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Abstract

Unprocessed RAW video has shown distinct advantages
over sRGB video in video editing and computer vision tasks.
However, capturing RAW video is challenging due to limi-
tations in bandwidth and storage. Various methods have
been proposed to address similar issues in single image
RAW capture through de-rendering. These methods utilize
both the metadata and the sRGB image to perform sRGB-
to-RAW de-rendering and recover high-quality single-frame
RAW data. However, metadata-based methods always re-
quire additional computation for online metadata gener-
ation, imposing severe burden on mobile camera device
for high frame rate RAW video capture. To address this
issue, we propose a framework that utilizes frame affin-
ity to achieve high-quality sRGB-to-RAW video reconstruc-
tion. Our approach consists of two main steps. The first
step, temporal affinity prior extraction, uses motion infor-
mation between adjacent frames to obtain a reference RAW
image. The second step, spatial feature fusion and map-
ping, learns a pixel-level mapping function using scene-
specific and position-specific features provided by the pre-
vious frame. Our method can be easily applied to current
mobile camera equipment without complicated adaptations
or added burden. To demonstrate the effectiveness of our
approach, we introduce the first RAW Video De-rendering
Benchmark. In this benchmark, our method outperforms
state-of-the-art RAW image reconstruction methods, even
without image-level metadata.

1. Introduction
In recent years, RAW videos have become increasingly pop-
ular among professional videographers due to their ability
to capture unprocessed signals from the camera at a 10-16
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Figure 1. Comparison of Different RAW Video Capture Meth-
ods. (a) Saving the entire RAW video would cause significant
strain on bandwidth and storage resources. (b) Sampling metadata
for every frame in the video would burden the camera’s compu-
tation. (c) Our method only requires saving a single extra RAW
frame, which does not significantly burden the camera.

bit depth. This enables the production of video sequences
with superior visual effects compared to sRGB videos. In
addition, recent research has explored the benefits of us-
ing RAW data in computer vision tasks. Some studies have
discovered that the linear relationship between scene irradi-
ance and RAW data is better suited for tasks such as image
denoising [2, 9, 12, 39], image super-resolution [7, 13, 34,
40], and low-light enhancement [5, 8, 11]. Additionally, the
wide tolerance of RAW data makes perception tasks more
robust in high-dynamic scenes [6, 22, 33, 36]. However, the
high cost of RAW video capturing limits the widespread
use of this technology. On one hand, the abundant and de-
tailed information encoded in the RAW data takes up a huge
amount of storage, increasing storage costs for users. On
the other hand, real-time capturing of RAW video data puts
a significant strain on the camera’s bandwidth, as shown in
Figure 1 (a).

To address similar issues, many techniques have been
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proposed for de-rendering single-frame sRGB images to
RAW data. Some approaches utilize only the sRGB data
as input and learn to recover the corresponding RAW
data [2, 7, 31]. These methods are convenient for various
applications, as they do not require any additional informa-
tion from the camera besides the sRGB images. However,
since some critical information may have been lost during
the ISP processing, the de-rendering from only sRGB inputs
still suffers from limited performance. In contrast, other
methods attempt to extract a small portion of crucial infor-
mation from the RAW data as metadata and learn to recover
the original RAW images from both the sRGB images and
the metadata [14, 19, 23, 27]. Although these methods can
produce more accurate RAW images, they require an addi-
tional sampling method to run on the camera for producing
the metadata. These sampling techniques impose additional
pressure on the camera, and the burden will be much more
severe for RAW video capturing. The complexity of sam-
pling metadata from RAW video is O(WHL), where W
and H are the width and height of the image, and L is the
length of the video sequence, as shown in Figure 1 (b).

This paper presents a novel approach for RAW video
de-rendering, which overcomes the limitations of previous
methods and enhances storage and computation efficiency.
Unlike metadata-based approaches, our method eliminates
the need for an online sampler on the camera side. Instead,
it utilizes a single RAW frame from the video sequence as
prior information to efficiently recover detailed information
from the RAW data, as depicted in Figure 1 (c). The addi-
tional select operation only incurs O(1) extra computation
cost. Specifically, our method utilizes the provided RAW
frame and the relationship between adjacent frames to guide
the reconstruction of the remaining RAW frames. By de-
signing a deep neural network with Temporal Affinity Prior
Extraction and Spatial Feature Fusion and Mapping, our
method effectively leverages the prior information from the
previous frame and efficiently de-renders the RAW video.

To assess the effectiveness of our proposed method, we
introduce the first RAW Video De-rendering benchmark,
the RVD dataset. We then evaluate the performance of
the proposed method and compare it with other sRGB-
to-RAW de-rendering methods. The results demonstrate
that our method can produce high-fidelity RAW video se-
quences and outperform other methods, without relying on
per-image metadata. In conclusion, the contributions we
have made in this paper can be summarized into five points:

• We propose a new architecture for RAW video de-
rendering. This architecture can efficiently de-render
RAW video sequences using only one RAW frame and
sRGB videos as input. By adopting this method, both
storage and computation efficiency for RAW video cap-
turing can be significantly improved.

• We propose a module for extracting a temporal affinity

prior to obtain a reliable reference RAW frame. This
module utilizes motion information between adjacent
frames. The reference RAW frame can accurately serve
as a reference for recovering the lost RAW information.

• We propose a module called Global and Local feature Ag-
gregation (GLA) to extract and combine the globalized
and localized features encoded in the prior information.

• We propose a new benchmark for RAW video de-
rendering to comprehensively evaluate the methods for
this task. To our knowledge, this is the first benchmark
specifically designed for the RAW video de-rendering
task.

• Our method significantly outperforms state-of-the-art im-
age RAW de-rendering methods and achieves high-
quality RAW video sequences without relying on per-
image metadata.

2. Related work
2.1. RAW Data Application

RAW data, as a direct capture of raw information from a
scene by a camera, has long been favored by computational
photography and certain low-level vision tasks. These tasks
include image super-resolution [7, 16, 30, 40], image de-
noising [2, 9, 10, 41–43], image deblur [4, 15], and low-
light enhancement [5, 8, 11]. The main advantage of RAW
data is that it is not processed by ISP (Image Signal Pro-
cessor) and its response value has a linear relationship with
scene irradiance. This simplifies the modeling process for
degradation or enhancement models.

Recently, the advantages of RAW in visual perception
tasks have been gradually discovered and explored. One ba-
sic point is that high-bit-depth RAW data retains more scene
information. Another point is that ISP processing does not
always have a positive effect. In the early stages, the work in
[3, 17, 29, 35] examined the role of the ISP pipeline in com-
puter vision tasks. An interesting conclusion is that most
ISP processing is focused on improving visual effects and
has little to do with the DNN model, and may even have a
negative impact. Furthermore, some methods [18, 25, 37]
used proxy networks or parameter searching to redefine ISP
as a learnable process, improving the performance of RAW
data in downstream tasks. The work in [6] focused on the
instance segmentation task in dark scenes, and its results
show that higher bit-depth is usually associated with bet-
ter segmentation results. Xu et al. [33] proposed a new
benchmark for RAW object detection in driving scenes and
demonstrated the important influence of dynamic range on
the detector.

2.2. sRGB-to-RAW Image De-rendering

There are generally two categories of single image sRGB-
to-RAW de-rendering methods, based on whether metadata
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is used or not.
De-rendering without metadata. Such methods are often
designed for a specific camera or for vision tasks that re-
quire imprecise de-rendering. For example, Brooks et al. [2]
proposed a generic process to model and invert the key steps
of ISP. They then used synthesized RAW data to train a de-
noising network. Conde et al. [7] improved upon the afore-
mentioned method by modeling the ISP steps as a learnable
dictionary. The work in [31] introduced the normalizing
flow to this task, relying on the inherent reversibility of this
structure. It is approximated by a two-way process of learn-
ing rendering and de-rendering.
De-rendering with metadata. For metadata-based meth-
ods, the typical approach is to reconstruct the complete
RAW image by saving a small amount of sampled data.
Yuan and Sun [38] proposed a hybrid capture mode that
reduces storage costs and continuous shooting burdens by
saving low-resolution RAW images. The method described
in [23] saves a small number of uniformly sampled pixels
as metadata during capture, and uses RBF interpolation to
obtain the full-resolution image during the reconstruction
phase. Subsequently, [19] proposed a content-aware super-
pixel prediction network to improve the sampling strategy,
while [14] introduced more expressive implicit neural func-
tions to replace the RBF interpolation algorithm and achieve
better performance. In addition to sampling-based methods,
Nguyen and Brown’s work [20] [21] proposed encoding the
necessary parameters of ISP into an sRGB-JPEG file. The
work of [27] considered an adaptive and learnable metadata
construction method, which uses a compact representation
of the latent space as metadata.

Unlike previous single image de-rendering methods, the
proposed method does not impose any additional burden on
the camera side. Instead, it utilizes inter-frame relationships
to guide the de-rendering process, resulting in improved
performance and greater efficiency.

3. RAW Video De-rendering Dataset
RAW Video De-rendering is a computer vision task that
aims to reconstruct RAW video sequences using sRGB
frames and other additional information. This task is
valuable as it helps reduce the storage and bandwidth re-
quirements associated with capturing RAW videos. Cur-
rently, there is a lack of a dedicated benchmark specifi-
cally designed for evaluating and developing RAW video
de-rendering methods. To address this issue, we propose
the introduction of the first-ever RAW Video De-rendering
(RVD) benchmark. This benchmark consists of over 200
videos, captured using different devices in various scenar-
ios. Additionally, we have included videos in challenging
scenes, such as fast motion and low lighting, to provide a
comprehensive evaluation of de-rendering methods even in
extreme conditions. In the remaining content of this section,

...

Frame 1 Frame 2 Frame 120

...

...

(a)

(b)

(c)

Figure 2. Typical challenging scenarios of RVD dataset. (a) con-
tains fast moving vehicles, (b) has drastic scene change, and (c)
is a high-light scenario. For each video, we list the sRGB of the
first two frames and the last frame, and the corresponding RAW
images which are demosaiced for visualization.

we will provide a detailed introduction to the Data Collec-
tion and Data Processing of the proposed benchmark.
Data Collection. We collect the data used in this bench-
mark from two different sources. In the first part, we gather
RAW-sRGB video pairs from existing RAW video-based
tasks [40]. There are two reasons why we choose to reuse
this data in our benchmark. Firstly, this data is of high qual-
ity, captured in various scenarios by different devices. By
reusing this data, we can increase the diversity of the pro-
posed benchmark without incurring additional data collec-
tion costs. Secondly, these datasets are widely recognized
benchmarks for RAW video-based tasks, such as Video
RAW Super-resolution. Therefore, this data can be easily
used to evaluate the de-rendered RAW videos in these tasks.

However, simply relying on the data from the exist-
ing RAW video dataset is not sufficient for evaluating the
RAW video de-rendering tasks. These data are not specifi-
cally collected for this task and lack comprehensive evalu-
ations. Therefore, we manually collected some new videos
from various challenging scenarios for the RAW video
de-rendering task. Specifically, we collected these RAW
videos using a Canon 5D Mark III DSLR camera. All
videos were shot using fixed focus lenses, specifically the
Canon EF 50mm f/1.8 STM. We used the automatic set-
ting on the camera, where the aperture, shutter, and ISO
were adjusted automatically based on the scene. Each video
has a duration of 4 to 6 seconds, resulting in a total of 100
videos. The RAW videos are recorded with a resolution
of 1600 × 900 pixels at a frame rate of 30 frames per sec-
ond. The camera sensor’s color filter array (CFA) follows
the widely used RGGB Bayer format, and the RAW data is
recorded with a 14-bit depth.

For the scenarios, we select some common challenges
in the RAW video de-rendering task. These challenges in-
clude fast motion, high/low illumination, and more. After
collecting this data, we manually label each video with the
corresponding attributes. It is possible for a video to be as-
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signed with more than one attribute.
Data Processing. Typically, different camera devices use
different Image Signal Processing (ISP) types to generate
sRGB images, resulting in significant variations in sRGB
image quality. In order to ensure a fair comparison with
previous works, we choose not to use the sRGB images
produced by the camera itself. Instead, we employ a soft-
ware ISP algorithm that has been widely used in previous
RAW-image datasets to generate the sRGB videos. Our data
processing involves two steps: converting the RAW video
format data (in .MLV format for Canon 5D Mark III) into
RAW image sequences, and using an external ISP algorithm
to render the sRGB image sequences.

For the first step, we use MLV App[1] – a professional
magic lantern video processing software – to convert the
RAW video into a RAW image sequence in DNG format
(an open and lossless RAW image format). Since the qual-
ity of the first few frames of a handheld shot may not be
very high, we delete some of the early frames. For conve-
nience, we retain 120 consecutive frames from each video,
resulting in a total of 12,000 retained images for the device.
To obtain a rendered sRGB image sequence, we follow the
methods described in [31] and [15]. We use the rawpy tool-
box, a Python version of the LibRaw library, to process all
the RAW images into PNG format using the default set-
tings. This process includes typical operations of a modern
ISP, such as demosaicking, auto white balance, denoising,
gamma correction, color correction, and more. Some sam-
ple images can be seen in Figure 2.

4. Method

4.1. Overview

Given a video sequence x from the sRGB domain, and the
corresponding RAW video y from the RAW domain. The
sRGB generation procedure f is:

x, ε′ = f(y), (1)
where ε′ represents the extra data saved at capture time.
And the invert function of this procedure is defined as the
RAW video de-rendering task:

y = f−1(x|ε). (2)
In previous works on single image RAW de-rendering, ad-
ditional data ε typically consists of sampled RAW pixels
from the original RAW image, i.e. the metadata. This data
has proven to be highly effective in recovering lost detailed
information during the sRGB generation process. However,
when it comes to video de-rendering, sampling additional
metadata from every frame in the RAW video could impose
an excessively high computational burden on the camera,
making implementation difficult. To alleviate the need for
extra computational burden on the camera device and boost
de-rendering efficiency, we propose a new pipeline for the

...

......

sRGB Sequence+One RAWCamera

capture

Capture Time

Chained Inference
Reconstruction Chain

FAGDN (model)

RAW of the 1st Frame

Figure 3. Video capture and inference procedure. In the capture
time, we save the first frame RAW image and complete sRGB se-
quence. In the inference phase, except for the first frame, which
uses the real RAW image, the rest use the predicted RAW image
from the previous frame.

RAW video de-rendering. In this pipeline, we utilize the
first RAW frame from the RAW video y as additional data:

ε = y1. (3)
Figure 3 shows an overview of the proposed pipeline.

When capturing the video, we only need the camera to save
the sRGB frames and an additional first RAW frame, which
is easily achievable. When de-rendering the RAW video,
our pipeline employs a chained structure to accomplish this.
Specifically, in the initialization step, our model takes sRGB
frames x1, x2 and the first RAW frame y1 as input and pro-
duces the well-de-rendered RAW frame ŷ2 as output. In
the subsequent steps, our model takes xt, xt+1, and the ŷt
produced in the last step as input and produces ŷt+1 un-
til the entire RAW video is de-rendered. As shown in this
figure, the Frame Affinity Guided De-rendering Network
(FAGDN) is the core of our pipeline. In the following sub-
section, we will provide a detailed introduction to it.

4.2. Frame Affinity Guided De-rendering Network

Figure 4 illustrates the structure of the proposed Frame
Affinity Guided De-rendering Network, which consists of
two main steps. The first step is the extraction of tempo-
ral affinity priors. In this step, we combine the motion re-
lationship between adjacent frames and the input from the
previous frame RAW to construct a reference RAW. This is
based on the observation that most parts of adjacent frames
describe similar scenes. Therefore, the pixels in the pre-
vious RAW frame can provide accurate prior information
for de-rendering the corresponding pixels in the subsequent
frames.

The second step involves spatial feature fusion and map-
ping. Using the reference RAW extracted in the first step as
auxiliary information, we utilize an encoder-decoder struc-
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Figure 4. Overview of the proposed Frame Affinity Guided De-rendering network. It contains two main steps, the Temporal Affinity
Prior Extraction step generates an reference RAW by utilizing the motion information between adjacent frames. Here, we evaluate the
quality of reference RAW through a confidence map. The second step is Spatial Feature Fusion and Mapping, using the reference RAW as
starting status, we learn a pixel-level mapping function with the help of sRGB image and previous frames to further repair pixels predicted
inaccurately in the first stage.
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Figure 5. From left to right are the sRGB image xt, the optical
flow image ot→t+1, the warping sRGB image x̃t+1 and the error
map of x̃t+1 and xt+1. The red box lists errors caused by the
optical flow algorithm.

ture to learn a mapping function of sRGB-to-RAW by in-
corporating the previous frame. To effectively utilize the
scene-specific and position-specific prior information en-
coded in the previous frame, we introduce a Global and
Local Feature Aggregation (GLA) module. This module
is integrated with the encoder-decoder network, which will
be further discussed later.
Temporal Affinity Prior Extraction. In order to take full
advantage of the temporal relationship between the adja-
cent frames, we need to generate the affinity between two
frames. We accomplish this by using an off-the-shelf opti-
cal flow algorithm Θ [32]. This algorithm takes the sRGB
frames (xt, xt+1) as input and produces the transfer matrix
ot→t+1:

ot→t+1 = Θ(xt, xt+1). (4)

Using this transfer matrix and the previous RAW image yt,
we can apply a wrapping technique to generate a warping
RAW image ỹt+1 as an reference RAW:

ỹt+1 = Ω(yt, ot→t+1), (5)

where Ω represents a warping function that applies an off-
set to the original pixels to obtain new coordinates. It then
completes the image using an interpolation algorithm.

However, there is a natural limitation where some pixels
in the subsequent frame do not have corresponding pixels
in the previous frame, making the reference pixels unreli-
able. Figure 5 illustrates a typical example of this limita-
tion. To overcome this issue, we propose generating a con-
fidence map to suppress areas where matching errors oc-
cur and select reliable reference features from the reference
RAW frame. This generation process is based on the ob-
servation that regions with matching errors result in high
error values when warping the sRGB image, as shown in
Figure 5 (d). Subsequently, we utilize a multi-layer convo-
lutional network to generate the confidence map M :

x̃t+1 = Ω(xt, ot→t+1),

M = σ(conv([x̃t+1, xt+1])),
(6)

where, the conv and σ represent the convolutional network
and sigmoid function, respectively. The reference RAW im-
age ỹt+1 and confidence map M will be fed to the second
step for accurate RAW image reconstruction.

Spatial Feature Fusion and Mapping. Using the current
sRGB frame and reference RAW, we develop a neural net-
work that learns the final RAW image de-rendering pro-
cess. Following the previous method for sRGB-to-RAW
de-rendering [19], we utilize an encoder-decoder structure,
specifically U-Net [24] like structure, to learn the mapping
function in an end-to-end manner.
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Global information guidence

Local information guidence

Figure 6. The implementation of Global and Local Feature Aggre-
gation(GLA) module. Global information guidance models the
dependencies between all patches, while local information guid-
ance limits the relationship modeling within each pair of patches.

However, the mapping function often presents two types
of challenges. Firstly, the sRGB-to-RAW mapping is scene-
specific, meaning that even the same RAW pixel can be
mapped to different sRGB values under different scenes.
Secondly, the sRGB-to-RAW mapping is position-specific,
as described in [23], due to local operations in the ISP. This
means that the same RAW value can be mapped to different
sRGB values even within a single image. Therefore, our
structure includes two branches in the encoder. The first
branch takes the current frame information [xt+1, ỹt+1,M ]
as input, providing realistic information about the current
status, such as lighting conditions and object position. The
second branch takes the previous frame input [xt, yt], aim-
ing to extract global (scene-specific) and local (position-
specific) prior information from the previous RAW and
sRGB pair.

As shown in Figure 4, we utilize two encoder networks
to extract deep features from the two input branches indi-
vidually. These branches have identical structures but do
not share parameters:

fr
l = Encoderref([xt, yt]),

f c
l = Encodercur([xt+1, yt+1,M ]),

(7)

where Encoder represents encoder network. The interme-
diate features are denoted as fr

l and f c
l , where l indexes

the layer of the network. To efficiently utilize the features
of the previous frame from global and local perspectives,
we propose a global and local feature aggregation mod-
ule, as shown in Figure 6. Specifically, for the feature
fr
l ∈ RC×H×W and f c

l ∈ RC×H×W , we divide them into
non-overlapping patches with a size of C × p × p. To in-
troduce scene-related features from a global perspective, we
embed each patch as a vector, forming a sequence of length
HW
p2 . Similar to the transformer approach[26], we use the

embedding vector of the current frame as the Query and
the embedding vector of the previous frame as the Key to
learn an affinity matrix. This matrix is then used to ex-

tract global relevant information from the previous frame
features (Value). For local information guidance, we imple-
ment information interaction within each patch pair. Simi-
larly, we still use the current frame as the Query vector to
model pixel-level dependencies. The information interac-
tion within the patch allows the network to pay attention to
neighboring pixels, making use of the video characteristics
and reducing computational cost. Finally, the global and lo-
cal supplementary information is added to each layer of the
Encodercur sequentially.

During the decoding stage, we use an equal number of
convolutional and sampling layers to gradually merge fea-
tures and restore resolution. At the same time, we in-
corporate the multi-level features of the current encoder
(Encodercur) into the decoding process through skip con-
nections. The resulting output of the decoder is considered
the final reconstructed RAW image (ŷt+1).
Loss Function. The overall network is trained in an end-
to-end manner, using ℓ, the combination of L2 loss and
SSIM [28] loss, to measure the accuracy of the recon-
structed RAW. In addition to supervising the output of the
last layer of the decoder, we also impose additional con-
straints on the intermediate features. The entire loss func-
tion can be expressed by the following formula:

L = ℓ(ŷt+1, yt+1) + λ

3∑
n=1

ℓ(ŷnt+1, y
n
t+1). (8)

ŷnt+1 denotes the output of different levels of the decoder,
while ynt+1 is the downsampled image of the ground truth,
maintaining the same resolution. λ is a hyperparameter
used to balance the contribution of the auxiliary loss and
is set to 0.5.

5. Experiments

5.1. Experimental Setup

Dataset. We conduct experiments on the proposed RVD
dataset. For convenience, we call the actually collected data
RVD-Part1, and the data collected from [40] is called RVD-
Part2. For RVD-Part1, we carefully select 15 videos (in-
cluding difficult scenes such as fast motion, drastic scene
changes, HDR) for testing, and remaining 85 videos for
training. Each video is 120 frames with 1600× 900 resolu-
tion. For the RVD-part2, we maintain the original division
of training sets and test sets. Specifically, the training set
contains 130 videos, each video has about 50 frames, and a
total of 6308 images. The testing set has 20 videos, and 983
images. All images have resolution 1440× 640.
Implementation details. We are committed to converting
sRGB to the original RAW data, which has not undergone
any ISP operations such as demosaic and AWB. As a com-
mon practice, we package the single-channel RAW data into
a four-channel [R, Gr, Gb, B] format, which serves as the
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Method Pub. Year Metadata
RVD-Part1 RVD-Part2

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

CAM [19] CVPR 2022 ✓ 41.85 0.9832 42.25 0.9856
CAM w/ fine-tuning [19] CVPR 2022 ✓ 41.87 0.9836 42.26 0.9858

INF [14] CVPR 2023 ✓ 47.67 0.9948 46.25 0.9939
Ours - - ✗ 48.86 0.9980 49.71 0.9983

Table 1. Quantitative comparison with sRGB-to-RAW image de-rendering methods on the proposed RVD dataset. The ↑ represents that
the larger the value, the better, and best results are marked in bold.

sRGB GT CAM w/ fine-tuning INF Ours
0

10%
0

10%
0

10%

10%

0

Figure 7. Visual comparison with sRGB-to-RAW image de-rendering methods. We calculate the pixel-level error maps of different methods
and GT, and the RAW images are demosaiced for visualization.

basic format for training and inference. It is also easy to un-
pack it back to single-channel RAW for downstream tasks.
The proposed method is implemented using the PyTorch
framework. During training, we randomly crop patches of
size 256 × 256 from the original input and apply random
rotation and flipping as data augmentation techniques. The
model is optimized using the Adam optimizer, with an ini-
tial learning rate of 1e − 3. The learning rate is reduced to
one-tenth every 20 epochs. We train the model for a total of
60 epochs and select the model from the last epoch for test-
ing. During testing, we maintain the original resolution of
the image as the input. Considering the differences in sen-
sors among different devices, we train and test the model
separately on each subset.

5.2. Comparison with Image De-rendering Methods

Since our method is the first proposed for sRGB-to-RAW
video de-rendering, we compare it with state-of-the-art
sRGB-to-RAW image de-rendering methods: CAM [19],
CAM with fine-tuning [19], and INF [14]. The source code
of these methods has been made public, and since most of
the sRGB-to-RAW methods are camera-dependent, we re-
train and test on the new dataset.

Table 1 illustrates the quantitative comparison results
of different methods. We use peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) metrics to evalu-
ate the quality of reconstructed RAW. The results demon-
strate that the proposed method achieves the best perfor-
mance, even when compared to per-image metadata-based
methods. Moreover, we also compute the pixel-wise differ-
ence between the reconstructed RAW and the ground truth
to visually compare the performance of different methods,
which can be seen in Figure 7. Overall, our method achieves
satisfactory results in most scenarios. We also notice that
the sampling-based method INF obtains comparable results
to our method but performs poorly in the edge areas of ob-
jects. This means that interpolation-based functions have
difficulty processing areas with large gradient changes.

5.3. Comparison under Challenging Scenarios

In the actual photography process, the camera faces com-
plex and diverse scenes. Therefore, we aim to explore the
robustness of the model in different challenging scenar-
ios. Low resolution is a common phenomenon in post-
processing or when using low-cost storage. Previous re-
search [14] has shown that sampling-based methods tend
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Condition Method PSNR SSIM

Low resolution
Ours 47.90 0.9978
INF 45.50 0.9944

Fast motion
Ours 46.36 0.9976
INF 45.79 0.9936

Dark lighting
Ours 53.60 0.9989
INF 51.42 0.9969

Table 2. Comparison under challenging scenarios on RVD-Part1.

warping M GLA ℓaux PSNR SSIM

✓ ✓ 42.60 0.9972
✓ ✓ ✓ 47.68 0.9978
✓ ✓ ✓ 46.12 0.9979
✓ ✓ ✓ 47.91 0.9983
✓ ✓ ✓ ✓ 49.71 0.9983

Table 3. Ablation study on RVD-Part2 dataset.

to be sensitive to resolution. To test the performance of
our method and INF, we construct a low-resolution ver-
sion by downsampling the original dataset to half the res-
olution. The results indicate that our method is more ro-
bust to resolution changes, with a 1.8% PSNR drop com-
pared to the 4.6% drop observed in INF. Fast motion is
often regarded as a challenging scene for our method, as
the first RAW frame only provides limited information for
subsequent RAW reconstruction. In comparison to INF,
our method shows a gain of 1.2% in the fast motion scene,
which is lower than the 2.3% gain observed on the full test
set. This suggests that fast motion still poses a challenge for
our method. Dark lighting is a typical harsh environment
for shooting. However, our research has found that it is not
actually difficult for the sRGB-to-RAW methods, as the re-
covery quality in these scenarios is well above average.

5.4. Ablation Study

We conduct ablation experiments to verify the effectiveness
of key designs in the proposed method, and the quantitative
results are shown in Table 3. We first investigate the role of
the temporal affinity prior extraction, which generates a ref-
erence RAW image by utilizing the motion information. We
remove this step and directly input the sRGB image xt+1

into Encodercur to do the verification. The results in first
line show this step is all-important to our pipeline, that is,
PSNR decreased by 6.17. The second line represents that
we do not consider the quality of the RAW and directly in-
put the reference RAW image ỹt+1 to the next stage.

In the spatial feature fusion and mapping step, the pre-
vious frame provides global and local supplementary in-
formation for image reconstruction by the GLA module.
To demonstrate the necessity of introducing a previous
frame into this step, we remove the previous frame encoder
Encoderref and directly learn the mapping function from the
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Figure 8. Average PSNR and SSIM in time dimension.

current frame inputs. The result can be seen in the third line
of Table 3. Furthermore, we add the auxiliary loss function
to constraint the intermediate outputs, and the results can be
seen in the fourth line when deleting it from the pipeline.

5.5. Robustness over Time

Our method relies on the first frame RAW to provide real
reference information in the chained inference phase. How-
ever, as time increases, there will inevitably be accumulated
information loss. In Figure 8, we calculate the average
PSNR (psnri = (

∑V
v=1 psnr

i
v)/V ) and SSIM (ssimi =

(
∑V

v=1 ssim
i
v)/V ) along the time dimension. Here, i ∈

[2, 120] indexes the order of frames, and V represents the
number of all testing videos.

As depicted in the curve, our method exhibits good ro-
bustness over time within a relatively long period of 100
frames. In comparison to INF, the method based on single-
image metadata, our method still maintains a relatively
high quality. However, the performance noticeably declines
when the period becomes too long. This phenomenon is at-
tributed to the inherent characteristics of our method. As
an optional solution and for future work, we intend to in-
vestigate a previous frame selection strategy. This strategy
would involve saving reference RAW frames at intervals to
achieve a stable reconstruction quality.

6. Conclusion
In this paper, we introduce a new task called sRGB-to-
RAW video de-rendering. Existing methods for convert-
ing sRGB images to RAW format are not applicable when
applied to the new video de-rendering task. To address
this, we propose a frame affinity guided reconstructed net-
work with two main steps. The first step involves extracting
temporal affinity prior by utilizing motion information be-
tween adjacent frames to obtain a reference RAW image.
The second step focuses on spatial feature fusion and map-
ping, where a pixel-level mapping function is learned using
scene-specific and position-specific prior information from
the previous frame. To evaluate our proposed method, we
create a benchmark dataset that includes a wide range of
RAW-sRGB videos. Experimental results on this dataset
demonstrate the superior reconstruction quality achieved by
our method.
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[10] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo
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