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Abstract

In this paper, we present KP-RED, a unified KeyPoint-
driven REtrieval and Deformation framework that takes
object scans as input and jointly retrieves and deforms
the most geometrically similar CAD models from a pre-
processed database to tightly match the target. Unlike ex-
isting dense matching based methods that typically struggle
with noisy partial scans, we propose to leverage category-
consistent sparse keypoints to naturally handle both full
and partial object scans. Specifically, we first employ a
lightweight retrieval module to establish a keypoint-based
embedding space, measuring the similarity among ob-
jects by dynamically aggregating deformation-aware local-
global features around extracted keypoints. Objects that are
close in the embedding space are considered similar in ge-
ometry. Then we introduce the neural cage-based defor-
mation module that estimates the influence vector of each
keypoint upon cage vertices inside its local support region
to control the deformation of the retrieved shape. Exten-
sive experiments on the synthetic dataset PartNet and the
real-world dataset Scan2CAD demonstrate that KP-RED
surpasses existing state-of-the-art approaches by a large
margin. Codes and trained models will be released in
https://github.com/lolrudy/KP-RED.

1. Introduction
Creating high-quality 3D models from noisy object scans

has attracted wide research interest [21, 24, 39, 44, 48] due

to its potential applications in 3D scene perception [32, 51],

robotics [49] and artistic creation [10, 40]. Previous prior-

free methods [32, 39] directly utilize deep neural networks

to recover the object model. However, due to heavy (self-

)occlusion and non-negligible noise, it is often infeasible to

infer fine-grained geometric structures without prior knowl-

edge. To address this issue, Retrieval and Deformation

*Authors with equal contributions.

Figure 1. Top Two Rows: Given the target point cloud, KP-RED

first retrieves the most similar CAD model from the preprocessed

database and deforms it to match the target using the keypoints for

guidance. Bottom Two Rows: Given a scene scan, KP-RED re-

constructs the CAD models of all objects and represents the scene

by gathering the reconstructed models.

(R&D) methods [7, 19, 21, 31, 36, 40, 41, 44, 48] are pro-

posed. These methods first retrieve the most geometrically

similar source shape from a certain shape database and then

deform the retrieved shape to tightly match the target, yield-

ing a CAD model with fine-grained structural details inher-

ited from the source shape.

However, existing R&D methods typically suffer from

two challenges, making them vulnerable to noise and oc-

cluded observations. First, when constructing the embed-

ding space for retrieval, most methods [7, 11, 15, 21, 26, 41]

resort to single global feature of the input point cloud,

which is usually obtained via pooling of point-wise features.

Unfortunately, this strategy inevitably causes the loss of lo-

cal geometric information, leading to less accurate retrieval,

and further deteriorates the deformation quality. Further-

more, such global feature based embedding is sensitive to
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occlusion, making it infeasible to handle partial input. Sec-

ond, most methods [11, 21, 41, 44] directly utilize dense

point matching to control the shape deformation. However,

several random outliers in observations may significantly

mislead the matching process, resulting in undesired defor-

mation results.

To tackle the aforementioned challenges, we propose

KP-RED, a novel keypoint-driven joint R&D framework,

which takes a full or partial object scan as input, and out-

puts the recovered corresponding CAD model via querying

a pre-constructed database. Instead of directly leveraging

dense point matching for R&D, we propose to utilize sparse

keypoints as the intermediate representation, enabling our

unified keypoint-based R&D framework. Due to lack of

ground truth annotations of keypoints, we follow [19] to

automatically detect the keypoints in an unsupervised man-

ner by adopting semantically consistent control of shape de-

formation. As a result, the discovered keypoints are also

proven to be semantically consistent, even under large shape

variations across each category.

Specifically, KP-RED consists of two main modules:

keypoint-based deformation-aware retrieval and keypoint-

driven neural cage deformation. In the retrieval module

(Fig. 2 Retrieval Block), keypoints are first detected via

the keypoint predictor and point-wise features are extracted

with PointNet [34]. For each keypoint, we aggregate the

point-wise features in its support region (Fig. 2 (R-E)) to

obtain the local retrieval tokens. Since the locations of key-

points are semantically consistent across each category, we

concatenate all local tokens of each object in a uniform or-

der to generate the global retrieval token, which is utilized

to retrieve the most similar objects from the database. In

the deformation module (Fig. 2 Deformation Block), un-

like [19, 48] that employ global cage scaffolding, we pro-

pose to leverage self-attention to simultaneously encapsu-

late the local fine-grained details and global geometric cues

among keypoints so to predict the influence vector upon the

support region of each keypoint, which is then interpolated

onto the source shape to control the deformation.

Compared with dense matching based baselines [11, 21,

41], our keypoint-based framework holds two main advan-

tages. First, the extracted keypoints are semantically consis-

tent across each category, allowing effective occlusion rea-

soning and noise suppression. Thereby KP-RED can better

handle noisy partial object scans than competitors. Second,

our keypoint-based feature aggregation approach preserves

fine-grained local geometry information, yielding a more

accurate embedding space for retrieval.

Our main contributions are summarized as follows,

• We present a unified network KP-RED for 3D shape

generation from object scans, which learns category-

consistent keypoints to jointly retrieve the most similar

source shape from the pre-established database and con-

trol the shape deformation.

• We design a keypoint-driven local-global feature aggre-

gation scheme to establish the shape embedding space

for retrieval, which performs effectively for both full and

partial object scans, enabling multiple real-world applica-

tions.

• We introduce a novel cage-based deformation scheme

with self-attention that uses keypoints to control the lo-

cal deformation of the retrieved shape.

2. Related Works
Neural Shape Generation. Recent advances in neural net-

works have led to the development of generative latent rep-

resentations for 3D shapes. [6, 20, 27, 28, 33, 35, 46, 50, 52]

model geometry as implicit functions, while [1, 29, 38, 43,

45, 47] generate point clouds, voxels or meshes to model

shapes explicitly. Factorized representations are studied by

[14, 25], decomposing shapes into different geometric parts

and handling of the geometric variations of each part sep-

arately. However, while these methods exhibit impressive

representation abilities, they may struggle to preserve struc-

tural details and to handle complex objects due to the lack

of prior knowledge.

CAD Model Retrieval. Retrieving a CAD model that

closely matches a 3D scan of a real-world object is a critical

issue in 3D scene understanding. While many prior works

directly retrieve the most similar CAD model by evaluating

similarity in the descriptor space [4, 36] or the latent em-

bedding space of neural networks [3, 7, 15, 26], the direct

retrieval may not always yield satisfying results since the

model database cannot contain all instances. To address this

limitation, recent works propose extracting deformation-

aware embeddings [40] or developing novel optimization

targets [17] to better fit the details of the target shape after

deformation. However, their deformation modules are fixed

and non-trainable, leading to inferior performance.

3D Shape Deformation. One of the fundamental is-

sues of geometry processing is to deform a source 3D

model to tightly match a target shape. Traditional meth-

ods [13, 16, 37] directly optimize the deformed shapes to

fit the targets. However, they are only applicable to com-

plete target shapes and do not generalize well to the real-

world scenarios since the object scans are typically partial

due to (self-)occlusion. By modeling deformation as volu-

metric warps [18, 24], cage deformations [19, 48], vertex-

based offsets [44], or flows [21], recent approaches attempt

to learn deformation priors from a set of shapes by neu-

ral networks. Cage-based deformation [48] is particularly

noteworthy for its ability to preserve geometry details, and

[19] extends it by adopting automatically discovered se-

mantic keypoints to enable human users to control the shape

explicitly. However, most of these works do not study

the retrieval process. Only a few works [21, 41] jointly
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Figure 2. Overview of KP-RED. The target point cloud (R-A) is first canonicalized using the estimated pose obtained from an arbitrary

pose estimator [9, 12, 53, 54], following which the keypoint predictor (R-B) is employed to forecast the target keypoints (R-C). An encoder

(R-D) predicts point-wise features and Local Feature Aggregation (LFA) is used to obtain the features of each keypoint region (R-E).

The self-attention module (R-F) extracts the local retrieval token of each region (R-G), which is then compared with the tokens of the

database models (R-H). The region tokens are supervised with an auxiliary reconstruction task during training. The most similar shape

to the target is chosen as the source model (R-I). The source keypoints are then predicted by the shared keypoint predictor and the local

features are extracted via LFA (D-A - D-E). The self-attention module (D-F) predicts the influence vectors (D-G) which demonstrate how

the displacements of keypoints inflect the cage. Given the cage of the source shape (D-H), the deformed cage (D-I) is derived from the

influence vectors. Finally, the deformed point cloud and mesh (D-K) are finally computed by the cage-based deformation (D-J).

study R&D. Uy et al. [41] designs a novel training strat-

egy to jointly optimize retrieval and deformation modules,

but its deformation module depends on the part annotations

of the database models which are labor intensive to obtain.

U-RED [11] proposes point-wise residual-guided retrieval

metrics and a one-to-many module to handle noisy and par-

tial inputs. However, it also depends on the part annota-

tions. ShapeFlow [21] constructs a flow-based deforma-

tion space and utilizes an auto-decoder to extract features

for retrieval. Nevertheless, the auto-decoder needs to per-

form time-consuming online optimization during inference.

Thus, we propose a keypoint-based joint R&D framework

KP-RED which yields high-quality CAD models with no

requirements of extra annotations and runs in real-time.

3. KP-RED

In this section, we first present the overview of KP-RED,

and then introduce our R&D method for processing full

shapes in detail in Sec. 3.1, Sec. 3.2. In Sec. 3.3, we demon-

strate our confidence-based dynamic feature aggregation

technique for partial shape. The Overview of KP-RED is

shown in Fig. 2. Given an input full or partial object scan,

KP-RED first constructs a keypoint-guided deformation-

aware embedding space to retrieve the most similar model

from the database, and then deforms the model to match the

input shape via keypoint-driven cage deformation.

In the Retrieval module, given the target point cloud

Stgt as input, the keypoint detector (R-B) predicts NK

semantic keypoints Ktgt = {K(1)
tgt ,K

(2)
tgt , ...,K

(NK)
tgt } on

Stgt. Then PointNet [34] is employed to extract point-

wise features. For each keypoint K
(i)
tgt, we aggregate

its corresponding deformation-aware local feature l
(i)
tgt by

pooling the point features within a ball region R(i)
tgt cen-

tered at K
(i)
tgt, where i = 1, ..., NK (R-E). Self-attention

is employed to discover the region-to-region relations and

predict the local retrieval tokens of each keypoint region

{T (1)
tgt , T

(2)
tgt , ..., T

(NK)
tgt } (R-G). Since the locations of key-

points are semantically consistent across each category, we

concatenate all local tokens in a uniform order to generate

the global deformation-aware token Ttgt. We then utilize

Ttgt to compare with the tokens in the database, so to re-
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trieve the most similar shape as the source shape (R-I).

In the Deformation module, the source shape Ssrc (D-

A) is fed into the identical keypoint detector to extract key-

points Ksrc = {K(1)
src,K

(2)
src, ...,K

(NK)
src } from Ssrc. Influ-

ence vectors {I1, I2, ..., INK
} (D-G) are predicted via the

self-attention module (D-F), describing how each keypoint

influences its support cage vertices (Fig. 4 (a)). Finally,

we obtain the deformed source shape Ssrc2tgt from the de-

formed cage (D-I) by adopting the mean value coordinate

based interpolation approach [22].

3.1. Keypoint-Driven Deformation

In the deformation module, we aim to deform the retrieved

source shape Ssrc ∈ R
NP×3 to tightly match the input

target shape Stgt ∈ R
NP×3. Note that NP denotes the

number of points. We follow [19, 22, 48] and adopt the

keypoint-driven neural-cage based deformation and extend

it with self-attention to encapsulate local structural details

and global geometric cues.

Neural Cage Deformation. To control the deformation of

the source shape Ssrc, we adopt the sparse cage scaffold-

ing strategy [19, 48]. First, a coarse control mesh (cage)

with vertices Csrc ∈ R
NC×3 is computed to enclose Ssrc,

so that displacements of Csrc can be interpolated to any

point on Ssrc, via constructing mean value coordinates [48],

enabling to control the deformation of Ssrc. Second, we

predict the influence vector Ii ∈ R
NC×1 of each keypoint

K
(i)
src ∈ R

1×3 in Ksrc (Fig. 2 (D-G), Fig. 4 (a2)). This

vector describes how the cage vertices are influenced by the

displacements of the keypoints. Finally, the differences be-

tween the keypoints Ktgt of the target shape Stgt and Ksrc

of Ssrc are compared to guide the algorithm moving Csrc.

The resulting deformed cage vertices Csrc2tgt are calcu-

lated as

Csrc2tgt = Csrc +

NK∑

i=1

Ii(K
(i)
tgt −K(i)

src). (1)

By interpolating Csrc2tgt on Ssrc [19, 48], we obtain

Ssrc2tgt that tightly matches Stgt.

Geometric Self-Attention. Previous methods [19, 48] di-

rectly utilize the global feature to predict the influence

vectors, resulting in unsatisfactory performance due to in-

evitable loss of local information. We instead adopt local

feature aggregation and self-attention mechanism to capture

local and global information and to, thus, preserve more

geometric details. To this end, we first predict the point-

wise features via PointNet [34] and gather the local features

l
(i)
src of each keypoint K

(i)
src by pooling the point-wise fea-

tures inside its support ball region centered at K
(i)
src with

radius r (Fig. 2 (D-E), Fig. 4 (a1)). We then use a self-

attention module to discover region-to-region relations and

inject global information to l
(i)
src, whilst preserving the local

Figure 3. The training procedure of the retrieval module. Given the

keypoints Kx and the region tokens extracted from the shape Sx,

the reconstruction network reconstructs the corresponding regions

R′
x of Sx. Meanwhile, the network reconstructs the regions of the

deformed shape R′
x2y from the region tokens and Ky .

information. Finally, the influence vector of each keypoint

is derived from the feature of its own support region. We

restrict the influence vector to only influence cage vertices

inside the local support region of the keypoint. This en-

sures that the local information around the keypoint is fully

exploited, leading to finer-grained deformation. Moreover,

the region-to-region relations complement essential global

information to the local features. For example, when facing

a partial scan of a symmetric object (e.g. chair), the struc-

ture of the missing part can be inferred from its correspond-

ing symmetric regions. Thus, the geometric self-attention

not only preserves structural details, yet also enhances ro-

bustness towards partial inputs.

Training. During training, our final objective is com-

posed of two loss terms, used to simultaneously supervise

the learning of keypoint extraction and shape deformation.

The former term is supposed to enforce shape similarity

Lsim by calculating the Chamfer Distance between Ssrc2tgt

and Stgt. The other term is meant to regularize the key-

points [19]. This terms encourages keypoints to be well-

distributed by minimizing the Chamfer Distance between

different keypoints and NK points sampled by means of

Farthest Point Sampling on Ssrc. The overall loss function

of the deformation module is thus defined as

Ldef = Lsim + λkptLkpt, (2)

where λkpt weights the contribution of the keypoints regu-

larization term. More details on the definitions of loss terms

are provided in the Supplementary Material.

3.2. Deformation-Aware Retrieval

The retrieval module aims to retrieve the most geometrically

similar source shape Ssrc for the input target shape Stgt

from a pre-constructed database. The retrieval task faces

two main challenges. First, the retrieval process should

be deformation-aware, meaning the retrieved shape should

match the target shape tightly after deformation. Second,
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the overall retrieval module should be lightweight and real-

time with minimal additional computational cost. To ad-

dress these challenges, we design a novel keypoint-based

retrieval method.

Local-Global Feature Embedding. Unlike [41] that lever-

ages a directly learned global feature for retrieval, we

instead utilize local-global keypoint-based features. As

shown in Fig. 2, given the target object Stgt, we predict

its keypoints Ktgt by the keypoint detector. Similar to

the deformation module, we adopt local feature aggrega-

tion and self-attention to extract the local features T (i)
tgt of

each keypoint K
(i)
tgt as the local retrieval tokens. Since

the keypoints are, as aformentioned, semantically consis-

tent across each category, we concatenate all local tokens

{T (1)
tgt , T

(2)
tgt , ..., T

(NK)
tgt } in a uniform order to generate the

global deformation-aware token Ttgt. During inference, we

choose the source model as

Ssrc = argmin
ω∈Ω

fL1(Ttgt, Tω), (3)

where Ω denotes the pre-established model database, Tω is

the global token of the database model ω and fL1(·, ·) com-

putes the L1 distance between the two tokens.

Training. We illustrate the full training procedure in Fig. 3.

To supervise the learning of retrieval tokens Ttgt and Tsrc,

we introduce a novel auxiliary reconstruction task. Given

two randomly selected shapes Sx and Sy from the training

set, we first extract their keypoints Kx, Ky and retrieval

tokens Tx, Ty , and then utilize the deformation module to

deform Sx to match Sy , yielding Sx2y . Subsequently, we

adopt an MLP-based reconstruction network Ψ, which pro-

cesses two tasks in parallel, Ψ1 : (T (i)
x ,Kx) → R

(i)
x

′
and

Ψ2 : (T (i)
x ,Ky) → R

(i)
x2y

′
, where R

(i)
x

′
and R

(i)
x2y

′
de-

note the reconstruction results of the support region of the

ith keypoint of Sx and Sx2y (R
(i)
x and R

(i)
x2y) respectively.

Therefore, our training objective is defined as

Lret =
1

NK

NK∑

i=1

(fCD(R(i)
x , R(i)

x

′
) + fCD(R

(i)
x2y, R

(i)
x2y

′
)),

(4)

with fCD denoting the Chamfer Distance between two

point clouds. The first reconstruction task Ψ1 forces Tx
to encapsulate the geometric information of Sx. On the

other hand, comparing Ψ2 with the deformation module that

prescribes (Sx,Ky) → Sx2y via neural cage deformation,

where Sx = ∪NK
i=1R

(i)
x and Sx2y = ∪NK

i=1R
(i)
x2y . Thereby, Tx

is encouraged to also capture cues related to the deforma-

tion of Sx. We divide the reconstruction task into different

regions to force each token to capture the local structural

details of each support region and enhances the granularity

of retrieval results.

Full Shape Pre-trained Full Keypoint
Predictor 

Full Keypoints

SuperviseAugment

a2 b

Partial Keypoint
Predictor

Partial KeypointsPartial Shape
0

a1
Cage Vertices

Figure 4. (a1): The support region R(i) of the specific keypoint

K(i). (a2): The influence vectors Ii of the specific keypoint K(i).

The color indicates the influence weight of the keypoint towards

each cage vertex (as in Eq. 1). (b): The training procedure of

the keypoint predictor for partial shapes. We employ the keypoint

predictor trained with full shapes for supervision.

3.3. Handling Partial Point Cloud

Due to (self-)occlusion, poor lighting conditions, view-

points, etc, actual real-world scans are oftentimes just par-

tially available. In order to simulate real-world partial con-

dition, we thus augment full shapes in PartNet for genera-

tion of partial shapes by means of random slicing. Please

refer to the Supplementary Material for details.

Compared with full shape R&D, handling partial shapes

poses a new challenge. In particular, the observed point

cloud is typically non-uniformly distributed in 3D space,

rendering it difficult to reliably extract keypoints from

poorly observed regions. To address this limitation, we thus

propose a confidence-based dynamic feature extraction, to

improve robustness towards partial inputs.

Without additional priors, we assume that the point den-

sity is a good measurement to understand the reliability of

point observations in most cases. Specifically, if the den-

sity in the support region R(i) of keypoint K(i) is low, then

K(i) can be considered unreliable and should contribute

less for R&D. Conversely, K(i) should be assigned a larger

weight. We define the density Di at each keypoint K(i) as

the normalized average density in its support region R(i),

Di = min(N
(i)
R /(αV ), 1), where N

(i)
R denotes the number

of points in R(i), V describes the region volume, and α is a

constant for normalization. The density of all keypoints is

D = {D1, D2, ..., DNK
} ∈ R

NK .

Retrieval. We use the aforementioned density D as the

confidence weight to select the source model Ssrc from the

database Ω via

Ssrc = argmin
ω∈Ω

NK∑

i=1

DifL1
(T (i)

tgt , T (i)
ω ). (5)

Thereby, keypoint regions with higher density contribute

more to the final retrieval results.
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Deformation. As shown in Fig. 4 (b), we introduce an ad-

ditional keypoint predictor Φpart to handle partial shapes.

We use the keypoint predictor Φfull (corresponding to (R-

B) in Fig. 2) trained with full shapes to guide the learning

of Φpart in a teacher-student manner, where only the pa-

rameters in Φpart are updated. In essence, given an aug-

mented partial shape Spart and its corresponding full shape

Sfull, we obtain the keypoints of the partial shape Kpart =
Φpart(Spart) and the full shape Kfull = Φfull(Sfull).
As Spart is augmented from Sfull, they are required to

also possess identical keypoints. Moreover, keypoints with

higher confidence should contribute more to the deforma-

tion result and thus require stronger supervision signals. We

use again the density D as the confidence weight and define

the weighted keypoint loss as

Lwkpt =

NK∑

i=1

DifL1
(K

(i)
full,K

(i)
part). (6)

Since the common Chamfer Distance (CD) as defined

in Eq. 2 is bilateral, it is not a suitable metric to evaluate

shape similarity for partial shapes. Therefore, we replace it

with the Unilateral Chamfer Distance (UCD) from the tar-

get shape towards the deformed shape for the similarity loss,

denoted as Lusim. We refer again to the Supplemental Ma-

terial for additional details.

Finally, the overall loss function of the deformation mod-

ule, for handling partial shapes, is defined as

Lpdef = Lusim + λwkptLwkpt, (7)

where λwkpt is used as the weighting parameter.

4. Experiments
Datasets. To evaluate the effectiveness of our method, we

leverage a synthetic datasets PartNet [30] and a real-world

dataset Scan2CAD [2]. For PartNet, we adopt the same split

of database, training set and test set as in [41]. The shapes

in PartNet come from ShapeNet [5]. PartNet contains 1419

models in database, 11433 instances for training and 2861

for testing. Please note that we do not need the part anno-

tations like in [41] and only use the mesh models for train-

ing. Scan2CAD [2] is a real-world dataset developed upon

ScanNet [8] and provides the ground truth masks, poses

and corresponding CAD models for 14225 objects. The

input point clouds in Scan2CAD are generated by back-

projecting the depth maps. We first centralize the point

clouds and then follow [41] to canonicalize them by the pro-

vided rotations. We conduct experiments on the {chair, ta-

ble, cabinet} categories on PartNet and Scan2CAD. To fur-

ther evaluate the reconstruction quality when facing partial

inputs under different occlusion ratios, we augment shapes

in PartNet to generate partial shapes with random slicing

(see Supp. Mat.). We generate partial target point clouds

with occlusion ratio of 25%, 50% and 75% from the test

split of Partnet as the test set.

Implementation Details. Following [41], NP = 2048
points are sampled from each shape and normalized into

a unit cube to serve as the input of the network. We first

train the deformation module from scratch and then uti-

lize the predicted keypoints to train the retrieval module.

The source and target shapes are randomly selected from

the model database and the training set in the above men-

tioned two steps. To handle the partial shape, we train the

partial keypoint predictor while freezing other parameters

learned from full shapes. During training, the target shape

is augmented by random slicing with the occlusion ratio γ
uniformly sampled from γ ∼ U(25%, 90%). The baseline

models [21, 41] trained with full shapes are fine-tuned with

the same augmentation for partial shape evaluation. The

original Chamfer Distance loss is also replaced by the Uni-

lateral Chamfer Distance (UCD) loss for fair comparison.

We directly utilize the models (KP-RED and [11, 21, 41])

trained on PartNet dataset to inference on the validation set

of Scan2CAD, and the model database remains the same

as the setting of PartNet. We use NK = 12 keypoints for

all categories. The radius of the support region is set to

r = 0.3. The parameters for all loss terms are selected em-

pirically and kept unchanged in experiments unless speci-

fied, with {λkpt, λwkpt} = {2, 20}. We run all experiments

on a single NVIDIA 3090 GPU and employ the Adam op-

timizer [23] with batch size of 16 and base learning rate of

1e-3 for deformation module and 1e-2 for retrieval module.

We train the two modules for 30 epochs each, about 300K

iterations. Detailed descriptions of network architectures

are provided in the Supplemental Material.

Evaluation Metrics. The typical Chamfer Distance

(CD) between the reconstructed model and the object scan-

ning is used for full shape evaluation, while the Unilateral

Chamfer Distance (UCD) is reported for partial shapes. On

Scan2CAD dataset, we use the ground truth model to com-

pute the UCD metric. All methods retrieve the top 10 source

candidates and choose the best R&D result to calculate met-

rics as in U-RED [11]. We also provide results using top 1,

5, 25 retrieval candidates in Sup. Mat.. The average metrics

in all tables are obtained via averaging over all instances.

4.1. Experiments on Full Shapes

To demonstrate the joint R&D ability of KP-RED, we com-

pare our method with the state-of-the-art [21, 41], and

present the results in Tab. 1. KP-RED consistently outper-

forms other competitors in all categories and datasets under

the Chamfer Distance metrics, demonstrating our superior

ability of R&D under different conditions. In particular,

on PartNet dataset, we obtain superior results with a real-

tive improvement of 85.7%, 86.6% and 84.2% under the
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Figure 5. The visualization of the learned retrieval tokens of

database shapes via t-SNE [42]. Objects whose tokens are close in

the embedding space are considered similar in geometry.

Method Chair Table Cabinet Average

Uy et al. [41] 0.638 0.629 0.688 0.637

U-RED [11] 0.834 0.326 0.474 0.551

ShapeFlow [21] 0.238 0.400 0.514 0.340

Ours 0.091 0.084 0.109 0.089

Table 1. Chamfer Distance metrics for joint R&D results on full

shapes on PartNet dataset [30]. Overall best results are in bold.

Target Point 
Cloud

Uy et al. ShapeFlow Ours
Retrieval Deformation Retrieval Deformation Retrieval Deformation

Figure 6. Qualitative R&D results on PartNet [30]. Top Block:
Full shape R&D. Bottom Block: Partial shape R&D.

average Chamfer Distance, compared with Uy et al. [41]

for three categories. When comparing with the second best

method ShapeFlow [21], our improvement is still signifi-

cant with an relative improvement of 73.8%. Moreover, the

inference time of Uy et al. [41] reaches 0.7 seconds per

instance, while ShapeFlow [21] adopts online optimization

for better performance, which leads to non-negligible com-

putational expenses and very long inference time, about 45

seconds per instance. In contrast, KP-RED maintains a real-

time inference speed with about 30 ms per instance, whilst

surpassing both by a large margin in terms of R&D quality.
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Figure 7. Unilateral Chamfer Distance metrics for joint R&D re-

sults on the augmented partial PartNet [30]. SF stands for Shape-

Flow [21].

Method Chair Table Cabinet Average

Uy et al. [41] 0.158 0.190 0.676 0.210

U-RED [11] 0.227 0.132 0.316 0.207

ShapeFlow [21] 0.230 0.302 0.345 0.265

Ours 0.059 0.057 0.073 0.060

Table 2. Unilateral Chamfer Distance metrics for joint R&D re-

sults on Scan2CAD [2]. Overall best results are in bold.

Fig. 5 demonstrates that our unsupervised keypoint-driven

retrieval module is capable of successfully establishing an

embedding space for measuring the similarity among ob-

jects. As illustrated in Fig. 6, our R&D results are clearly

more similar to the target compared to other methods. We

attribute this to our well-designed retrieval module, employ-

ing local-global feature embedding for effective compar-

ison among objects. Moreover, the cage-based deforma-

tion with geometric self-attention preserves structural de-

tails and boosts deformation quality. In Supplementary Ma-

terial, we perform an oracle retrieval experiment to illustrate

the effectiveness of our keypoint-guided deformation mod-

ule.

4.2. Experiments on Partial Shapes

We conduct experiments on two datasets, namely real-world

Scan2CAD [2] and synthetic augmented PartNet [30], to

comprehensively demonstrate the robustness of KP-RED

for handling partial point clouds. As shown in Tab. 2 and

Fig. 7, KP-RED constantly outperforms the current state-

of-the-art [21, 41] in both real-world and synthetic scenar-

ios by a significant margin. On Scan2CAD dataset, under

real-world occlusion, KP-RED exceeds Uy et al. [41], U-

RED and ShapeFlow by 71.4% 71.0%, and 77.3% under
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Figure 8. Qualitative results on Scan2CAD dataset [2]. The R&D
results are rendered on the RGB images for better visualization.

GSA DAR LGF Chair Table Cabinet Avg.

(a) × × × 0.135 0.187 0.126 0.161

(b) × � × 0.128 0.187 0.124 0.158

(c) � × × 0.116 0.105 0.117 0.110

(d) � × � 0.099 0.088 0.113 0.094

(e) � � × 0.103 0.092 0.113 0.098

(f) � � � 0.091 0.084 0.109 0.089

Table 3. Ablation studies on full shapes of PartNet [30]. Avg.

denotes the average CD metric. GSA denotes Geometric Self-

Attention. Without GSA, we use PointNet [34] to extract the

global feature of the input shape, like in [41]. DAR denotes

Deformation-Aware Retrieval. We only use the reconstruction task

Ψ1 to train the retrieval network when it is ablated. LGF denotes

Local-Global Feature Embedding for the retrieval process. When

it is ablated, we directly utilize the global feature for retrieval.

the UCD error respectively. Fig. 8 shows superior visual-

ization quality of KP-RED with accurate retrieval and ac-

curate deformation. On partial PartNet, when the occlusion

ratio increases from 25% to 75%, the average UCD error

of KP-RED only increases by 0.015 (30.6%), while the er-

ror of U-RED and ShapeFlow increases 0.126 (70.0%) and

0.125 (59.5%), respectively. As can be seen KP-RED is

more robust to incomplete input due to the dynamic feature

extraction. More qualitative results are shown in the Sup-

plementary Material.

4.3. Ablation Studies

We conduct ablation studies in both full shape (Tab. 3) and

partial shape (Fig. 9) scenarios. The ablations on full shapes

mainly aim at verifying the effectiveness of our proposed

Geometric Self-Attention (GSA) in Sec. 3.1, Deformation-

Aware Retrieval (DAR) and Local-Global Feature Em-

0 20 40 60 80
4

5

6

7

8
·10−2

U
C

D
M

et
ri

c

Average

Ours w/o CB Ours

0 20 40 60 80
4

5

6

7

8
·10−2 Chair

0 20 40 60 80
4

5

6

7

8
·10−2

Occlussion Ratio [%]

U
C

D
M

et
ri

c

Table

0 20 40 60 80
4

5

6

7

8
·10−2

Occlussion Ratio [%]

Cabinet

Figure 9. Ablation studies of Confidence-Based Dynamic Feature

Extraction (CB) on partial PartNet [30].

bedding (LGF) in Sec. 3.2. While on partial shapes,

Confidence-Based Dynamic Feature Extraction (CB) in

Sec. 3.3 is ablated.

Tab. 3 exhibits the ablations of GSA, DAR and LGF,

conducting on full shapes of PartNet. Comparing (a) and

(c) in Tab. 3, our proposed encoder with GSA contributes

to an improved average performance by about 32%. The

effectiveness of DAR is demonstrated by (c) and (e) with

a reduction of average CD error by 10%. After incorpo-

rating LFA and DAR, utilizing LGF further enhances the

average performance by 9% ((e) and (f)). As described in

Sec. 3.3, the effectiveness of R&D with Confidence-Based

Dynamic Feature Extraction (CB) is illustrated in Fig. 9.

When ablating CB, we assume that the confidence weights

of all keypoints are equal. There is a general trend that CB

contributes more when the occlusion ratio is high. CB im-

proves the average performance by 11% for up to 75% oc-

clusion and 8% for less than 50% occlusion. This indicates

that CB is an essential strategy for handling partial shape.

5. Conclusion
In this paper, we introduce KP-RED, a unified frame-

work for 3D shape generation from full or partial object

scans. Our approach employs category-consistent keypoints

to jointly retrieve the most geometrically similar shapes

from a pre-constructed database and deform the retrieved

shape to tightly match the input. We propose a keypoint-

driven local-global feature aggregation scheme to extract

deformation-aware features for retrieval, and a neural cage-

based deformation algorithm to control the local deforma-

tion of the retrieved shape. In the future, we plan to extend

our technique to 3D scene understanding.
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