
Improving Training Efficiency of Diffusion Models via Multi-Stage Framework
and Tailored Multi-Decoder Architecture

Huijie Zhang1 ∗ Yifu Lu1 ∗ Ismail Alkhouri1,2 Saiprasad Ravishankar2,3

Dogyoon Song1 Qing Qu1

1Department of Electrical Engineering & Computer Science, University of Michigan
2Department of Computational Mathematics, Science & Engineering, Michigan State University

3Department of Biomedical Engineering, Michigan State University
{huijiezh, yifulu, ismailal, dogyoons, qingqu}@umich.edu ravisha3@msu.edu

Figure 1. Overview of three diffusion model architectures: (a) unified, (b) separate, and (c) our proposed multistage architecture.
Compared with (a) and (b), our approach improves sampling quality, and significantly enhances training efficiency, as indicated by the FID
scores and their corresponding training iterations (d).

Abstract

Diffusion models, emerging as powerful deep generative
tools, excel in various applications. They operate through
a two-steps process: introducing noise into training sam-
ples and then employing a model to convert random noise
into new samples (e.g., images). However, their remark-
able generative performance is hindered by slow training
and sampling. This is due to the necessity of tracking exten-
sive forward and reverse diffusion trajectories, and employ-
ing a large model with numerous parameters across multi-
ple timesteps (i.e., noise levels). To tackle these challenges,
we present a multi-stage framework inspired by our empir-
ical findings. These observations indicate the advantages
of employing distinct parameters tailored to each timestep
while retaining universal parameters shared across all time
steps. Our approach involves segmenting the time interval
into multiple stages where we employ custom multi-decoder
U-net architecture that blends time-dependent models with
a universally shared encoder. Our framework enables the

efficient distribution of computational resources and miti-
gates inter-stage interference, which substantially improves
training efficiency. Extensive numerical experiments affirm
the effectiveness of our framework, showcasing significant
training and sampling efficiency enhancements on three
state-of-the-art diffusion models, including large-scale la-
tent diffusion models. Furthermore, our ablation stud-
ies illustrate the impact of two important components in
our framework: (i) a novel timestep clustering algorithm
for stage division, and (ii) an innovative multi-decoder U-
net architecture, seamlessly integrating universal and cus-
tomized hyperparameters.

1. Introduction
Recently, diffusion models have made remarkable progress
as powerful deep generative modeling tools, showcasing re-
markable performance in various applications, ranging from
unconditional image generation [1, 2], conditional image
generation [3, 4], image-to-image translation [5–7], text-to-
image generation [8–10], inverse problem solving [11–14],

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7372

video generation [15, 16], and so on. These models employ
a training process involving continuous injection of noise
into training samples (“diffusion”), which are then utilized
to generate new samples, such as images, by transform-
ing random noise instances through a reverse diffusion pro-
cess guided by the “score function ” of the data distribution
learned by the model. Moreover, recent work demonstrates
that those diffusion models enjoy optimization stability and
model reproducibility compared with other types of gener-
ative models [17]. However, diffusion models suffer from
slow training and sampling despite their remarkable gen-
erative capabilities, which hinders their use in applications
where real-time generation is desired [1, 2]. These draw-
backs primarily arise from the necessity of tracking exten-
sive forward and reverse diffusion trajectories, as well as
managing a large model with numerous parameters across
multiple timesteps (i.e., diffusion noise levels).

In this paper, we address these challenges based on two
key observations: (i) there exists substantial parameter re-
dundancy in current diffusion models, and (ii) they are
trained inefficiently due to dissimilar gradients across dif-
ferent noise levels. Specifically, we find that training diffu-
sion models require fewer parameters to accurately learn the
score function at high noise levels, while larger parameters
are needed at low noise levels. Furthermore, we also ob-
serve that when learning the score function, distinct shapes
of distributions at different noise levels result in dissimilar
gradients, which appear to slow down the training process
driven by gradient descent.

Building on these insights, we propose a multi-stage
framework with two key components: (i) a multi-decoder
U-net architecture, and (ii) a new partitioning algorithm to
cluster timesteps (noise levels) into distinct stages. In terms
of our new architecture, we design a multi-decoder U-Net
that incorporates one universal encoder shared across all in-
tervals and individual decoders tailored to each time stage;
see Figure 1 (c) for an illustration. This approach com-
bines the advantages of both universal and stage-specific
architectures, which is much more efficient than the uni-
fied architecture for the entire training process [1, 2, 18]
(Figure 1 (a)). Moreover, compared to previous approaches
that completely separate architectures for each sub-interval
[19–22] (Figure 1 (b)), our approach can effectively miti-
gate overfitting, leading to improved training efficiency. On
the other hand, when it comes to partitioning the training
stages of our network, we designed an algorithm aimed at
grouping the timesteps. This is achieved by minimizing
the functional distance within each cluster in the training
objective and making use of the optimal denoiser formula-
tion [18]. By integrating these two key components, our
framework enables efficient allocation of computational re-
sources (e.g., U-net parameters) and stage-tailored param-
eterization. Throughout our extensive numerical experi-

ments (Section 5), we show that out framework effectively
improves both training and sampling efficiency. These ex-
periments are performed on diverse benchmark datasets,
demonstrating significant acceleration by using our frame-
work when compared to three state-of-the-art (SOTA) dif-
fusion model architectures. As a summary, the major con-
tributions of this work can be highlighted as follows:
• Identifying two key sources of inefficiency. We identi-

fied two key sources that cause inefficiencies in training
diffusion models across various time step: (i) a signifi-
cant variation in the requirement of model capacity, and
(ii) the gradient dissimilarity. As such, using a unified
network cannot meet with the changing requirement at
different time steps.

• A new multi-stage framework. We introduced a new
multi-stage architecture, illustrated in Fig. 1 (c). We
tackle these two sources of inefficiency by segmenting
the time interval into multiple stages, where we employ
customized multi-decoder U-net architectures that blends
time-dependent models with a universally shared encoder.

• Improved training and sampling efficiency. With com-
parable computational resources for unconditional image
generation, we demonstrate that our multi-stage approach
improves the Fréchet Inception Distance (FID) score for
all SOTA methods. For example, on CIFAR-10 dataset
[23], our method improves the FID for DPM-Solver [24]
from 2.84 to 2.37, and it improves the FID for EDM [18]
from 2.05 (our training result) to 1.96. Moreover, on the
CelebA dataset [25], while maintaining a similar gener-
ation quality, our approach significantly reduces the re-
quired training FLOPS of EDM by 82% and the Latent
Diffusion Model (LDM) [8] by 30%.

Organization. In Sec. 2, we provide preliminaries and an
overview of related literatures. In Sec. 3, we present our
observations and analysis that motivated the proposed mul-
tistage framework, justifying its development. In Sec. 4,
we describe our proposed multistage framework for diffu-
sion models, outlining the two core components. Finally, in
Sec. 5, we provide the results from our numerical experi-
ments that validate the effectiveness of the proposed multi-
stage approach.

2. Preliminaries & Related Work
In this section, we start by reviewing the basic fundamen-
tals of diffusion models [1, 2, 18]. Subsequently, we delve
into prior approaches aimed at improving the training and
efficiency of diffusion models through the partitioning of
the timestep interval. Lastly, we survey prior studies that
significantly decrease the number of required sampling iter-
ations.

Background on diffusion models. Let x0 ∈ Rn de-
note a sample from the data distribution pdata(x). Diffu-

7373

sion models operate within forward and reverse processes.
The forward process progressively perturbs data x0 to a
noisy version xt∈[0,1] via corrupting with the Gaussian ker-
nel. This process can be formulated as a stochastic differ-
ential equation (SDE) [2] of the form dx = xtf(t)dt +
g(t)dwt, where f(t) and g(t) are the drift and diffusion
coefficients, respectively, that correspond to a pre-defined
noise schedule. wt ∈ Rn is the standard Wiener pro-
cess. Under the forward SDE, the perturbation kernel is
given by the conditional distribution defined as pt(xt|x0) =
N (xt; stx0, s

2
tσ

2
t I), where

st = exp(
∫ t

0

f(ξ)dξ), and σt =

√∫ t

0

g2(ξ)

s2ξ
dξ . (1)

The parameters st and σt are designed such that: (i)
the data distribution is approximately estimated when t =
0, and (ii) a nearly standard Gaussian distribution is ob-
tained when t = 1. The objective of diffusion mod-
els is to learn the corresponding reverse SDE, defined as
dx =

[
f(t)xt − g2(t)∇xt

log pt(xt)
]

dt+ g(t)dw̄, where
w̄ ∈ Rn is the standard Wiener process running backward
in time, and ∇xt

log pt(xt) is the (Stein) score function. In
practice, the score function is approximated using a neural
network ϵθ : Rn × [0, 1]→ Rn parameterized by θ, which
can be trained by the denoising score matching technique
[26] as

min
θ

E
[
ω(t)∥ϵθ(xt, t) + stσt∇xt

log pt(xt|x0)∥22
]
, (2)

which can also be written as minθ E[ω(t)||ϵθ(xt, t) −
ϵ||2] + C, where the expectation is taken over t ∼ [0, 1],
xt ∼ pt(xt|x0), x0 ∼ pdata(x), and ϵ ∼ N (0, I). Here, C
is a constant independent of θ, and ω(t) is a scalar repre-
senting the weight of the loss as a function of t. In DDPM
[1], it is simplified to ω(t) = 1. Once the parameterized
score function ϵθ is trained, it can be utilized to approxi-
mate the reverse-time SDE using numerical solvers such as
Euler-Maruyama.

Timestep clustering methods. Diffusion models have
demonstrated exceptional performance but face efficiency
challenges in training and sampling. In response, several
studies proposed to cluster the timestep range t ∈ [0, 1] into
multiple intervals (e.g., [0, t1), [t1, t2), . . . , [tn, 1]). No-
tably, Choi et al. [19] reconfigured the loss weights for dif-
ferent intervals to enhance performance. Deja et al. [27] di-
vide the entire process into a denoiesr and a generator based
on their functionalities. Balaji et al. [28] introduced “expert
denoisers”, which proposed using distinct architectures for
different time intervals in text-to-image diffusion models.
Go et al. [22] further improved the efficiency of these expert
denoisers through parameter-efficient fine-tuning and data-
free knowledge transfer. Lee et al. [21] designed separate

architectures for each interval based on frequency charac-
teristics. Moreover, Go et al. [20] treated different intervals
as distinct tasks and employed multi-task learning strategies
for diffusion model training, along with various timestep
clustering methods.

Our approach distinguishes itself from the aforemen-
tioned methods in two key aspects. The first key component
is our tailored U-net architecture using a unified encoder
coupled with different decoders for different intervals. Pre-
vious models have either adopted a unified architecture, as
seen in [19, 20], or employed separate architectures (re-
ferred to as expert denoisers) for each interval [21, 22, 28].
In comparison, our multistage architecture surpasses these
methodologies, as demonstrated in Sec. 5.3. Second, we
developed a new timestep clustering method leveraging a
general optimal denoiser (Prop. 1) that showcases supe-
rior performance (see Sec. 5.4). In contrast, prior works
rely on (i) a simple timestep-based clustering cost function
[20–22, 28], (ii) Signal-to-Noise Ratio (SNR) based cluster-
ing [20], or (iii) gradients-based partitioning that uses task
affinity scores [20].

Reducing the sampling iterations methods. Efforts to
improve sampling efficiency of diffusion models have led
to many recent advancements in SDE and Ordinary Dif-
ferential Equation (ODE) samplers [2]. For instance, the
Denoising Diffusion Implicit Model (DDIM) [29] formu-
lates the forward diffusion as a non-Markovian process with
a deterministic generative path, significantly reducing the
number of function evaluations (NFE) required for sam-
pling (from thousands to hundreds). Generalized DDIM
(gDDIM) [30] further optimized DDIM by modifying the
parameterization of the scoring network. Furthermore, the
works in [24] and [31], termed the Diffusion Probabilis-
tic Model solver (DPM-solver) and the Diffusion Exponen-
tial Integrator Sampler (DEIS), respectively, introduced fast
higher-order solvers, employing exponential integrators that
require 10s NFE for comparable generation quality. More-
over, the consistency model [32] introduced a novel training
loss and parameterization, achieving high-quality genera-
tion with merely 1-2 NFE.

We remark that while the aforementioned methods are
indirectly related to our work, our experiments in Sec. 5.1
and Sec. 5.2 show that our approach can be easily integrated
into these techniques, further improving diffusion models’
overall training and sampling efficiency.

3. Identification of Key Sources of Inefficiency

Conventional diffusion model architectures, as exemplified
by [1, 2, 18], treat the training of the diffusion model as
a unified process across all timesteps. Recent researches,
such as [19–22], have highlighted the benefits of recogniz-
ing distinctions between different timesteps and the poten-

7374

tial efficiency gains from treating them as separate tasks
during the training process. However, our experimental
results demonstrate that both unified and separate archi-
tectures suffer inefficiency for training diffusion models,
where the inefficiency comes from (i) overparameterization,
(ii) gradient dissimilarity, and (iii) overfitting.

3.1. Empirical Observations on the Key Sources of
Inefficiency

To illustrate the inefficiency in each interval, we isolate the
interval by using a separate architecture from the rest.

Experiment setup. In our experiments, we consider
three-stage training and divide the time steps into three in-
tervals: [0, t1), [t1, t2), [t2, 1]1. Let (ϵθ)

[a,b]
i , 0 ≤ a < b ≤

1 denote a U-Net architecture with parameter θ trained with
i iterations and fed with data pairs (xt, t), where t ∈ [a, b].
We then train models using two different strategies: a uni-
fied architecture with 108M network parameters for all in-
tervals, i.e., (ϵθ)

[0,1]
i , and separate architectures with vary-

ing network parameters (e.g., 47M, 108M, 169M) for each
interval; e.g., (ϵθ)

[0,t1)
i for the interval [0, t1), etc. It is

worth noting that, apart from the differences in network pa-
rameters, we utilize the same network architecture (e.g., U-
Net) for both the unified and the separate approaches. We
assessed the training progress of each model by evaluating
image generation quality at different training iterations. No-
tably, because some of the models are only trained on one
interval, we need to provide a ground truth score for the
other intervals. In Fig. 2, the sampling process is shown top
and the experimental results are shown bottom.

Inefficiency in unified architectures. From Fig. 2, we
observe the following:
• Overparameterization and underfitting emerge simulta-

neously for unified architectures. In Fig. 2a, we observe
that increasing the number of parameters in Interval 0 can
improve the image generation quality (as indicated by a
lower FID score). In contrast, Fig. 2b reveals that in-
creasing the number of parameters in Interval 2 has min-
imal impact on the quality of image generation. This im-
plies that using a unified architecture will result in un-
derfitting in Interval 0 and overparameterization in Inter-
val 2. The current unified architecture’s parameter redun-
dancy leaves significant room for improving its efficiency.
To optimize the computational usage, we should allocate
more parameters to Interval 0 while allocating fewer pa-
rameters to Interval 2.

• Gradient dissimilarity hinders training for unified archi-
tecture. Quantitative results from [20] demonstrate dis-
similarity in gradients caused by differences within each
interval. This can also be observed from our results based

1Details for interval clustering can be found in Appendix B.1.

upon both Fig. 2a and Fig. 2b. For the unified and sep-
arate architectures using the same number of parame-
ters (108M), separate architecture achieves a significantly
lower FID with the same training iterations, implying that
dissimilar gradients among intervals may hinder training
when using a unified architecture. Here, the only differ-
ence between training separate and unified architectures
is that the batch gradient for unified architecture is cal-
culated based on all timesteps while the batch gradien2
for separate architecture is calculated only from a specific
interval.

Inefficiency in existing separate architectures. Al-
though separated architecture [19, 21, 22] better allocates
computational resources for each interval, it suffers from
overfitting. This can be illustrated based upon training sep-
arate architectures (169M) and (108M) in Interval 0 shown
in Fig. 2a, where increasing the number of parameters will
lead to overfitting. This also happens in Interval 2, when we
compare all separate architectures in Fig. 2b. In compar-
ison, the unified networks with 108M parameters are less
prone to overfitting for both Interval 0 and Interval 2. This
suggests that we can reduce overfitting by training shared
weights across different intervals together.

3.2. Tackling the Inefficiency via Multistage U-Net
Architectures

In a unified architecture applied across all timesteps, there
is often a dual challenge: requirements for more parameters
(169M) in the interval [0, t1) but fewer parameters (47M) in
the interval [t2, 1]. This issue is compounded by the gradi-
ent dissimilarity across different timesteps, which can im-
pede effective training. Alternatively, employing separate
architectures for different intervals might lead to overfitting
and a lack of robust early stopping mechanisms. To ad-
dress these challenges, our proposed multistage architecture
in Sec. 4 combines shared parameters to reduce overfitting
with interval-specific parameters to mitigate the impact of
gradient dissimilarity. This tailored approach for each in-
terval ensures improved adaptability. Furthermore, we con-
duct an in-depth ablation study in Sec. 5.3 to showcase the
effectiveness of our multi-stage architecture over the exist-
ing models.

4. Proposed Multistage Framework

In this section, we introduce our new multistage framework
(as illustrated in Fig. 1 (c)). Specifically, we first introduce
the multi-stage U-Net architecture design in Sec. 4.1, fol-
lowing a new clustering method for choosing the optimal
interval to partition the entire timestep [0, 1] into intervals
in Sec. 4.2. , and discuss the rationale of the proposed ar-
chitecture in Sec. 4.3.

7375

(a) Analysis on interval [0, t1) (b) Analysis on interval [t2, 1]
Figure 2. Comparison between separate architecture and unified architecture w.r.t. the image generation quality in different
intervals: (a) analysis on interval [0, t1); and (b) analysis on interval [t2, 1]. As illustrated on top of each figure, we only train separate
architectures within specific intervals for the sampling process in both (a) and (b). For the remaining period of sampling, we use a
well-trained diffusion model (ϵθ)

[0,1]

4×105
to approximate the ground truth score function. As shown in the above figure of (a), e.g. for the

separate architecture on interval 1, sampling utilizes trained model (ϵθ′)
[0,t1)
i for interval 0 and well-trained model (ϵθ)

[0,1]

4×105
for interval 1

and 2. Notably, for both (ϵθ)
[0,1]
i and (ϵθ)

[0,1]

4×105
, we are using the model with 108M parameters. For separate architecture, the number in the

parentheses represents the number of parameters of the model (ϵθ′)
[a,b]
i . For example, for separate architecture (169M) in (a), the model

(ϵθ′)
[0,t1)
i has 169M parameters for θ′. The bottom figures in (a-b) illustrate the FID of the generation from each architecture under different

training iterations.

4.1. Proposed Multi-stage U-Net Architectures

As discussed in Sec. 3, most existing diffusion models
either employ a unified architecture across all intervals
[1, 2, 18] to share features for all timesteps, or use com-
pletely separate architectures for different timestep intervals
[21, 22, 28] where the goal is to take advantage of the be-
nign properties within different intervals.

To harness the advantages of both unified and sepa-
rate architectures employed in prior studies, we introduce a
multistage U-Net architecture, as illustrated in Figure 1(c).
Specifically, we partition the entire timestep [0, 1] into sev-
eral intervals, e.g., three intervals [0, t1), [t1, t2), [t2, 1] in
Fig. 1. For the architecture, we introduce:
• One shared encoder across all time intervals. For each

timestep interval, we implement a shared encoder archi-
tecture (plotted in blue in Fig. 1 (c)), which is similar to
the architecture employed in the original U-Net frame-
work [33]. Unlike separate architecture, the shared en-
coder provide shared information across all timesteps,
preventing models from overfitting (see Sec. 5.3 for a dis-
cussion).

• Separate decoders for different time intervals. Moti-
vated by the multi-head structure introduced in the Mask
Region-based Convolutional Neural Networks (Mask-
RCNN) method [34], we propose to use multiple dis-
tinct decoders (plotted in colors for different intervals
in Fig. 1(c)), where each decoder is tailored to a spe-

cific timestep interval. The architecture of each decoder
closely resembles the one utilized in [2], with deliberate
adjustments made to the embedding dimensions to opti-
mize performance.
As we observe, the primary difference in the architec-

ture resides within the decoder structure. Intuitively, we
use a decoder with fewer number of parameters for inter-
vals closer to the noise, because the learning task is easier.
We use a decoder with a larger number of parameters for
intervals closer to the image.

4.2. Optimal Denoiser-based Timestep Clustering

Next, we discuss how we principally choose the interval
partition time points in practice. For simplicity, we focus on
the case where we partition the time [0, 1] into three inter-
vals [0, t1), [t1, t2), [t2, 1], and we develop a timestep clus-
tering method to choose the optimal t1 and t2. Of course,
our method can be generalized to multi-stage networks with
arbitrary interval numbers. However, in practice, we find
that the choice of three intervals strikes a good balance be-
tween effectiveness and complexity; see our ablation study
in Appendix B.6.

To partition the time interval, we employ the optimal de-
noiser established in Proposition 1.

Proposition 1. Suppose we train a diffusion model de-
noiser function ϵθ(x, t) with parameters θ using dataset

7376

Algorithm 1 Optimal Denoiser based Timestep Clustering

1: Input: Total samples K, optimal denoiser function ϵ∗θ(x, t),
thresholds α, η, dataset pdata, S0 = S1 = ∅

2: Output: Timesteps t1, t2
3: for k ∈ {1, . . . ,K} do
4: yk ∼ pdata, ϵk ∼ N (0, I), tk ∼ [0, 1]
5: Sk

0 ← D(ϵ∗tk , ϵ
∗
0,yk, ϵk),Sk

1 ← D(ϵ∗tk , ϵ
∗
1,yk, ϵk)

6: S0 ← S0 ∪ {
(
tk,Sk

0

)
},S1 ← S1 ∪ {

(
tk,Sk

1

)
}

7: end for

8: t1 = argmax
τ

{
τ
∣∣∣ ∑

(tk,Sk
0)∈S0

[Sk
0 ·1(tk≤τ)]∑

(tk,Sk
0)∈S0

[1(tk≤τ)]
≥ α

}

9: t2 = argmin
τ

{
τ
∣∣∣ ∑

(tk,Sk
1)∈S0

[Sk
1 ·1(tk≥τ)]∑

(tk,Sk
1)∈S0

[1(tk≥τ)]
≥ α

}

{yi ∈ Rn}Ni=1 by

min
θ
L(ϵθ; t) = Ex0,xt,ϵ[||ϵ− ϵθ(xt, t)||2], (3)

where x0 ∼ pdata(x) =
1
N

∑N
i=1 δ(x − yi), ϵ ∼ N (0, I),

and xt ∼ pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t I) with perturba-

tion parameters st and σt defined in Eq. (1). Then, the opti-
mal denoiser at t, defined as ϵ∗θ(x; t) = argminϵθ L(ϵθ; t),
is given by

ϵ∗θ(x; t) =
1

stσt

[
x− st

∑N
i=1N (x; styi, s

2
tσ

2
t I)yi∑N

i=1N (x; styi, s2tσ
2
t I)

]
.

(4)

The proof is provided in Appendix A, and the result can
be generalized from recent work of Karras et al. [18], ex-
tending from a specific kernel pt(xt|x0) = N (xt;x0, σ

2
t I)

to encompassing a broader scope of noise perturbation ker-
nels, given by pt(xt|x0) = N (xt; stx0, s

2
tσ

2
t I). For

brevity, we simplify the notation of the optimal denoiser
ϵ∗θ(x, t) in Proposition 1 as ϵ∗t (x).

To obtain the optimal interval, our rationale is to homog-
enize the regression task as much as possible within each
individual time interval. To achieve this goal, given sam-
pled x0, ϵ, we define the function distance of the optimal
denoiser at any given timestep ta, tb as:

D(ϵ∗ta , ϵ
∗
tb
,x0, ϵ) =

1

n

n∑
i=1

1(|ϵ∗ta(xta)− ϵ∗tb(xtb)|i ≤ η) ,

where 1(·) is the indicator function, η is a pre-specified
threshold, xta = stax0 + staσtaϵ, and xtb = stbx0 +
stbσtbϵ. Consequently, we define the functional similarity
of the optimal denoiser at timesteps ta and tb as:

S(ϵ∗ta , ϵ
∗
tb
) = Ex0∼pdataEϵ∼N (0,I)[D(ϵ∗ta , ϵ

∗
tb
,x0, ϵ)] . (5)

Based upon the definition, we design the following opti-
mization problem to find the largest t1 and smallest t2 as:

t1 ← argmax
τ

{
τ
∣∣∣Et∼[0,τ)[S(ϵ∗t , ϵ∗0)] ≥ α

}
, (6)

t2 ← argmin
τ

{
τ
∣∣∣Et∼[τ,1][S(ϵ∗t , ϵ∗1)] ≥ α

}
, (7)

such that the average functional similarity of ϵ∗t (resp. ϵ∗t)
to ϵ∗0 (resp. ϵ∗1) in [0, t1) (resp. [t2, 1]) is larger than or
equal to a pre-defined threshold α. As the above optimiza-
tion problems are intractable, we propose the procedure out-
lined in Algorithm 1 to obtain an approximate solution. In
particular, the algorithm samples K pairs (yk, ϵk, tk), k ∈
{1, . . . ,K} to calculate the distancesD(ϵ∗tk , ϵ

∗
0,yk, ϵk) and

D(ϵ∗tk , ϵ
∗
1,yk, ϵk) (step 6). Based on those distances, we

solve the optimization problems defined in the lines 8 and 9
of Algorithm 1 to obtain t1 and t2.

4.3. Rationales for the proposed architecture

Finally, we summarize the rationales of our proposed archi-
tecture based on the empirical observations in Sec. 3 and
previous works.
Rationales for the shared encoder. (i) Prevent overfitting:
If we treat training separate stages of diffusion models as
multi-task learning, [35] suggests that shared parameters
across tasks in multi-task learning can mitigate overfitting.
(ii) Maintain consistency in h-space. The output of the en-
coder for UNet is named as h-space [36], which has prop-
erties for semantic manipulation such as homogeneity, lin-
earity, robustness, and consistency across timesteps. There-
fore, sharing the encoder can maintain better consistency of
the h-space among all timesteps compared to separate en-
coders.
Rationales for network parameter design. First, we pro-
vide some intuitions as to why the learning task at t = 0
is harder than that at t = 1. Suppose diffusion models
could converge to the optimal denoiser ϵ∗θ(xt, t) given in
Eq. (4). Based on this, we observe: (i) when t → 0, we
have xt→0 = x0, ϵ∗θ|t→0 = ϵ, so that ϵ∗θ is a complicated
mapping from training data distribution pdata(x) to the gaus-
sian distribution; (ii) when t → 1, we have xt→1 = ϵ,
ϵ∗θ|t→1 = ϵ, so ϵ∗θ is an identity mapping. The two extreme
cases reveal that the identity mapping for t → 1 (close to
noise) is easier to learn than that for t → 0. Second, our
choice of network parameters across different stages share
similar spirits with the recent work [37], which employs
a high dimensional subspace as t → 0 and gradually de-
creases the dimensionality of each subspace until t = 1.

5. Experiments
In this section, we start by providing the experimental se-
tups. Next, we present results in terms of generation qual-
ity (Sec. 5.1). Subsequently, results for training and sam-
pling efficiency are presented. Finally, in Sec. 5.3 and

7377

Sec. 5.4, comprehensive ablation studies on timestep clus-
tering methods and multistage architectures are given.

Multistage architectures. Our multistage architecture,
inspired by the U-Net model [33] used in DDPM++ [1, 2,
18], is modified for interval-specific channel dimensions.
The proposed architecture is adopted to three diffusion
models: DPM-Solver [24], EDM [18], and LDM [8]. In
particular, for the cases of DPM-Solver and EDM, the en-
coder’s channel dimensions are standardized at 128, while
the decoders are configured with 192, 128, and 16 chan-
nels for intervals [0, t1), [t1, t2), and [t2, 1], respectively. In
the LDM case, we use 224 channels across the encoder for
all intervals whereas the decoders are configured with 256,
192, and 128 channels for the respective intervals. To de-
cide the specific number of parameters for each decoder, we
apply ablation studies in Appendix B.5. Training details are
in Appendix D.

Datasets, evaluation metrics, & baselines. We use
CIFAR-10 (32 × 32), CelebA (32 × 32), and CelebA (256
× 256) datasets for our experiments. To evaluate the per-
formance of our multistage diffusion model in terms of the
generation quality, we use the standard Fréchet Inception
Distance (FID) metric [38]. We assess the sampling effi-
ciency using the NFE, and giga-floating point operations
(GFLOPs) per function evaluation. For both separate archi-
tecture and our multistage architecture, equivalent GFLOPs
are computed as a weighted summation of GFLOPs for
each interval. Training efficiency is evaluated using to-
tal training iterations multiplied by the GFLOPs per func-
tion evaluation,2 measured by peta-floating point operations
(PFLOPs). For baselines, we consider DDPM [1], Score
SDE [2], Poisson Flow Generative Models (PFGM) [39],
DDIM [29], gDDIM [30], DEIS [31], DPM-solver [24], and
EDM [18].

5.1. Image Generation Quality Results

In this subsection, we demonstrate the effectiveness of our
approach by comparing the image generation quality (mea-
sured by FID) with comparable training and sampling com-
putations (measured by NFE). Specifically, Tab. 1 presents
FID scores to measure the sampling quality, and NFE to
measure the number of sampling iterations required us-
ing the CIFAR-10 dataset. Our method is compared to 8
baselines. As observed, our multistage DPM-Solver out-
performs DPM-Solver in terms of the reported FID val-
ues while requiring similar training iterations (both are
4.5× 105) and model GFLOPs (18.65 for multistage DPM-
Solver versus 17.65 for DPM-Solver). A similar observa-
tion holds when we compare our multistage EDM and the

2Here we simplify it by ignoring the FLOPs for backward propagation,
which is approximately proportional to FLOPs of forward evaluation.

vanilla EDM, where we reduce FID from 2.05 to 1.96 by us-
ing the multi-stage architecture. Remarkably, utilizing only
20 NFE, our Multistage DPM-Solver returns the same FID
score as the one reported for the PFGM method, which re-
quires 147 NFEs. These results also highlight the adaptabil-
ity of our framework to higher-order ODE solvers; see the
8th and last row of Tab. 1.

Table 1. Sampling quality on CIFAR-10 Dataset.

METHOD NFE(↓) FID(↓)
DDPM 1000 3.17
Score SDE 2000 2.20
PFGM 147 2.35
DDIM 100 4.16
gDDIM 20 2.97
DEIS 20 2.86
DPM-solver 20 2.73

Multistage DPM-solver (Ours) 20 2.35

EDM 35 2.05

Multistage EDM (Ours) 35 1.96

5.2. Training & Sampling Efficiency Results

In this subsection, we further demonstrate the superiority
of our method by comparing the training and sampling effi-
ciency under comparable image generation quality. Specif-
ically, in Tab. 2, we present the number of training itera-
tions, GFLOPs, and total training PFLOPs of our approach,
DPM-solver, EDM, and LDM using CIFAR-10 and CelebA
datasets. Using the CIFAR-10 dataset, our multistage DPM-
solver achieves similar FID scores (2.71 vs 2.73) while re-
quiring nearly half the training iterations when compared to
the vanilla DPM-solver. For the case of EDM (resp. LDM),
our approach returns an FID score of 1.44 (resp. 8.29), re-
quiring 1.4×105 (3.2×105) less iterations when compared
to vanilla DPM-solver (resp. LDM). For the cases of DPM-
solver and EDM, we can achieve a substantial reduction of
training iterations, which is demonstrated by a marginal in-
crease in the number of GFLOPs. For the LDM case, we
also achieve a significant reduction of both training itera-
tions and GFLOPs. These promising results highlight the
significantly improved computational efficiency achieved
by using the proposed multistage framework.

5.3. Comparison of Different Architectures

In Sec. 3, we highlighted the limitations of both unified and
separate diffusion model architectures in terms of training
efficiency (see Fig. 2). In this part, we further illustrate
these limitations through extensive experiments as shown

7378

Table 2. Training and Sampling Efficiency on More Datasets.

Dataset Method Training Iterations(↓) GFLOPs(↓) Total Training PFLOPs(↓) FID(↓)
CIFAR-10 DPM-Solver [18] 4.5× 105 17.65 7.94 2.73
32× 32 Multistage DPM-Solver (Ours) 2.5× 105(56%) 18.65 (106%) 4.66 (59%) 2.71
CelebA EDM [18] 5.7× 105 17.65 10.06 1.55
32× 32 Multistage EDM (Ours) 4.3× 105(75%) 19.25 (109%) 8.28 (82%) 1.44
CelebA LDM [8] 4.9× 105 88.39 43.31 8.29

256× 256 Multistage LDM (Ours) 1.7× 105(35%) 76.19 (86%) 12.95 (30.0%) 8.38

in Tab. 3. Here, we use the U-Net architecture, trained on
the CIFAR-10 dataset, and utilize the DPM-Solver for sam-
pling. For the unified case, we use a single U-Net model
with 128 channels. For the separate case, three distinct
U-Nets with 128 channels are used. For improved perfor-
mance of the separate architecture, we implement two tech-
niques: early stopping (ES) and tailored parameters (TP) to
tackle the overfitting and parameter inefficiency discussed
in Sec. 3. Under ES, the criteria is to stop training prior
to overfitting. For TP, the three U-Nets are configured with
192, 128, and 16 channels decoders for Intervals 0, 1, and
2, respectively.

Our comparison and analysis in Tab. 3 reveal notable in-
sights of our network design. Comparisons between the
2nd and 3rd rows (and between the 4th and 5th rows) on
the separate architectures indicate that early stopping effec-
tively mitigates overfitting and enhances generation qual-
ity. When comparing the 2nd and 4th rows (as well as
the 3rd and 5th rows) on the separate architectures, we ob-
serve that optimizing parameter usage can achieve a signifi-
cant decrease in FID under comparable GFLOPs. Most im-
portantly, our multistage architecture, as shown in the 6th
row, benefits from both unified and separate architectures,
achieving the best FID (2.35, compared to 2.73 and 2.52).
Comparing the 2nd row and the 4th row, the shared encoder
not only prevents overfitting but also improves the conver-
gence of the diffusion model as reported by the FID scores.

Table 3. Ablation study on different diffusion model architectures.

Method GFLOPs FID(↓)
Unified 17.65 2.73
Separate 17.65 2.87
Separate (+ ES) 17.65 2.80
Separate (+ TP) 18.65 2.68
Separate (+ ES, TP) 18.65 2.52

Multistage (Ours) 18.65 2.35

5.4. Comparison of Timestep Clustering Methods

As previously stated in Sec. 2, various timestep cluster-
ing methods are proposed including timestep-based, SNR-

based, and gradient-based clustering approaches [20, 21].
In this subsection, we conduct an experiment to demon-
strate the superiority of our clustering method compared to
previous arts. Specifically, we apply the clustering meth-
ods in [20, 21] to partition the interval along with our pro-
posed multistage UNet architecture. The computed inter-
vals are shown in the Tab. 4. We use the multistage DPM-
Solver with these different intervals trained on the CIFAR-
10 dataset. As observed, our optimal denoiser-based clus-
tering method achieves the highest FID score, consistently
outperforming all other clustering methods.

Table 4. Ablation study on different clustering methods.

Clustering Method t1 t2 FID(↓)
Timestep [20, 21] 0.330 0.670 3.12
SNR [20] 0.348 0.709 2.72
Gradient [20] 0.360 0.660 2.75

Optimal Denoiser 0.442 0.631 2.35

6. Conclusion & Future Work
In this paper, we introduced a novel multi-stage framework
for diffusion models (DM) to improve the training and sam-
pling efficiency. We proposed an algorithm that divides the
timestep into several stages. Based on these stages, we de-
signed a stage-specific multi-decoder U-net architecture and
a shared encoder across all stages. We conducted thorough
numerical experiments with several SOTA diffusion model
frameworks and confirmed the effectiveness of our strategy
using small scale and large scale datasets.

In future research, it would be interesting to expand our
multi-stage approach beyond unconditional diffusion mod-
els by considering conditional DMs and DM-based inverse
problems solvers. Our experiment in Sec. 5.2 demonstrate
that training latent diffusion models within our multi-stage
framework requires only 30% of the computational effort
needed for training standard latent diffusion models on the
CelebA dataset. Thus, employing a multi-stage strategy
could significantly reduce the computational demands for
training large-scale stable diffusion models, such as those
described in [8], which typically requires significant com-
putations.

7379

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 2, 3, 5, 7

[2] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 1, 2, 3, 5,
7

[3] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 1

[4] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 1

[5] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon.
Dual diffusion implicit bridges for image-to-image transla-
tion. arXiv preprint arXiv:2203.08382, 2022. 1

[6] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, 2022.

[7] Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. Egsde:
Unpaired image-to-image translation via energy-guided
stochastic differential equations. Advances in Neural Infor-
mation Processing Systems, 35:3609–3623, 2022. 1

[8] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2, 7, 8

[9] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821–8831. PMLR, 2021.

[10] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 1

[11] Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu,
Qing Qu, and Liyue Shen. Solving inverse problems with
latent diffusion models via hard data consistency. arXiv
preprint arXiv:2307.08123, 2023. 1

[12] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L
Klasky, and Jong Chul Ye. Diffusion posterior sam-
pling for general noisy inverse problems. arXiv preprint
arXiv:2209.14687, 2022.

[13] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solv-
ing inverse problems in medical imaging with score-based
generative models. arXiv preprint arXiv:2111.08005, 2021.

[14] Ismail Alkhouri, Shijun Liang, Rongrong Wang, Qing Qu,
and Saiprasad Ravishankar. Diffusion-based adversarial pu-
rification for robust deep mri reconstruction. arXiv preprint
arXiv:2309.05794, 2023. 1

[15] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben

Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 2

[16] William Harvey, Saeid Naderiparizi, Vaden Masrani, Chris-
tian Weilbach, and Frank Wood. Flexible diffusion modeling
of long videos. Advances in Neural Information Processing
Systems, 35:27953–27965, 2022. 2

[17] Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Liyue
Shen, and Qing Qu. The emergence of reproducibil-
ity and consistency in diffusion models. arXiv preprint
arXiv:2310.05264, 2023. 2

[18] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. arXiv preprint arXiv:2206.00364, 2022. 2, 3, 5, 6,
7, 8, 1

[19] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon
Kim, Hyunwoo Kim, and Sungroh Yoon. Perception pri-
oritized training of diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11472–11481, 2022. 2, 3, 4

[20] Hyojun Go, JinYoung Kim, Yunsung Lee, Seunghyun Lee,
Shinhyeok Oh, Hyeongdon Moon, and Seungtaek Choi. Ad-
dressing negative transfer in diffusion models. arXiv preprint
arXiv:2306.00354, 2023. 3, 4, 8, 2

[21] Yunsung Lee, Jin-Young Kim, Hyojun Go, Myeongho
Jeong, Shinhyeok Oh, and Seungtaek Choi. Multi-
architecture multi-expert diffusion models. arXiv preprint
arXiv:2306.04990, 2023. 3, 4, 5, 8, 2

[22] Hyojun Go, Yunsung Lee, Jin-Young Kim, Seunghyun Lee,
Myeongho Jeong, Hyun Seung Lee, and Seungtaek Choi.
Towards practical plug-and-play diffusion models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1962–1971, 2023. 2, 3, 4, 5

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 1

[24] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffu-
sion probabilistic model sampling in around 10 steps. arXiv
preprint arXiv:2206.00927, 2022. 2, 3, 7

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015. 2, 1

[26] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation, 23(7):1661–
1674, 2011. 3

[27] Kamil Deja, Anna Kuzina, Tomasz Trzcinski, and Jakub
Tomczak. On analyzing generative and denoising capabil-
ities of diffusion-based deep generative models. Advances
in Neural Information Processing Systems, 35:26218–26229,
2022. 3

[28] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image
diffusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 3, 5

7380

[29] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 7, 2

[30] Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim:
Generalized denoising diffusion implicit models. arXiv
preprint arXiv:2206.05564, 2022. 3, 7

[31] Qinsheng Zhang and Yongxin Chen. Fast sampling of dif-
fusion models with exponential integrator. arXiv preprint
arXiv:2204.13902, 2022. 3, 7

[32] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. 2023. 3

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 5, 7

[34] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 5

[35] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 6

[36] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion
models already have a semantic latent space. arXiv preprint
arXiv:2210.10960, 2022. 6

[37] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and
Tommi Jaakkola. Subspace diffusion generative models. In
European Conference on Computer Vision, pages 274–289.
Springer, 2022. 6

[38] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 7

[39] Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola.
Poisson flow generative models. Advances in Neural Infor-
mation Processing Systems, 35:16782–16795, 2022. 7

[40] George Cybenko. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and sys-
tems, 2(4):303–314, 1989. 1

[41] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. Advances in neural in-
formation processing systems, 32, 2019. 2

[42] Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Semen
Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin. High-
fidelity performance metrics for generative models in py-
torch, 2020. URL https://github.com/toshas/
torch-fidelity. Version: 0.2.0, DOI: 10.5281/zen-
odo.3786540. 2

7381

