sam-
pling (SDS) loss. Some follow-up works have extended this
framework from text-to-3D generation to reference-guided
3D generation. This is achieved by extracting textual guid-
ance from the reference image, either through textual inver-
sion (e.g., RealFusion [35] and NeRDi [12]) or detailed text
description using an image captioning model (e.g., Make-It-
3D [53]). TeCH [22] combines both textual inversion and
image captioning with 3D human priors to apply the SDS
framework to 3D human generation from a single image.

Despite its success in 3D human generation, TeCH is
limited by the SDS loss for two reasons. First, SDS is
guided by texts, but text prompts or embeddings extracted
from images can only represent the global semantic infor-
mation of the reference images, which cannot capture the
lower-level features necessary to provide detailed textures.
As a result, TeCH’s generated textures in invisible views
often exhibit inconsistency with the reference image. Sec-
ondly, given the same text prompt, the diffusion model can
generate images with a large diversity, making it difficult
for the SDS loss optimization to converge. To address this
issue, the SDS loss employs a large class-free guidance
(CFG) scale in each diffusion denoising step, aiming to en-
hance the text relevance and reduce the diversity of image
generation. However, while this approach ensures some sta-
bility in the 3D generation process, it also leads to generated
texture over-saturation and over-smoothing, which is a well-
known problem associated with the SDS loss. Although
some efforts have been made to alleviate this problem, such
as the variational score distillation (VSD) proposed by Pro-
lificDreamer [58], these methods are primarily designed for
text-to-3D generation and do not consider the reference im-
age and human priors. Consequently, they are less optimal
when applied to human generation from a single image.

In this paper, we present a novel framework called Hu-
manRef for 3D clothed human generation from a reference
image. Our approach utilizes a hash-encoded signed dis-
tance field (SDF) network for 3D representation and opti-
mizes the SDF parameters from coarse to fine. We incorpo-
rate human geometry constraints and, most importantly, in-
troduce a novel Reference-Guided Score Distillation Sam-

Figure 2. Showcasing the denoising process on initial input with
and without reference image guidance. Starting with a coarse
novel-view rendering image, we employ multiple rounds of ran-
dom denoising using both reference-guided and text-guided diffu-
sion models, highlighting the impact of reference guidance.

pling (Ref-SDS) loss in the optimization. Unlike the vanilla
SDS loss, which is guided solely by text prompts, our Ref-
SDS loss fully exploits the guidance of the reference image.
We inject the reference image into the diffusion model to
calculate the attentions between features of the reference
and generated images at each denoising step. This process
guides the diffusion model in generating results that bet-
ter preserve the visual appearances of the reference image,
as demonstrated in Figure 2. Consequently, our method is
superior in generating view-consistent results matching the
reference image. Moreover, by distilling less diverse im-
ages from the diffusion model, our Ref-SDS loss converges
more easily, enabling us to reduce the CFG scale and gener-
ate more photo-realistic textures. To further incorporate hu-
man priors, we introduce Region-Aware Attentions for Ref-
SDS. We employ human parsing to segment images into
body regions, enhancing the attentions of corresponding re-
gions (e.g., head to head) and suppressing the attention of
non-corresponding regions when calculating the attentions
between features of the reference and generated images.
This refinement improves the precision of image guidance
in our Ref-SDS. Thanks to these design choices, our Hu-
manRef framework can generate 3D clothed humans with
fine geometry, photorealistic textures, and view-consistent
appearances from a single reference image.

To sum up, our contributions are three-fold as below:
• We propose HumanRef, a coarse-to-fine optimization

framework, for 3D clothed human generation from a sin-
gle image. It unifies the optimization process of geometry
and appearance in a single SDF representation and does
not introduce additional 3D representation and optimiza-
tion stages.

• We propose a novel Reference-Guided Score Distillation
Sampling (Ref-SDS) method for 3D generation. Ref-SDS
injects image-level guidance into the denoising process of
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a pretrained diffusion model, resulting in the production
of more photorealistic and view-consistent 3D results.

• We introduce region-aware attention to Ref-SDS for 3D
human generation, enhancing the precision of image
guidance by ensuring accurate correspondence between
different body regions.

2. Related Work
2.1. 3D Clothed Human Reconstruction

Unlike human pose and shape estimation methods [7, 16,
17, 27, 38, 40] that leverage a parametric body model for
naked body reconstruction, clothed human reconstruction
focuses on 3D humans with clothes, entailing more intri-
cate details. This task has been explored in video [1–3] or
multi-view settings [5, 6, 54, 59] for additional reconstruc-
tion constraints. However, the hardware requirements for
additional inputs limit practical usage. Consequently, ef-
forts have been made to recover 3D clothed humans from a
single image [4, 11, 23, 30, 49, 50, 60, 61, 72]. Notably,
PIFu [49] digitizes detailed clothed humans by inferring
3D geometry and texture from a single image, while PI-
FuHD [50] introducing a coarse-to-fine framework for high-
resolution geometry reconstruction. PaMIR [72] combines
the parametric body model with a deep implicit function,
while ICON [61] and ECON [60] recover fine geometry by
inferring detailed clothed human normals. PHORHUM [4]
and S3F [11] estimate albedo and shading information for
relighting during reconstruction. Despite these advance-
ments, such methods struggle to achieve clear and realistic
textures, particularly for unseen areas in the input image. In
this work, we leverage diffusion prior to synthesize high-
quality, consistent textures for these invisible areas.

2.2. Diffusion Models

Diffusion models [21, 51] are latent-variable generative
models that have garnered significant attention due to their
impressive generation results. It consists of a forward pro-
cess that slowly removes structure from data by adding
noise and a reverse process or generative model that slowly
adds structure from noise. To improve the performance of
diffusion models, denoising diffusion implicit models [52]
propose to use non-Markovian diffusion processes to reduce
the generation steps and [13] proposes classifier guidance
to improve the sample quality using a classifier to trade off
diversity for fidelity. While [20] introduces classifier-free
guidance by mixing the score estimates of a conditional
diffusion model and a jointly trained unconditional diffu-
sion model. Benefited from the scalability of the diffusion
models and large-scale aligned image-text datasets, text-to-
image has made great progress such as Glide [37], DALL-E
2 [46], Imagen [48] and StableDiffusion [47]. These pre-
trained diffusion models have been used as a diffusion prior

to promote the development of many other tasks like image
or 3D editing and generation [8, 24, 66, 73].

2.3. 3D Generation Using 2D Diffusion

With the reduced dependence on 3D data, the recent devel-
opment of applying pretrained 2D text-to-image diffusion
models for 3D generation has significantly progressed after
the pioneer works DreamFusion [42] and SJC [55]. The key
technique is the Score Distillation Sampling (SDS) method
proposed in DreamFusion which enables to use 2D diffu-
sion models with score functions to optimize a 3D repre-
sentation. Subsequently, numerous works [10, 31, 36, 58,
69, 73] have improved text input generation results, while
another research line [12, 35, 43, 53, 62] focuses on 3D
object reconstruction with a reference image. Compared
to text-to-3D methods, image-to-3D requires generation re-
sults to closely resemble reference images. RealFusion [35]
and NeRDi [12] extract text embedding from input images
to provide additional visual cues to diffusion models, while
Make-It-3D [53] uses an image captioning model for de-
tailed text descriptions. However, both methods lack lower-
level image features for detailed textures. The concurrent
work, TeCH [22], uses both detailed text descriptions and
text embedding for SDS-based 3D human generation from
a single image but struggles with texture inconsistency. In
contrast, we propose Ref-SDS to incorporate region-aware
image guidance into the attention network of diffusion mod-
els, enabling more precise control over detailed textures.

3. Method
We introduce HumanRef, a unified coarse-to-fine optimiza-
tion framework for 3D clothed human generation from a
single image, as shown in Fig. 3. Given an input image, we
initially extract its text caption, SMPL-X body [41], front
and back normal maps, and silhouette using estimators. A
neural SDF network, initialized with the estimated SMPL-X
body, is then employed for optimization-based generation.
To maintain appearance and pose consistency, we use the
input image, silhouette, and normal maps as optimization
constraints. For invisible regions, we introduce Ref-SDS, a
method that distills realistic textures from a pretrained dif-
fusion model, yielding sharp, realistic 3D clothed humans
that align with the input image.

3.1. Image Preprocessing

Creating a 3D human from a single image is inherently
ill-posed, requiring effective regularization to constrain the
outcomes. To tackle this challenge, we extract multiple an-
notations for optimization, serving as valuable constraints
to enhance the accuracy of the results.
Image Segmentation. Given an input image I , we first em-
ploy Mask-RCNN [19] for background segmentation, de-
ducing the human silhouette SI . Then, we use a human
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Figure 3. Overview of our proposed HumanRef for 3D clothed human generation from a single input image.

parsing method [29] to infer attribute masks for regions
such as the head, coat, pants, etc. This enables us to di-
vide the target human into four regions: head, upper body,
lower body, and feet, each represented by their respective
masks {Mj}. These regional masks will be used to instruct
subsequent region-aware reference-guided generation.
Image Captioning. Similar to previous SDS-based 3D
generation methods, our method is also based on a pre-
trained text-to-image diffusion model where text input is
required. Thus, we adopt an off-the-shelf image captioning
method [28] to estimate a rough text description.
SMPL-X Fitting. To capture the human pose and coarse
shape, we employ a human pose estimation algorithm [41]
to infer the corresponding SMPL-X body mesh from the
image. We then convert this body mesh into an SDF repre-
sentation and use it to initialize our SDF Network.
Normal Estimation. We employ the normal estimator of
ECON [60] to predict the front and back normal maps from
the image I . Such normal maps will provide effective geo-
metric priors for our optimization.

3.2. Hash-Encoded SDF Representation

We adopt the hash-encoded SDF network [56] as the 3D
representation of the human, with one sub-network fs to
predict the signed distance value s of a spatial query point
x and another sub-network fc to predict its color c:

s(x) = fs (x, h (x)) , c(x) = fc (x, h (x)) , (1)

where h (x) is the feature queried from the hash grids with
multi-level resolutions. Furthermore, we employ a cumula-
tive distribution function [64] to model the density σ from
the predicted s:

σ(x) =
α

2
(1 + sign(s(x)) exp (−α |s(x)|)) , (2)

where α is a learnable parameter. sign(s) indicates the sign
of the distance value s. Then, we can calculate the rendered

pixel color C, normal N, and silhouette S via the volume
rendering method:

Ψ(r) =

∫ tf

tn

T (t)σ(r(t))ψ(r(t)) dt, (3)

where Ψ indicates one of C, N, and S. ψ(r(t)) is c(r(t)),
n(r(t)), and 1 for C, N, and S, respectively. n(x) =
∇xs(x) indicates the predicted normal of query point x.
r(t) = o+td represents the coordinate of the sampled point
on the camera ray emitted from the pixel center o with the
direction d. tn and tf are near and far bounds of the ray,

respectively. T (t) = exp
(
−
∫ t

tn
σ (r(τ)) dτ

)
is the ac-

cumulated transmittance along the ray. Note that, unlike
previous volume rendering methods, we adopt orthographic
rendering instead of perspective rendering. That is why o
indicates the pixel center instead of the camera center.

3.3. Reference-Guided Optimization

In our unified reference-guided generation framework, we
employ a coarse-to-fine optimization strategy. Initially, we
optimize at a low rendering resolution (64 × 64) for quick
convergence to the target space. Subsequently, we progres-
sively increase the rendering resolution up to 512 × 512,
enabling the model to refine geometry and texture. Un-
like previous SDS- or VSD-based methods [42, 45, 58], we
propose a modified Ref-SDS method to introduce reference
guidance for the 3D generation (Sec. 3.3.1), and region-
aware attention for precise local-region guidance in Ref-
SDS (3.3.2). Besides, we also employ some constraints to
align our generated 3D human with the input I (Sec. 3.3.3).

3.3.1 Reference-Guided Score Distillation Sampling

Inspired by [8], we modify the vanilla SDS by injecting
region-aware image guidance into the attention network of
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Figure 4. The framework of our reference U-Net.

U-Net during the single-step denoising process. In the im-
plementation of vanilla SDS, a noisy rendered image, as
well as random time step t and text prompt, are fed into
the diffusion U-Net to predict corresponding noise. Then,
the weighted noise residual between predicted and added
noises is regarded as the SDS loss that backpropagates to
the 3D representation through the rendered image. In fact,
as shown in the upper branch of Fig. 4, the noisy im-
age will undergo several transformer blocks and up/down-
sampling processes in the denoising U-Net. In each trans-
former block, the latent feature derived from the input is
first subjected to self-attention operation and then cross-
attention operation with text and time embedding, thereby
realizing the text-guided denoising process. Note that we
do not draw the data flow of time embedding in the fig-
ure because we do not make any changes to this part. To
achieve the reference image guidance, as shown in Fig. 4,
we first perform the diffusion and denoising process nor-
mally on the reference image and save the latent features
prefi before each self-attention operation. Subsequently, we
feed the noisy rendered image to the same U-Net to per-
form denoising. Instead of undergoing the self-attention
and cross-attention, we concatenate the latent features ptari

before self-attention with the corresponding features prefi

derived from the denoising process of the reference image,
and perform ref-self-attention between the original features
ptari and the concatenated features ptari ∪ prefi . In this way,
the information from the reference image is transferred to
the denoising process of the rendered image, thereby our
denoising U-Net achieves reference image guidance. Please
refer to the supplementary material for more details.

3.3.2 Region-Aware Attention

The mutual process in Sec. 3.3.1 only provides global at-
tention to the denoising process of the rendered image. To
achieve region-aware attention, we further introduce addi-
tional attention masks into the above process. In fact, we
have inferred the regional masks {Mj} of reference image

Figure 5. Example of Region-Aware Attention.

in preprocessing. To obtain the regional masks {M̄j} of the
rendered image, we first divide the 3D space into different
regions in the vertical direction according to the boundaries
of region masks {Mj}, and then divide the rendered im-
age into corresponding regions according to the projection
of the space division in the rendering view. Please refer to
the supplementary material for more details. Subsequently,
we feed these regional masks into the denoising process for
region-aware attention.

As shown in Fig. 5, we implement the region-aware at-
tention on the attention score matrix calculated from query
vector and key vector. Assuming a 3 × 3 latent feature and
its two attention masks, to implement ref-self-attention, the
target feature and its masks are flattened into 1× 9 vectors.
After passing a linear network, the feature vector is then
used as the query vector to calculate the attention score ma-
trix together with the key vector formed by concatenating
the target and reference features. Correspondingly, we use
the flattened masks and the concatenated masks as the query
and key masks to infer the local regions with same seman-
tics, as shown in the blue and orange regions of Fig. 5. After
determining the local attention regions, we multiply atten-
tion scores outside these regions by a coefficient γ < 1, and
then normalize the whole score matrix, thereby improving
the network’s attention on these determined local regions.
In practice, we set γ as 0.3.

After that, we now implement the denoising process with
region-aware reference image guidance. Continuing from
vanilla SDS [42], we also use the weighted noise residual
between predicted and added noises as our Ref-SDS for 3D
generation. Thanks to the image-level guidance, 3D gener-
ation based on our Ref-SDS is robust, thus we could set the
CFG scale in the common level as the image generation. In
this way, our Ref-SDS supports the generation of realistic
textures that are consistent with the input reference image.

3.3.3 Loss Functions

During the optimization, we render our SDF network in
front, back, and other random views. In the front view, we
construct a reconstruction loss formed as Lrec = Lrgb +
LIoU . Here, Lrgb is a L2-form loss calculated between
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the rendered and input color images. LIoU indicates the
intersection-over-union (IoU) loss [67] between the ren-
dered silhouette S and the silhouette SI of input image:

LIoU = 1−
∥S ⊗ SI∥1

∥S ⊕ SI − S ⊗ SI∥1
, (4)

where ⊗ and ⊕ indicate element-wise product and sum
operator, respectively. Furthermore, we calculate a L2-
form normal loss Lnorm between the rendered and esti-
mated normal maps in the front and back views. For views
other than the front view, we implement the proposed Ref-
SDS loss LRef−SDS to generate realistic texture and ge-
ometry. To further enhance the texture details, we imple-
ment a multi-step denoising process based on our region-
aware reference-guided U-Net, and calculate the perceptual
loss [25] Lpercep between the rendered image and the en-
hanced image. To constrain the pose of the generated hu-
man, we additionally introduce a L1-form SDF loss LSDF

between the predicted signed distance value s and that
queried from SMPL-X body mesh. Besides, we also adopt
the normal smooth loss Lsmooth as the previous generation
methods [32, 53] during the optimization process.

In summary, we train the entire network using the fol-
lowing objective function:

L =λ1Lrec + λ2Lnorm + λ3LRef−SDS

+λ4Lpercep + λ5LSDF + λ6Lsmooth,
(5)

where {λ1, . . . , λ6} are the weights used to balance differ-
ent loss terms. In practice, we empirically set the weights
as 10000, 100, 0.001, 20, 100, 5, respectively.

3.4. Implementation Details

We implement our HumanRef with the ThreeStudio [18]
framework in Pytorch [39] on a A100 GPU. For optimiza-
tion, we adopt the Adam [26] optimizer with default hyper-
parameters and a learning rate of 0.001 for all learnable pa-
rameters. To guarantee the quality of the generated model,
we uniformly sample random views in the elevation range
[−20, 20] and azimuth range [−180, 180] outside the front
and back views. In addition, to facilitate the model to distin-
guish generated foreground objects and background, we fol-
low [53] to set a random background color for the rendering
results in each optimization step. To perform region-aware
Ref-SDS generation and multi-step denoising, we adopt the
stable diffusion model in version 1.5 [47] and the fast diffu-
sion sampling scheduler UniPC [70].

4. Experiments
4.1. Setup

Baseline Methods To evaluate the performance of our Hu-
manRef on 3D clothed human generation, we compareit

Methods PIFu PaMIR TeCH Ours

LPIPS ↓ 0.054 0.050 0.044 0.032
Contextual ↓ 3.180 2.961 2.882 1.969
CLIP Score ↑ 80.1% 81.4% 85.3% 90.0%

Table 1. Quantitative comparison for 3D clothed human genera-
tion on 2D human images.

against three state-of-the-art baseline methods: PIFu [49],
PaMIR [72], and a concurrent work TeCH [22]. Here,
PIFu and PaMIR are learning-based methods that acquire
the ability to infer the geometry and texture of a 3D clothed
human from input images after being training on a large
number of scanned human datasets. TeCH is a multi-stage
optimization algorithm based on the SDS method designed
for 3D clothed human generation. Additionally, to further
assess the quality of the generated geometry, we incorpo-
rate three additional reconstruction-related baseline meth-
ods (FOF [14], D-IF [63], and ECON [60]) to conduct eval-
uation experiments on 3D human datasets: CAPE [33] and
THuman2.0 [65].
Evaluation Metrics Following [53], we adopt LPIPS [68]
between the input image and rendered image at the input
view to evaluate the reconstruction quality. Besides, we
use the contextual distance [34] and CLIP score [44] as the
generation quality metrics to measure the texture similarity
and semantic similarity between the input image and ren-
dered images at novel views. For evaluation on geometric
experiments, we adopt the L2 Normal error between normal
maps rendered from scans and generated results to evaluate
the geometry quality. Meanwhile, we employ PSNR, SSIM
[57], LPIPS [68], and contextual distance to measure the
texture quality on colored images.

4.2. Comparisons

We evaluate our HumanRef and baseline methods for 3D
clothed human generation on 50 diverse human images re-
leased by [4, 15, 60], as shown in Fig. 6. Additionally, we
provide quantitative comparison results to assess the per-
formance of different methods in terms of reconstruction
and generation qualities, as shown in Tab. 1. Clearly, our
method surpasses the baseline methods in both qualitative
and quantitative comparisons.

Contrary to TeCH and ours, PIFu and PaMIR employ
3D generators trained on scanned human datasets to pre-
dict human body geometry and texture. Their performance
thus is limited by the training data and model design, strug-
gling to infer detailed textures and fine geometry from a sin-
gle image, particularly in areas invisible to the input. The
first and third rows in Fig. 6 illustrate the disparity between
front and back views, with the latter appearing blurrier and
less detailed. As a result, they receive lower evaluation
scores shown in Tab. 1. TeCH, however, can generate de-
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Figure 6. Qualitative comparison for 3D clothed human generation on 2D human images.

CAPE THuman2.0

Methods Normal↓ PSNR↑ SSIM↑ LPIPS↓ Contextual↓ Normal↓ PSNR↑ SSIM↑ LPIPS↓ Contextual↓
PIFu 0.0630 26.2845 0.9226 0.0910 3.1387 0.0816 22.3781 0.8913 0.1152 3.0899
PaMIR 0.0563 25.4044 0.9156 0.0942 3.1063 0.0682 22.0976 0.8870 0.1213 3.1452
TeCH 0.0414 27.4912 0.9396 0.0749 2.8076 0.0653 24.8015 0.9144 0.0877 2.8926
FOF 0.0582 - - - - 0.0742 - - - -
D-IF 0.0483 - - - - 0.0682 - - - -
ECON 0.0422 - - - - 0.0629 - - - -
Ours 0.0423 28.1453 0.9489 0.0613 2.1603 0.0648 25.6963 0.9274 0.0770 2.2167

Table 2. Quantitative comparison on 3D human datasets CAPE and THuman2.0. Compared with baseline methods, our HumanRef
outperforms all baselines in texture evaluations and achieves comparable geometry quality to the human shape reconstruction methods.

tailed textures in unseen areas due to SDS-based text-guided
optimization and pretrained diffusion model priors. To
mitigate over-saturation in SDS-based generation and en-
hance realism, TeCH employs strategies to minimize SDS
denoising diversity, including precise text inference via a
question-answering algorithm, textural invention, and dif-
fusion model fine-tuning. Nonetheless, TeCH struggles to
achieve texture consistency with the input image due to the
lack of image-level guidance in SDS denoising. In the Man
example of Fig. 6, TeCH generates a realistic blue T-shirt

texture on the back, but there is still a noticeable differ-
ence from the dark blue texture in the input image. In con-
trast, our method, HumanRef, generates realistic and detail-
rich textures that are more consistent with the input image.
For geometry generation, although lacking a specialized de-
sign like TeCH, our method produces reasonable and com-
plete 3D human structures, while TeCH suffers from issues
like geometric breakage and stretching in the generated hu-
man feet. Moreover, in the Woman example of Fig. 6, our
method successfully generates realistic view-consistent tex-
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Figure 7. Qualitative comparison on 3D human datasets CAPE and THuman2.0.

Figure 8. 3D cloth human generation based on SDS, VSD, and our
Ref-SDS, with estimated text prompts ’a woman in a striped top
and jeans’ and ’a woman in black and white polka dot print skirt’.

ture and geometry for humans with complex clothing tex-
tures that TeCH fails to infer.

Additionally, we further compare our HumanRef with
baseline methods on 3D human datasets CAPE and THu-
man2.0 to evaluate the quality of our generated geome-
try. Specifically, we randomly select 40 scans from CAPE
and 40 scans from THuman2.0 encompassing various poses
and clothing styles. As shown in Fig 7 and Tab. 2, our
method outperforms all baselines in texture evaluations and
achieves comparable geometry quality to the human shape
reconstruction methods.

4.3. Ablation Studies

Ref-SDS. To illustrate the superiority of the proposed Ref-
SDS in our framework, we conduct a comparative experi-
ment by replacing it with exiting SDS [42] and VSD [58]
methods. Here, SDS and VSD are both text-guided meth-
ods, with VSD being a modified version of SDS to ad-
dress over-saturation. In Fig. 8, SDS generates textures with
higher saturation and lacks realism, while VSD produces
realistic textures that are not consistent with the input. In
contrast, our Ref-SDS-based method generates realistic and

Figure 9. Ablation study on the region-aware attention.

view consistent textures thanks to the reference image guid-
ance in the denoising process.
Region-Aware Attention. Additionally, we evaluate the
impact of the region-aware attention in our Ref-SDS by
comparing our full framework with a version without it. In
Fig. 9, we observe that the implementation without region-
aware attention may spontaneously focus on undesired fea-
tures in the reference image during ref-self-attention, result-
ing in realistic but unreasonable textures in some cases. By
incorporating region-aware attention, we effectively limit
the attention area of the network and obtain more reason-
able texture inference results.

5. Conclusion
In this paper, we propose HumanRef, a unified framework
for generating 3D clothed humans from a single input im-
age. Our approach addresses the challenge of realistic tex-
ture generation in the invisible areas by proposing a modi-
fied Ref-SDS method that fully exploits the guidance of the
reference image during the denoising process. Additionally,
we introduce region-aware attention into our Ref-SDS, en-
hancing the precision of image guidance. Overall, our Hu-
manRef framework empowers the generation of 3D clothed
humans with view-consistent realistic textures and reason-
able geometry from a single reference image. For a detailed
discussion on the limitations of our work, we kindly request
you to refer to the supplementary material.
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