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Figure 1. With the proposed compact spherical embedding of 3D joints, our method can generate high-quality and high-resolution 3D
humans with reasonable global structure and fine-grained geometry details in an efficient way, based on a native conditional 3D generative
network with 2D diffusion model.

Abstract

3D human generation is increasingly significant in var-
ious applications. However, the direct use of 2D genera-
tive methods in 3D generation often results in losing lo-
cal details, while methods that reconstruct geometry from
generated images struggle with global view consistency.
In this work, we introduce Joint2Human, a novel method
that leverages 2D diffusion models to generate detailed 3D
human geometry directly, ensuring both global structure
and local details. To achieve this, we employ the Fourier
occupancy field (FOF) representation, enabling the direct
generation of 3D shapes as preliminary results with 2D
generative models. With the proposed high-frequency en-
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hancer and the multi-view recarving strategy, our method
can seamlessly integrate the details from different views into
a uniform global shape. To better utilize the 3D human
prior and enhance control over the generated geometry, we
introduce a compact spherical embedding of 3D joints. This
allows for an effective guidance of pose during the gener-
ation process. Additionally, our method can generate 3D
humans guided by textual inputs. Our experimental results
demonstrate the capability of our method to ensure global
structure, local details, high resolution, and low computa-
tional cost simultaneously. More results and the code can be
found on our project page at http://cic.tju.edu.
cn/faculty/likun/projects/Joint2Human.
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Except for this watermark, it is identical to the accepted version;
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1429



1. Introduction
The field of 3D human generation holds consider-

able significance across diverse applications, including vir-
tual/augmented reality, gaming, and the film industry. De-
spite advancements in existing methods [9, 22, 46], it re-
mains a challenge to achieve a simultaneous guarantee of
both global structural accuracy and local geometry details,
which is often compounded by high computational costs. In
this paper, we aim to address these limitations and propose a
method for generating high-quality 3D human models that
exhibit fidelity to both global structures and local details
while ensuring computational efficiency, as illustrated in
Figure 1.

Existing human generation methods can be divided into
two categories: two-stage methods and native 3D genera-
tion methods. Two-stage generation methods [19, 20, 22,
35, 46] fit 3D humans from 2D images via NeRF [31] or dif-
ferentiable rendering [32]. These methods are trained only
on 2D datasets and hence lack a 3D backbone for perceiving
3D structures and ensuring view consistency. Chupa [22]
aims to produce high-quality results through dual normal
map-based optimization but suffers from depth ambiguity
issues that harm view consistency. Most native 3D gener-
ation methods [1, 9, 34, 44] generate 3D humans directly
with Tri-planes [4] or Signed Distance Fields [35]. How-
ever, these approaches encounter challenges in achieving
high-fidelity global structures with fine-grained local ge-
ometry details. Additionally, their generalization capabil-
ities are limited, and computational efficiency is compro-
mised. In summary, the existing methodologies collectively
fail to ensure global structural fidelity, local detail preserva-
tion, high resolution, and computational efficiency simulta-
neously.

To efficiently generate high-quality 3D humans with rea-
sonable global structure and fine-grained geometry details,
in this paper, we propose Joint2Human, a conditional gen-
erative network with 2D diffusion models derived from 3D
datasets. To achieve high-fidelity 3D human generation
with reasonable global structure, we employ the 2D gen-
erative models to produce 3D shapes as preliminary re-
sults directly. Subsequently, we carefully design the com-
pact spherical embedding of 3D joints based on an image-
aligned 3D representation FOF [10, 11]. With it, we imple-
ment effective pose guidance and diverse generation. We
also design a high-frequency enhancer and a multi-view re-
carving strategy for fine-grained local detail generation. Ex-
perimental results demonstrate that our method outperforms
the state-of-the-art methods regarding global structure, lo-
cal detail, and computational efficiency. Furthermore, our
method also exhibits versatility by enabling the generation
of 3D human representations guided by text.

To summarize, our main contributions include:
• We propose Joint2Human, a native conditional 3D gener-

ative method with a 2D diffusion model for high-quality,
high-resolution 3D human generation. To our knowledge,
it is the first work based on the FOF that can simultane-
ously ensure global structure, local details, high resolu-
tion, and low computational cost.

• We propose a new pose guidance embedding, a compact
spherical embedding of 3D human joints, for efficient per-
ception of global structure. This mechanism also facili-
tates a more straightforward and effective implementation
of pose-guided generation in 2D generation framework.

• We design a high-frequency enhancer by integrating a
subsidiary decoder into the pre-trained VAE and a multi-
view recarving strategy for fine-grained local detail gen-
eration. Both of them improve the geometry quality of
the final results.

2. Related Work
2.1. 3D Human Generation with 2D Generators

Many approaches [12, 19, 20, 22, 35, 46] try to learn
the 3D shape from 2D images via various NeRF represen-
tations [25, 28, 31, 33, 38, 39] and differentiable volume
rendering [32, 45, 51]. However, it is always computation-
ally expensive and limited in resolution. EVA3d [19] de-
signs complex training strategies to achieve high-resolution
generation, but its geometric quality is mediocre. What’s
worse, the 2D dataset is always imbalanced in viewing an-
gles and human poses. Hence, these methods are relatively
unstable, and it is hard to generate a realistic full-body hu-
man geometry. Other methods [20, 22, 46] also leverage
the priors from 2D human generation and 3D human re-
construction models, which is cumbersome. In Chupa [22],
many optimizations are needed to maintain view consis-
tency. It first generates two normal maps for a clothed hu-
man’s front and back sides, then optimizes the 3D generated
mesh by the dual normal maps. There are also some human
template-based works [3, 18, 22, 27, 48, 50] that are highly
dependent on human template mesh, such as SMPL [29]
and SMPL-X [37], which adversely affect the diversity of
generated models especially in local details. For example,
it is flawed in modeling loose clothes like dresses.

2.2. 3D-aware Generation

Based on the development of 3D human representa-
tion, numerous methods have emerged for native 3D gen-
eration. Some of these approaches [1, 9, 34, 44] utilize
tri-planes [4] which is a NeRF-based representation. It
is hard to generate precise geometry, which is limited by
computational complexity. Apart from that, the implicit
functions [35, 36] are highly favored in several meth-
ods [3, 18, 19, 24, 46]. Alternatively, some methods use
3D data for training, gDNA [6] use implicit multi-subject
forward skinning which enables learning from 3D scans of
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Table 1. Comparison with existing methods.

Method
Global Structure

(View Consistency)
Local Detail High Resolution Loose Clothes

Computational
Efficiency

GNARF[1] ! % % % %

AG3D [9] ! % % % %

Get3Dhuman [46] % ! ! ! %

Chupa [22] % ! ! % %

Ours ! ! ! ! !

human bodies. Among all the works mentioned above, the
GAN [1, 4, 9, 13, 19, 20, 34, 35, 46, 50] and Diffusion mod-
els [3, 17, 22, 24, 44] are the most popular.

Using the diffusion model for small object generation[5,
7, 8, 26] is more straightforward to combine with text con-
trol. However, the text-guided 3D human generation is
more difficult due to the high-dimensional cube and lack of
text-3D data pairs. Some attempts were made to tackle these
issues. AvatarCLIP [18] initialize a bare mesh shape with
SMPL. It continuously optimizes the mesh to match the in-
put text by calculating the CLIP score between the text to-
ken and the mesh’s rendering image. CLIP-actor [48] does
the same thing, except it designs a recommendation module
to get the initial shape/motion. In this way, they reduced the
need for text-3D data pairs with the help of the large text-
image pre-trained model [40]. Other methods [3, 22, 44]
impose textual controls on the diffusion model for gener-
ated shapes that match the input description. In previous
approaches [7, 8, 26] to generating small objects, the reso-
lution of the generated geometry is limited for human gen-
eration, such as 643 or 1283. In addition, some methods,
such as differentiable rendering-based methods, are time-
consuming to infer.

Different from the two types of methods described
above, as shown in Tab. 1. Our approach can accommodate
both global structures and local details. To fully perceive
the global structures, we adopt the image-aligned 3D rep-
resentation FOF and introduce a compact spherical embed-
ding of 3D joints for pose guidance. To generate details, we
design a high-frequency enhancer and a multi-view recarv-
ing strategy in 3D space. Apart from this, we also simul-
taneously achieve high-resolution generation and low com-
putational cost.

3. Method

Our method aims to generate diverse 3D-clothed humans
with global structure and local details. First, we propose a
direct conditional 3D generative method with 2D diffusion
models as illustrated in Fig. 2. Specifically, we utilize an
image-aligned 3D representation FOF to produce 3D shapes

directly. We operate the condition and generation process
in the latent space (Sec. 3.1). Then, we propose the com-
pact spherical embedding of 3D joints (Sec. 3.2) for precise
pose control and diverse generation. Furthermore, a high-
frequency enhancer (Sec. 3.3) and a multi-view recarving
strategy (Sec. 3.4) are proposed to improve the geometry
details further. We will detail all the stages of our method
in the following subsections.

3.1. Latent Diffusion for Fourier Occupancy Fields

To model the distribution of Fourier Occupancy Fields,
following the latent diffusion model [41], we utilize an
auto-encoder to compress the high-dimensional raw data
space into a lower-dimensional latent space, which encodes
human shapes into a normal distribution. In detail, we
adopted a VAE [23], which contains the encoder E and de-
coder D. Given a FOF feature x ∈ R512×512×32, the en-
coder E encodes FOF into latent vectors z = E (x), where
z ∈ R128×128×8. The decoder D decodes the latent vec-
tors back to the original FOF space x̃ = D (E (x)), where
x̃ ∈ R512×512×32. We pretrained the auto-encoder with
the reconstruction loss and KL-regularization loss like [41].
During training, the training data is passed through the en-
coder E in the vae module to obtain its feature in the latent
space. We adopt a U-Net-like structure as our denoising
model ϵθ. We follow the classical and efficient loss function
proposed by Ho [17] and train the diffusion model based on
the T steps of noise-adding and denoising processes in the
latent space. Thus, we can obtain a vector z̃0 in the latent
space, which will be sent to the decoder D to get FOF. Then,
we can convert the FOF to an occupancy field and get an ini-
tial 3D human mesh from it with the Marching Cubes [30]
algorithm.

3.2. Condition-guided Generation Mechanisms

Compact Spherical Embedding of 3D Joints. Different
from previous works [3, 9, 18, 22, 48, 50] adopt the
human parametric model [29, 37] for pose guidance, we
find that such a strategy with FOF can lead to overfitting.
Conditioning on the SMPL makes it harder for networks
to learn the true data distribution, which is also mentioned
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Figure 2. Overview of our framework. Joint2Human takes Gaussian noise and some conditional information as input. We first encode
FOF into a latent space, where a diffusion model is trained to enable high-resolution human generation. Furthermore, to enable flexible
conditional generation, we adopt condition encoders along with classifier-free guidance to enable conditional generation. Our conditional
control generation strategy can support switching between different modalities. Then, we pass the results generated by the first denoising
process through the high-frequency enhancer Dh and multi-view recarving strategy for fine-grained local detail generation. Additionally,
the recaiving strategy is shown in the bottom subfigure.

estimating the joints spherical space extension sampling for FOF

Figure 3. The data processing flow for compact spherical embed-
ding of 3D joints.

in ECON [47]. To avoid the redundant information and
the misleading geometric prior from SMPL, we use the
human body joints as pose guidance and design a compact
spherical embedding of 3D joints. As shown in Fig. 3, we
first estimate the K 3D joints location J =

{
pi ∈ R3

}K

i=1

of the given human. For each joint position pi, we extend
a sphere with pi as the center and r as the radius in 3D
space. After that, according to the Sec. 3.1, we compute
the FOF ci ∈ R512×512×8 for each sphere. Therefore, the
depth information is stored in the phase of trigonometric
functions. We concatenate {ci}Ki=1 channel-wise with a
fixed order to form the compact spherical embedding of 3D
joints conjoint ∈ R512×512×8K . In this way, our approach
processes joints in different channels and concatenates
them to form the embedding of 3D joints, integrating
full semantic and depth-wise information for precise pose
control. In our setting, we use r = 10cm and follow the
joints K = 24 in SMPL.

Pose-guided Geometry Generation. We aim to generate
a human shape that fits the given pose. With the compact
spherical embedding of the 3D joints, we can efficiently
perform pose control in human generation. To further im-
prove the stability of the generative model, we incorporate
the 2D prior by utilizing the IUV map coniuv defined in
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DensePose [14]. During training, we first get the conpose

by concatenating the conjoint and coniuv in the channel di-
mension. Then, we learn a pose encoder εpose to get the
human pose embedding τpose and apply the pose condition
conpose on the latent code z by concatenation after passing
through the conditional encoder :

τpose = εpose (conpose) , (1)

where the εpose consists of two convolutional layers for the
alignment of the feature. In the inference stage, we first
get the human pose embedding τpose; then we perform the
denoising process of the ϵθ to get the initial human shape.

Text-guided Geometry Generation. To generate the 3D
human with the guidance of text description, we pro-
posed the image prompt strategy for our model based
on a text-guided 2D human image generation model
Text2Human [21]. In the training stage, we learn an addi-
tional image encoder εi to get the human image embedding
τimg , then apply it to the training of the diffusion model by
concatenation. In the inference stage, with the input text,
we first infer the text-to-image model T and image encoder
εi to get the embedding τimg , then we sample the 3D human
shape from ϵθ with all these conditions. We provide addi-
tional text-guided generation results in the supplementary
materials.

3.3. High-frequency Enhancer

For efficient human representation and modeling of data
distribution, we only save low-frequency terms while tak-
ing the FOF as a 3D representation in Sec. 3.1. However,
some abandoned high-frequency information is essential for
human shape details. Therefore, based on the generation
of the low-frequency FOF feature, we propose the High-
Frequency enhancer to recover these missing details Ch, as
shown in Fig. 2. In detail, we learn a reference-based de-
coding network Dh based on the latent space and decoder
from the auto-decoder claimed in Sec. 3.1 to predict high-
frequency terms Ĉh:

Ĉh = Dh (Dl (z0) , z0) , (2)

To enhance the perception of latent-space contextual infor-
mation, we introduce additional skip connections for each
layer in Dh, which is used to fuse the feature map Dl (z0)
from the relevant layers in the decoder Dl. When training,
we calculate the MSE loss between the predicted terms Ch

and high-frequency ground truth Ch as the supervision to
optimize Dh,the loss function Lh is formulated as:

Lh =
1

n

n∑
i=1

(
Ĉh (xi, yi)− Ch (xi, yi)

)2

, (3)

where n is the number of all pixels in Ch. So, in the in-
ference stage, we can estimate the high-frequency feature

based on the known low-frequency feature to enhance the
geometric details.

3.4. Multi-view Recarving Strategy

Since our training data is sampled along a fixed direc-
tion and the directionality of FOF, there are a few artifacts
along the direction orthogonal to the normal direction of
the generated shape. We propose the multi-view recarving
strategy to improve the geometry quality while maintaining
muti-view consistency.

Different from the resampling in Chupa [22], we per-
form this process on 3D space and fuse them by blending
the occupancy fields. In detail, we first perform the infer-
ence process of diffusion and high-frequency enhancer to
obtain the FOF Cinit and the occupancy field Finit. Based
on the Finit, we can get the initial human mesh Minit,
which may have some artifacts in other views. To tackle
these artifacts, we rotate the Minit θ degrees along the yaw
axis to get Mθ. After that, we convert the Mθ into FOF
Cθ along the current orientation. With the Cθ, we do the
same thing as described in Sec. 3.1: leveraging the encoder
E to get the latent code ẑ. Then, we re-execute the forward
process of diffusion, adding T ′ steps of noise to ẑ and de-
noising the noise ẑ with ϵθ. We pass the denoised latent
code through the decoder to get the FOF Cθ. Meanwhile,
we can reconstruct the occupancy field Fθ from FOF Cθ by
efficient Fourier inversion. At last, we blend the occupancy
fields {Finit, Fθ1 , Fθ2 ...} of different views and extract the
3D human mesh from the occupancy fields. In our setting,
we perform this procedure only once with the θ = π

2 . In
this way, two orthogonal views are blended in a weighted-
average approach. We settle on this setup under the trade-
off between computational efficiency and geometric quality.

4. Experiments
4.1. Experimental Setup

• Datasets. We train our model with THuman 2.0 [49],
THuman 3.0 [43], 2k2k [15] and about 1500 high-quality
meshes from commercial datasets. To ensure a fair com-
parison, we deviated from Chupa [22]’s settings and used
a third-party dataset CustomHumans [16] as our test set.
This dataset wasn’t used to train any model. We do this
because the Sota methods’ training code is not publicly
available, and some of the datasets they use are not pub-
licly available. For the training stage, we first sample 32
successive different angles of FOF along the yaw axis of
the rotating human body to generate FOF feature maps
for the same mesh. After that, we obtain the joint points
for each mesh and calculate the compact spherical em-
bedding of the 3D joint using the same FOF sampling
process.

• Baselines. We compare our method with Chupa [22] and
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Table 2. Quantitative evaluation. We report two types of FID
scores on the test dataset.

Method FIDnormal ↓ FIDshade ↓
Chupacoarse 51.60 73.03
Chupafine 29.90 45.49
Ourscoarse 37.67 59.45
Oursfine 23.89 41.20

AG3D [9] as baselines. Chupa is the current state-of-the-
art method for generating 3D human geometry. We don’t
make a quantitative comparison with AG3D because it
uses 2D datasets, and the training code of AG3D is un-
available.

• Metrics. We measure the quality of the generated human
mesh by using the Fréchet Inception Distance (FID) [2]
between the rendering normal maps [6, 22] and shad-
ing images [22, 42] of the generated meshes. We follow
the settings of Chupa [22] and render the meshes into 18
views with 20◦ yaw interval for calculating FID.

4.2. Implementation Details

To represent and generate a high-quality 3D human ge-
ometry, the channels of the FOF feature maps need to be
set to at least 32. For the training stage of the FOF auto-
encoder, we train it for three days on 8 NVIDIA A100
GPUs, with a batch size of 32. For the diffusion model
training stage, we train it for eight days on 8 NVIDIA A100
GPUs, with a batch size of 64. The total number of time
steps is set as T = 1000, T ′ = 200 for the diffusion model
in our pipeline. We present more details in the supplemen-
tary material.

4.3. Generated Results

Fig. 4 shows various generated results by our method.
Our method can generate high-quality 3D humans with
global structure, local details, and high resolution. Bene-
fiting from our proposed compact spherical embedding of
3D joints, we can flexibly generate high-quality 3D humans
guided by poses as shown in Fig. 5. Our model performs
well in the diversity of generations with the fixed pose as
guidance. It can generate humans with different identities
and costumes.

4.4. Comparison

Qualitative and Quantitative Results. We compare our
method with the latest human generative models Chupa [22]
and AG3D [9]. In detail, We conduct a quantitative com-
parison with Chupa to assess the quality of the generated
meshes. We also conduct a qualitative comparison with
AG3D and Chupa. To ensure a fair comparison, we try to
make the input poses of Chupa and our method the same

Figure 4. Our method can generate various high-quality 3D hu-
mans.

Figure 5. Our method can generate diverse results given a specific
pose.

as much as possible. However, AG3D is not friendly to
fixed poses of the results, so we used random poses in the
test stage. The quantitative results for human generation are
shown in Tab. 2. Our method outperforms the current SOTA
methods and achieves better FID on both images. Fig. 6
shows qualitative comparison results. Our results gain the
natural and detailed visual effects. Besides, we have better
view consistency when compared to the generated results
of other methods. In addition, our model can complete the
generation process in less than one minute. It is advanced
in loose clothing modeling and diversity generation. The
discussion on running time and the visualized generation
results are shown in the supplementary material.
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Figure 6. The generated 3D humans compared with Chupa [22] and AG3D [9].
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Figure 7. The generated results with different pose-guidance
strategies.

Figure 8. We present the side-view normal maps of the generated
human. (a) illustrates the results without the High-Frequency En-
hancer, while (b) illustrates the results using the High-Frequency
Enhancer.

(a) (b）

Figure 9. Ablation study on multi-view recarving strategy. With
the multi-view recarving strategy (b), some artifacts can be
avoided, compared with the variant without this strategy (a).
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User Study. To better evaluate our method with other state-
of-the-art methods, we conduct a perceptual study to ask
the users about their preferences of the three methods on
the following three aspects: (1) Global structure, (2) Local
detail, and (3) Overall impression. In the user study, we
collected 123 answers from 54 females and 69 males of dif-
ferent ages (6 users under 18, 113 users between 18 and 40,
2 users between 40 and 60, and 2 users above 60). The re-
sults are shown in Tab. 3, demonstrating that our approach
is the most popular throughout the user study. A total of
70.73% of the users consider our methods’ diversity supe-
rior to Chupa (Method B). More details about the user study
can be found in the supplementary material.

Table 3. Proportion of popularity of different methods in different
metrics.

Method AG3D (A) Chupa (B) Ours (C)

Global Structure 18.70% 32.20% 49.10%
Local Detail 18.05% 29.92% 52.03%
Overall Impression 19.02% 29.27% 51.71%
Diversity of Generation - 29.27% 70.73%

4.5. Ablation Study

We have conducted extensive ablation studies to validate
the components and settings of our pipeline. We use the
same pose guidance in quantitative comparisons. We also
show and analyze different qualitative results to demon-
strate the effectiveness of our modules.
Ablation on Different Pose-guidance Strategies. To
validate the effectiveness of our pose-guidance, we train
our model under different conditional information for pose-
guidance. There are three types of conditional information
in our study, SMPL [29], CSEJ (our compact spherical
embedding of 3D joints), and IUV [14]. We calculate the
Fid scores under the different pose conditions. As shown
in Tab. 4, the CSEJ can generally improve the generation
quality. While CSEJ alone is not as good as IUV on this
metric, the advantage of our CSEJ is enabling precise pose
control. The FID only calculates the distance between two
distributions but does not measure the ability to control
the pose. Fig. 7 shows generated results using different
guidance under the fixed pose; our CSEJ alone achieves
better pose-control results than IUV.

Table 4. Ablation study on different pose-guided strategy. We
report FID scores for different combinations.

SMPL CSEJ IUV map FIDnormal ↓
! % % 49.16
% ! % 45.73
% % ! 39.51
% ! ! 38.40

Ablation on Multi-view Recarving Strategies and High-
Frequency Enhancer. Fig. 8 demonstrates the better visual
effect of using High-Frequency Enhancer. The visual com-
parisons presented in Fig. 9 demonstrate that the recarv-
ing strategy significantly enhances the local details of the
generated human. To further measure the ability of other
modules to capture local details, we conduct comparative
experiments under different modules and calculate the FID
scores. The results are shown in Tab. 5.

Table 5. Ablation study on multi-view recarving strategy and high-
frequency enhancer. We report FID scores for different combina-
tions.

Recarving Strategy Enhancer FIDnormal ↓
% % 37.39
! % 31.90
% ! 29.51
! ! 25.67

5. Conclusion and Discussion

Conclusion. In this paper, we introduce Joint2Human, a
novel and efficient method for directly generating detailed
3D human geometry using 2D diffusion models. We pro-
pose a compact spherical embedding of 3D joints for flex-
ible control and the utilization of human prior. We also
design a high-frequency enhancer and a multi-view recarv-
ing strategy to seamlessly integrate the details from differ-
ent views into a uniform global shape, guaranteeing global
structure and local details. Besides, our method can also
generate high-quality 3D humans guided by text. Experi-
mental results demonstrate that our method outperforms the
state-of-the-art methods, making it ideal for advanced 3D
applications.

Limitations. Although our method can produce results
with various poses, supporting extreme poses is still a huge
challenge, such as stooping down or standing on the head.
More failure cases are shown in the supplementary material.

Broader Impact. Our method will promote the develop-
ment of avatar generation, which is useful for VR/AR ap-
plications and makes up for the lack of 3D human datasets.
However, this may also cause privacy and ethical problems.
We suggest policymakers establish an efficient regulatory
system and inform users about potential risks.
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