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Abstract

How to effectively utilize the spectral and spatial char-
acteristics of Hyperspectral Image (HSI) is always a key
problem in spectral snapshot reconstruction. Recently, the
spectra-wise transformer has shown great potential in cap-
turing inter-spectra similarities of HSI, but the classic de-
sign of the transformer, i.e., multi-head division in the spec-
tral (channel) dimension hinders the modeling of global
spectral information and results in mean effect. In addition,
previous methods adopt the normal spatial priors without
taking imaging processes into account and fail to address
the unique spatial degradation in snapshot spectral recon-
struction. In this paper, we analyze the influence of multi-
head division and propose a novel Spectral-Spatial Recti-
fication (SSR) method to enhance the utilization of spec-
tral information and improve spatial degradation. Specifi-
cally, SSR includes two core parts: Window-based Spectra-
wise Self-Attention (WSSA) and spAtial Rectification Block
(ARB). WSSA is proposed to capture global spectral in-
formation and account for local differences, whereas ARB
aims to mitigate the spatial degradation using a spatial
alignment strategy. The experimental results on simula-
tion and real scenes demonstrate the effectiveness of the
proposed modules, and we also provide models at multi-
ple scales to demonstrate the superiority of our approach.
https://github.com/ZhangJC-2k/SSR

1. Introduction

The advent of compressed sensing introduced the coded
aperture snapshot spectral compressive imaging (CASSI)
system [13, 29, 36], addressing drawbacks in tradi-
tional hyperspectral cameras regarding efficiency and cost-
effectiveness, gaining significant attention. This system
offers the promise of swift and cost-efficient capture of
Hyperspectral Images (HSIs). However, the inherent ill-
posedness of decoding 3D HSIs from 2D measurements
poses a significant challenge for reconstruction algorithm
design. Consequently, various model-based [1, 23, 24, 33,
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Figure 1. Comparison of PSNR-FLOPs between our SSR and pre-
vious reconstruction methods. Our SSR significantly outperforms
other methods over 2dB at the same FLOPs when surpassing the
state-of-the-art method over 1dB with fewer FLOPs.

38, 40] and learning-based [2–6, 17, 18, 28, 37, 42] ap-
proaches have emerged to tackle this challenge. Within the
realm of reconstruction algorithms, the effective utilization
of diverse priors remains a pivotal research challenge.

Model-based methods initially adopt total variation [20,
40], low-rank [24], sparsity [21, 34] and more traditional
hand-craft priors [1, 23, 24, 33, 38] to construct the op-
timization model, which preliminarily shows the practical
feasibility of snapshot spectral reconstruction. With the ad-
vancement of deep learning, both convolutional neural net-
works (CNNs) [6, 17, 18, 28, 37, 42] and transformers [3–
5, 11] have been successively introduced for learning the
spatial and spectral characteristics of HSIs. They serve as
end-to-end denoisers [3, 4, 6, 17, 28] or deep image pri-
ors [5, 11, 18, 37, 42] in learning-based methods. These
advancements have led to significant progress in both real-
world and simulated scenario reconstructions. In addition,
the effective utilization of spectral and spatial characteris-
tics has also naturally become a research hotspot.

Previous CNN methods such as TSA-Net [28], HDNet
[17], DGSMP [18], and HerosNet [42], along with spatial
transformers like Swin Transformer [25] and DAUHST [5],
excel in learning spatial representations but do not effec-
tively utilize the distinctive spectral characteristics inher-
ent in HSIs. Conversely, spectra-wise transformers such as
MST [3], MST++ [4], and RDLUF [11] show promising
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potential in snapshot spectral reconstruction by exploiting
inter-spectral similarities. However, their implementations
follow the conventional transformer architecture, involving
multi-head division in the spectral dimension, which lim-
its the modeling of global spectral similarities and results
in mean effect. Furthermore, in spectral snapshot imag-
ing, some spatial degradation occurs in certain bands due to
masking, shifting, and compression factors. Unfortunately,
existing spatial and spectral networks lack tailored designs
to mitigate such degradation effectively.

To optimize the utilization of spectral information and
mitigate distinctive spatial degradation, we introduce the
Spectral-Spatial Rectification (SSR) method into snapshot
spectral reconstruction. Specifically, SSR comprises two
key components: Window-based Spectral Self-Attention
(WSSA) and spAtial Rectification Blocks (ARB). WSSA
divides the features into multiple local windows in the
spatial dimension, facilitating global spectral self-attention
computations and the local difference consideration. Ad-
dressing the interaction gap between windows of WSSA,
ARB leverages a Convolution Modulated Block (CMB).
This block employs sliding large-kernel convolutions to
interact with features between windows and learn effec-
tive spatial representation. Subsequently, to mitigate spa-
tial degradation, ARB integrates a novel spatial alignment
strategy. It assists low-quality bands in leveraging infor-
mation from high-quality bands through learning a unified
spatial representation and spectral weights, which further
optimizes the utilization of spatial information. Overall, our
contributions are summarized as follows:
• We analyze the influence of multi-head division on pre-

vious spectra-wise transformers and propose Window-
based Spectra-wise Self-Attention to model global spec-
tral information while accounting for local differences.

• A Spatial Rectification Block is specially designed to
enhance spatial representation and mitigate the spatial
degradation in low-quality bands through large-kernel
convolutions and a novel spatial alignment strategy.

• The qualitative and quantitative results of real and simu-
lation experiments demonstrate that our SSR method sig-
nificantly improves spectral snapshot reconstruction.

2. Related Work
The model-based methods [1, 20, 21, 23, 24, 33, 34, 38, 40]
construct convex optimization models with some specific
priors such as total variation [20, 40], low-rankness [24],
and sparsity [21, 34] according to the physical schema of
CASSI then solve the problem in an iterative manner to ob-
tain reconstructed images. They have good interpretabil-
ity and low cost, yet lack performance guarantee. Subse-
quently, the rise of deep learning [14, 15, 22] has facil-
itated the rapid development of spectral snapshot recon-
struction. To improve reconstruction quality, Plug-and-Play

methods [41, 44] plug pre-trained deep networks as priors,
which make great progress in performance but are still lim-
ited by slow reconstruction speed. Along with faster infer-
ence and better results, the CNN-based end-to-end denois-
ers [17, 28, 31] quickly achieved better results by establish-
ing a mapping between measurements and HSIs, but also
brought huge memory and computation costs.

Recently, the transformer-based end-to-end denoisers
[2–4] which capture data similarity and long-range depen-
dence have shown impressive performance in both simula-
tion and real scenes. These methods adopt self-attention to
learn effective spatial and spectral representation, achieving
very high parameter and computational efficiency. Follow-
ing this, the unfolding methods [5, 11] regard transformers
as deep priors for optimization formulas and improve iter-
ative frameworks through end-to-end training. In these ap-
proaches, CNNs and transformers play a huge role either
as end-to-end denoisers or as deep priors. While previous
CNNs and spatial transformers fail to effectively utilize the
spectral characteristics inherent in HSIs, spectra-wise trans-
former [3, 4, 11] has shown great potential in spectral tasks
and attracted wide attention. However, current spectra-wise
transformers follow classic multi-head design [12, 25, 35]
and suffer from the loss of global spectral information and
the limitation of ignoring local differences.

3. Spectral Snapshot Imaging Model
Mathematically, we assume a spectral image patch with Λ
bands {Fλ}Λλ=1 ∈ RH×W , where H and W represents the
HSI’s height and weight. Image frame Fλ is modulated by
a physical mask with patternM ∈ RH×W to get modulated
image frame F

′

λ:
F

′

λ =M ◦ Fλ, (1)

where ◦ denotes Hadamard’s (element-wise) product. Then
the modulated image frames of different wavelengths{
F

′

λ

}Λ

λ=1
are separated to different positions by the dis-

perser. After that,
{
F

′

λ

}Λ

λ=1
distributed across differ-

ent bands are shifted spatially and summed element-wise.

Thus,
{
F

′

λ

}Λ

λ=1
are compressed to a coded measurement:

G (m,n) =

Λ∑
i=1

F
′

λ (m,n+D (λ)), (2)

where m and n index the spatial coordinates, D (λ) =
d (λ− 1), d represents pixels shift between adjacent bands.
Note Eq. (2) assumes a dispersion along the vertical di-
mension, and the derivation is also applicable for horizontal
dispersion. The imaging model in Eq. (2) can be rewritten
in the matrix-vector form as follows:

g = Φf, (3)
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Figure 2. (a)-(c) The overall architecture of SSR, SSRUnet, and SSRB. LMP is achieved via a formula. (d) Details of WSSA.

where g ∈ RHW , f ∈ RHWΛ are the vectorized represen-
tation of the compressed image G and the original spectral
image F respectively, and Φ ∈ RHW×HWΛ is the sensing
matrix that describes the system imaging model. In spectral
snapshot reconstruction, what we need to do is recover 3D
HSI f from the compressed 2D measurement g.

4. Method
Existing spectral and spatial network designs [2–5, 11] are
limited by the direct application of traditional multi-head
division and unique spatial degradation of snapshot spec-
tral imaging. To address the limitations, we propose the
Spectral-Spatial Rectification (SSR) method to better model
the spectral information, enhance spatial representation,
and improve spatial degradation.

4.1. Overall Architecture

An overview of SSR is presented in Fig. 2 (a), we adopt
a multistage network including initialization and N cas-
caded stages, and each stage consists of Linear Manifold
Projection (LMP), Spectral-Spatial Rectification Unet (SS-
RUnet), and spAtial Rectification Block (ARB). First, the
compressed measurement g is reversed to the initial shape
[3] and the 2D mask is repeated in channel dimension to ob-
tain the 3D mask. Then the two are inputted to a 1× 1 con-
volution kernel (conv1× 1) to get the initialization. In each
stage, LMP is adopted to assist the reconstruction based on
the imaging model. Then the SSRUnet is employed to refine
the input through novel spatial and spectral design. Finally,
ARB is used to further improve spatial degradation in re-
construction. For the core module SSRUnet, as illustrated
in Fig. 2 (b), the conv3 × 3s with residual are utilized to
embed mask information into input X as follows:

XME = Conv3×3(X) ◦ (TI + Conv3×3(Mask)),
(4)

where XME is the features embedded with the mask, TI is
an all-one tensor and Mask is the 3D mask obtained in ini-

tialization. Then SSRUnet with three layers and conv3× 3
are employed to extract the deep feature which is combined
with the input as a residual to produce a refined output. The
SSRUnet consists of downsampling modules (conv4 × 4),
Spectral-Spatial Rectification Block (SSRB), upsampling
modules (deconv2× 2), and Fusion modules (conv1× 1).
Spectral-Spatial Rectification Block (SSRB). SSRB is the
basic module of SSRUnet. As shown in Fig. 2 (c), the im-
plicit positional information [10] is firstly embedded in the
input for applying self-attention later in SSRB. Each SSRB
is the sequential combination of the spEctral Rectification
Block (ERB) and ARB. Fig. 2 (c) illustrates the components
of ERB and ARB, i.e., a Feed Forward Network(FFN) and a
Window-based Spectral Self-Attention (WSSA) for ERB, a
Convolution Moudulated Block (CMB) and a Spatial Align-
ment Block (SAB) for ARB, and same Layer Normalization
(LN) and Group Normalization (GN) for ERB and ARB.
WSSA is detailed in Fig. 2 (d) and FFN consists of two
linear layers sandwiched with depth-wise conv3× 3.

4.2. Spectral Rectification Block

Spectral self-attention is a promising approach to utilize
spectral characteristics for HSI tasks. However, we find
that the previous spectra-wise transformer [3, 4, 11] directly
considers a band as a token and follows traditional spatial
self-attention design, i.e., multi-head division in spectral
(channel) dimension, which ignores the local differences
in spectral distribution and results in mean effect and non-
global spectral utilization. To solve the problem, we pro-
pose the ERB based on WSSA to consider local differences
and model global spectral information.
The Influence of Multi-Head Division in Spectral (Chan-
nel) Dimension. In the classic transformer design [12, 25,
35], the use of multi-head division in the channel dimen-
sion is common and brings some gains. Possibly affected
by this, the previous spectra-wise transformer in spectral
snapshot reconstruction also divides multi-head in spectral
dimension as shown in Fig. 3 (a), which results in the sep-
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Figure 3. (a)-(c) The influence of multi-head attention and mean effect, (d) The illustration of WSSA.

aration of spectral information and failure to model global
spectral information. It’s very easy to get confused because
the spectral transformer is in contrast to the spatial trans-
former, where the characteristic dimension of the former is
the spatial dimension, and the characteristic dimension of
the latter is the spectral (channel) dimension.
The Influence of Mean Effect. In addition, considering
that HSIs depict the spectral distribution of scenes, the sim-
ilarities of different regions should be different but previous
multi-head division results in all regions sharing the same
similarity. When treating the whole band as a token to cal-
culate spectral self-attention, we obtain the mean of all re-
gion similarities in the band and the local differences be-
tween regions are lost, which we call the ’Mean Effect’. De-
fine Λ features {fλ}Λλ=1 where feature dimension consists
of p different patterns (regions), i.e., fλ = [f1λ, f

2
λ, . . . , f

p
λ ],

the influence of mean effect on the similarity calculation can
be simply described as follows:

sim(fki , f
k
j ) →

1

p

p∑
m=1

sim(fmi , f
m
j ), (5)

where the left part denotes the expected similarity of the kth
pattern between fki and fkj , and the right part represents the
obtained similarity in previous approaches. We also present
an example in Fig. 3 (b), the average similarity and local
region similarity between the red band and other bands are
marked with red numbers and black numbers respectively.
To demonstrate the validity of our theory, we carried out
ablation experiments of different region sizes, i.e., window
size under the same conditions later. In addition, the mean
effect may explain why multi-head attention is more effec-
tive than single-head attention.
Multi-Head Division in Spatial Dimension. When realiz-
ing appropriate feature dimension and mean effect, it was
natural to treat the entire band frame as a token and then
directly divide multi-head [35] in the merged spatial dimen-
sion to calculate self-attention, which we call MSSA later
for short. However, as shown in Fig. 3 (c), this would
split the entire image into (incomplete) strip shapes on each
head, which mitigates the mean effect to some extent but
breaks the spatial correlation of features. That is, adjacent
areas are divided into different heads, while areas that are
far apart in space are divided into the same head.

Window-based Spectral Self-Attention (WSSA). To cap-
ture the global spectral similarity, solve the mean effect, and
maintain spatial correlation, WSSA divides features into a
number of windows spatial-wisely, and then the spectra-
wise self-attention is calculated within windows to avoid
the interference of each other, which is shown in Fig. 3
(d). Specifically, define input X ∈ RH×W×C , as shown in
Fig. 2 (d), X is first linearly projected to 3C channels ten-
sor via a 1 × 1 convolution then uniformly divides the ten-
sor channel-wisely into the query (Q), key (K), value(V ).
Subsequently, Q, K, V are split spatial-wise into HW/M2

windows with size of RM×M×C separately:

{Qi,Ki, Vi}HW/M2

i=1 = Q,K, V , (6)

where Qi,Ki, Vi ∈ RM×M×C and are then reshaped into
shape RM2×C as tokens to calculate attention as follows:

Attentioni = SoftMax(QT
i Ki/M)Vi, (7)

where M is used as the scale factor before applying the
softmax function. Then the outputs of HW/M2 attention
are reshape in RM×M×C and merge together in the original
arrangement to undergo a conv1× 1 projection:

X ′ = {Attentioni}HW/M2

i=1 W1, (8)

where W1 ∈ RC×C are weight matrices of a conv1× 1 and
X ′ is the final output ∈ RH×W×C . Different from multi-
head self-attention which implements token embedding and
then divides heads, WSSA first implements windows split
then reshaping into tokens, which preserves the spatial cor-
relation of each token. Regarding WSSA as a special multi-
head self-attention, the number of WSSA heads is more,
often hundreds of thousands, far more than the number of
multi-head attention.
Computational Complexity. The computational complex-
ity of WSSA is displayed as follows:

O(WSSA) = 4HWC2 + 2M2C2HW

M2
= 6HWC2. (9)

The computational complexity of WSSA is linear to the spa-
tial size HW and window size-independent, meaning that
there is no additional computation cost when we improve
spectral utilization.
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4.3. Spatial Rectification Block

The utilization of WSSA enhances the capability of spec-
tral information capture. However, a limitation arises from
the absence of interaction between adjacent windows within
WSSA, potentially leading to discontinuous spatial repre-
sentation and the occurrence of blocking artifacts, as high-
lighted by [7]. Additionally, unique spatial degradation oc-
curs due to mask, shift, and compression in spectral snap-
shot imaging. To address these concerns, we propose a spA-
tial Rectification Block (ARB) comprising a Convolution
Modulated Block (CMB) and a Spatial Alignment Block
(SAB). This ARB aims to foster interaction between adja-
cent windows and alleviate spatial degradation in the HSIs.
Convolution Modulated Block (CMB). Here, we try to
solve two problems: (1) When different windows cannot
interfere with each other, WSSA also fails to exchange in-
formation, which leads to discrete spatial expression and
may lead to blocking artifacts [7]. (2) As shown in the top
two rows of Fig .4 (a), over-smoothing demonstrates that
the spatial representation ability of a single spectra-wise
transformer is not sufficient. To solve these two problems
and inspired by the development of large kernel convolu-
tion in high-level tasks, we adopted a Convolution Mod-
ulated Block (CMB) proposed in [16] to modulate spatial
information and make adjacent windows interact with each
other through large kernel convolution sliding as shown in
Fig. 4 (b). CMB modulates spatial information in a similar
manner to self-attention but much more efficiently. Specif-
ically, given the input tokens X ∈ RH×W×C , we use a
simple depth-wise convolution with kernel size 11 × 11 to
calculate the modulated attention A as follows:

A = DConv11×11(XW2), (10)

where W2 ∈ RH×W×C are weight matrices of conv1× 1s,
and DConv11×11 denotes a depth-wise convolution with

kernal size 11× 11. Then we adopt the element-wise prod-
uct and attentionA to modulate the project feature V ′ to get
the output Z:

Z = (A ◦ V ′)W4, V
′ = XW3, (11)

whereW3 andW4 ∈ RC×C are weight matrices of conv1×
1s. On the one hand, CMB could effectively improve the
spatial representation of features through modulation oper-
ation. On the other hand, CMB enables the pixels between
adjacent windows of WSSA to interact spatial-wisely when
depth-wise convolution kernel size 11 × 11 is greater than
patch size 8× 8, as demonstrated in Fig. 4 (c).
Spatial Alignment Block (SAB). As shown in the bottom
two rows of Fig. 4 (a), we observe that the reconstruction
results of some bands have more spatial degradation such as
distortion and deformation, which is not common in other
HSI tasks. Thus, we think this may be related to the unique
imaging process. As shown in Fig. 4 (e), shift and compres-
sion in the imaging process mix information from different
spatial locations, and spatial texture recovery in bands with
low spectral density may be difficult, which is neglected by
previous methods. Considering that the low-density bands
can be obtained by multiplying the high-density bands by
weights, we can utilize the high-quality bands to improve
the spatial texture of the low-quality bands through a novel
spatial alignment strategy, as shown in Fig. 4 (e). To
achieve this, a Spatial Alignment Block (SAB) is proposed
to improve spatial degradation. As shown in 4 (d), we adopt
different convolution kernels to estimate spatial texture dis-
tribution which corresponds to the high-density part, and
learn spectral weights in SAB when two linear layers are
used to mix channel information. Specifically, given the
input feature F ∈ RH×W×C , we use a convolution with
kernel size 3 × 3 and GELU activation function to learn
the spatial texture T as follows:

T = ψ(Conv3×3(FW5)), (12)
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Table 1. The PSNR (upper entry in each cell) in dB and SSIM (lower entry in each cell) results of the test methods on 10 scenes.
Algorithms Reference Params GFLOPs Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg

DIP-HSI [30] ICCV 2021 33.85 64.42 32.68
0.892

27.26
0.858

31.30
0.915

40.54
0.953

29.79
0.884

30.39
0.908

28.18
0.878

29.44
0.888

34.51
0.890

28.51
0.874

31.26
0.894

TSA-Net [28] ECCV 2020 44.25 110.06 32.03
0.892

31.00
0.858

32.25
0.915

39.19
0.953

29.39
0.884

31.44
0.908

30.32
0.878

29.35
0.888

30.01
0.890

29.59
0.874

31.46
0.894

DGSMP [18] CVPR 2021 3.58 84.77 33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

GAP-Net [27] IJCV 2023 4.27 78.58 33.74
0.911

33.26
0.900

34.28
0.929

41.03
0.967

31.44
0.919

32.40
0.925

32.27
0.902

30.46
0.905

33.51
0.915

30.24
0.895

33.26
0.917

HerosNet [42] CVPR 2022 11.27 414.76 35.69
0.973

35.01
0.968

34.82
0.967

38.07
0.985

33.18
0.969

34.94
0.976

33.58
0.962

33.19
0.968

33.04
0.964

33.01
0.965

34.45
0.970

HDNet [17] CVPR 2022 2.37 154.76 35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST [3] CVPR 2022 2.03 28.15 35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

CST [2] ECCV 2022 3.0 40.10 35.96
0.949

36.84
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

BIRNAT [8] TPAMI 2023 4.40 2122.66 36.79
0.951

37.89
0.957

40.61
0.971

46.94
0.985

35.42
0.964

35.30
0.959

36.58
0.955

33.96
0.956

39.47
0.970

32.80
0.938

37.58
0.960

DAUHST [5] NeurIPS 2022 6.15 79.50 37.25
0.958

39.02
0.967

41.05
0.971

46.15
0.983

35.80
0.969

37.08
0.970

37.57
0.963

35.10
0.966

40.02
0.970

34.59
0.956

38.36
0.967

RDLUF [11] CVPR 2023 1.81 115.34 37.94
0.966

40.95
0.977

43.25
0.979

47.83
0.990

37.11
0.976

37.47
0.975

38.58
0.969

35.50
0.970

41.83
0.978

35.23
0.962

39.57
0.974

SSR-S Ours 1.73 26.37 38.22
0.963

40.05
0.972

42.57
0.975

47.46
0.986

36.50
0.972

37.33
0.971

37.60
0.964

35.70
0.968

41.37
0.975

35.06
0.959

39.19
0.971

SSR-M Ours 3.45 52.65 38.61
0.967

41.35
0.978

43.94
0.979

48.32
0.988

37.80
0.977

38.07
0.975

38.54
0.969

36.82
0.974

42.72
0.980

35.79
0.965

40.20
0.975

SSR-L Ours 5.18 78.93 39.07
0.970

42.04
0.981

44.49
0.980

48.80
0.990

38.64
0.980

38.50
0.978

39.16
0.971

36.96
0.976

43.12
0.982

36.08
0.968

40.69
0.978

SSR-L* Ours 1.73 78.93 38.81
0.968

41.51
0.979

43.76
0.979

48.62
0.988

38.32
0.979

37.85
0.975

38.50
0.969

36.85
0.974

42.64
0.980

35.82
0.965

40.27
0.976

where T ∈ RH×W×1, ψ is GELU activation function and
W5 ∈ RC×C are weight matrices of the linear layer. Mean-
while, we use a depth-wise convolution with kernel size
3 × 3 and Sigmoid activation function to learn spectral
element-wise weight as follows:

SW = σ(DConv3×3(FW5)), (13)

where SW ∈ RH×W×C , σ is Sigmoid activation func-
tion. Finally, we use multiple element-wise products and a
conv1 × 1 projection W6 to calculate the output Y as fol-
lows:

Y = {T ◦ SWi}Ci=1W6, (14)

where Y ∈ RH×W×C and SWi ∈ RH×W×1.

4.4. Linear Manifold Projection (LMP)

Eq. (3) is a key constraint in spectral compression recon-
struction. To take advantage of this prior, we introduce a
Linear Manifold Projection (LMP) proposed in GAP-Net
[27] to assist the reconstruction. We add an additional pa-
rameter to control projection intensity and perform the LMP
as follows:

f ′ = f + ρΦT [(g − Φf)./(ΦΦT )], (15)

where ρ is the parameter that is estimated through a simple
network similar to [5].

4.5. Implementation Details

We change the stage numbers N to establish a series of
SSR models with small, medium, and large scales: SSR-S

(N = 3), SSR-M (N = 6), and SSR-L (N = 9). The pro-
posed SSR is implemented by PyTorch and the window size
in WSSA is empirically set to 8 × 8. Adam [19] optimizer
(β1 = 0.9 and β2 = 0.999) and Cosine Annealing [26] sched-
uler are adopted to train SSR on a single RTX 3090 GPU.
Training samples are patches with spatial sizes of 256×256
and 384×384 randomly cropped from 3D HSI data cubes
for simulation and real experiments separately. The shifting
step d of the imaging model is 2. The channels of SSRUnet
layers are set to Λ, 2Λ, 4Λ in sequence and basic bands
Λ = 28. The training loss function is the root mean square
error (RMSE) between reconstructed and ground-truth HSIs
and adopts the multi-stage loss setting proposed in [43].

5. Experiment

5.1. Experimental Settings
Following [5, 11, 17, 28, 42], we select 28 wavelengths
from 450nm to 650nm by using spectral interpolation ma-
nipulation to derive HSIs. We conduct experiments on sim-
ulation and real datasets.
Simulation and Real Data. Two simulation datasets,
CAVE [32] and KAIST [9], and five real HSIs captured
by the CASSI system developed in [28] are adopted. The
CAVE dataset provides 32 HSIs with a spatial size of
512×512. The KAIST dataset includes 30 HSIs with a spa-
tial size of 2704×3376. We use CAVE for simulation train-
ing and select 10 scenes from KAIST for simulation testing.
Evaluation Metrics. We adopt two image quality indexes
including peak signal-to-noise ratio (PSNR), and structure
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Figure 5. Reconstructed images of simulation scene1 with 4 out of 28 spectral channels by the state-of-the-art methods. Two regions in
scene1 are selected for analyzing the spectra of the reconstructed results. The figure is better viewed in a zoomed-in PDF.

similarity (SSIM) [39] for quantitative evaluation. Specifi-
cally, PSNR measures the visual quality, while SSIM mea-
sures the structure similarity. Generally, higher values of
PSNR and SSIM mean better reconstruction results.

5.2. Simulation Scene

Quantitative results. Table. 1 and Fig. 1 show the
quantitative comparison of our SSR and the state-of-the-art
(SOTA) methods: DIP-HSI [30], TSA-Net [28], DGSMP
[18], GAPnet [27], HerosNet [42], HDNet [17], MST [3],
CST [2], BIRNAT [8], DAUHST [5], RDLUF [11]. We can
see that SSR significantly outperforms the other methods
by over 2dB at the same FLOPs and exceeds the leading
method RDLUF by more than 1dB with reduced compu-
tational demands. Concretely, our best model, SSR-L sur-
passes SOTA methods RDLUF, DAUHST, and DAUHST
by 1.12, 2.33, and 3.11dB while less computational ef-
fort is required. Surprisingly, our small model SSR-S sur-
passes most methods when requiring the least parameters
and FLOPs. Moreover, our middle model outperforms the
best method RDLUF by 0.63dB when less than 1/2 FLOPs
are required. It is worth noting that RDLUF adopts a stage
parameter-sharing strategy and we take the same strategy to
establish our SSR-L∗, which brings performance degrada-
tion but still achieves a clear advantage over other methods
with the least parameters. We found that the degradation
comes from the stability of the method, that is, as the num-
ber of parameters increases, the performance of our SSR
steadily increases and RDLUF decreases.
Visual comparison. We provide the visual comparison of
simulation scene7 with 4 out of 28 spectral channels in Fig.
5. SSR-L successfully recovers the clear pattern and sharp
edge on the cup when the other methods all suffer from
blurred or distorted effects. In addition, we plot the spec-
tral curves of two regions in scene1 in the bottom-left of
Fig. 5. It’s intuitive that SSR-L has a prominent higher cor-
relation with the reference spectra, which demonstrates the
effectiveness of our spectra-wise attention.

Table 2. Ablation study of WSSA and ARB.

Baseline-1 WSSA ARB PSNR SSIM Params (M) FLOPs (G)

✓ 36.60 0.956 1.06 14.43
✓ ✓ 37.76 0.965 1.30 18.82
✓ ✓ ✓ 39.19 0.971 1.73 26.37

5.3. Real Scene Results

To verify the effect of the proposed method on the real
scenes, five measurements captured by the CASSI system
are utilized for testing and the ground truths of the scenes
are unavailable. For fair comparisons, all methods are
trained on the CAVE and KAIST datasets jointly using the
fixed real mask with 11-bit shot noise injected. The bot-
tom two rows of Fig. 6 plot the visual comparisons of
the proposed SSR-S and the existing SOTA methods while
the top two rows plot the visual comparisons of different
spectra-wise transformers [3, 4]. It is intuitive to see that our
SSR-S restores clearer spatial textures and sharper edges
than previous spectra-wise transformers in the top two rows,
which shows the effect of spatial modulation. Compared
with other methods in the bottom two rows, SSR-S obtains
clearer results in these two bands when other methods fail
to recover these two bands, demonstrating the effectiveness
of our spatial alignment strategy.

5.4. Ablation Experiment

In this part, we adopt the CAVE and KAIST datasets to con-
duct ablation studies.
Effectiveness of WSSA and ARB. We first conduct a
break-down ablation experiment to investigate the effect
of each component towards higher performance. The re-
sults are listed in Table. 2. The baseline-1 model is de-
rived by removing our WSSA and ARB from SSR-S and
yields 36.60dB. When we successively apply our WSSA
and ARB, the model continuously achieves 1.16dB and
1.43dB improvements. These results suggest the effective-
ness of WSSA and ARB.

Wavelen gth(nm)
550 600
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Figure 6. Reconstructed images of real scene2 and scene4 with 2 and 4 out of 28 spectral channels separately by the state-of-the-art
methods. Compared with other competing methods, our SSR recovers more details and clear content.

Table 3. Ablation study of different self-attention schemes.
Metric Baseline-2 S-MSA [3] Swin-MSA [25] HS-MSA [5] WSSA* WSSA

PSNR 32.01 32.85 33.01 33.09 33.19 33.30
SSIM 0.908 0.916 0.918 0.919 0.922 0.924

Params (M) 1.03 1.29 1.29 1.29 1.29 1.29
FLOPs (G) 13.84 18.15 19.04 19.04 18.15 18.65

Self-Attention Scheme Comparison. We compare WSSA
with other self-attentions and report the results in Table. 3.
We adopt the half operation [5] in Swin-MSA [25] to keep
the computation almost the same and use multi-head atten-
tion in the spectral dimension of WSSA* to align with S-
MSA[3]. Baseline-2 is SSR-S that retains only the ERB
and removes attention and yields 32.01dB. WSSA yields the
most significant improvement of 1.29dB, which is 0.45dB,
0.29dB, and 0.21dB higher than S-MSA [3], Swin-MSA
[25], and HS-MSA [5], which shows the effectiveness of
WSSA. In addition, WSSA* and WSSA achieve 0.34dB
and 0.45dB gain than S-MSA respectively, which demon-
strates the role of considering local differences and model-
ing global spectral information.

Influence of Multi-head attention and Mean effect. We
demonstrate the influence of multi-head attention and mean
effect on the spectra-wise self-attention through further ex-
periments on the relationship between performance and to-
ken dim (window size) in WSSA and MSSA, which is
shown in Fig. 7. Intuitively, the large window size would
suffer from limited performance, which illustrates the influ-
ence of the mean effect. Performance degradation also oc-
curs when the window size is too small to retain complete
feature information. In our experiments, 8× 8 window size
optimally balances retaining feature information while min-
imizing the mean effect, which produces the highest per-
formance of 33.3dB. When the token dim is small, WSSA

Figure 7. Influence of token dim in spectra-wise attention.

clearly performs better than MSSA, which shows the role
of maintaining spatial correlation. When the token dim is
large, MSSA is slightly better than WSSA, which may be
related to the shift in the imaging process and the strip pat-
tern can contain some shift information.

6. Conclusion
In this paper, we analyze the influence of multi-head atten-
tion and mean effect on the spectra-wise transformer, and a
novel SSR method is proposed to improve spectral snapshot
reconstruction. To model the global spectral information,
consider the local difference, and maintain spatial correla-
tion, WSSA is proposed to better utilize spectral similarity.
ARB leverages CMB to address the interaction between ad-
jacent windows of WSSA and learn spatial representation
when SAB is specially designed to mitigate spatial degra-
dation in low-quality bands through a novel spatial align-
ment strategy. Extensive experiments on simulation and
real scenes show the effectiveness of the proposed modules.
Our SSR at different scales also significantly outperforms
the state-of-the-art methods with less cost.
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