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Abstract

Robust segmentation is critical for deriving quantita-
tive measures from large-scale, multi-center, and longitu-
dinal medical scans. Manually annotating medical scans,
however, is expensive and labor-intensive and may not al-
ways be available in every domain. Unsupervised domain
adaptation (UDA) is a well-studied technique that allevi-
ates this label-scarcity problem by leveraging available la-
bels from another domain. In this study, we introduce
Masked Autoencoding and Pseudo-Labeling Segmentation
(MAPSeg), a unified UDA framework with great versatil-
ity and superior performance for heterogeneous and vol-
umetric medical image segmentation. To the best of our
knowledge, this is the first study that systematically re-
views and develops a framework to tackle four different do-
main shifts in medical image segmentation. More impor-
tantly, MAPSeg is the first framework that can be applied
to centralized, federated, and test-time UDA while main-
taining comparable performance. We compare MAPSeg
with previous state-of-the-art methods on a private infant
brain MRI dataset and a public cardiac CT-MRI dataset,
and MAPSeg outperforms others by a large margin (10.5
Dice improvement on the private MRI dataset and 5.7 on
the public CT-MRI dataset). MAPSeg poses great practical
value and can be applied to real-world problems. GitHub:
https://github.com/XuzheZ/MAPSeg/.

1. Introduction

Quantitative measures from medical scans serve as
biomarkers for various types of medical research and clin-
ical practice. For instance, neurodevelopmental studies
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Figure 1. (a). Illustrations of four different domain shifts in med-
ical images. (b). Overview of different UDA settings and how
MAPSeg can fit into different scenarios.

utilize metrics such as brain volume and cortex thick-
ness/surface area from infant brain magnetic resonance
imaging (MRI) to investigate the early brain development
and neurodevelopmental disorders [2, 11, 23, 56]. There-
fore, robust segmentation of medical images acquired from
large-scale, multi-center, and longitudinal studies is desired,
yet often challenged by the domain shifts across differ-
ent imaging techniques and even within a single modality
(Fig.1a). For example, computed tomography (CT) and
MRI provide markedly different signals for the same struc-
ture (e.g., cardiac regions, Fig.1a). MRI, a widely adopted
radiation-free imaging technique, bears various types of in-
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herent heterogeneity, including cross-sequence (e.g., dis-
tinct contrasts for the same tissue in T1/T2 sequences) and
cross-site (e.g., contrast of the same tissue in the same se-
quence varies with acquisition scanner and setup). More-
over, subject-dependent physiological changes also lead to
domain shift. For example, contrasts of white matter and
grey matter vary while the human brain undergoes signifi-
cant growth and expansion within both cortical and subcor-
tical regions during early postnatal years [19], which con-
tributes to the cross-age domain shift (Fig.1a).

The prevalent heterogeneities in medical images lead to
suboptimal performance when deep neural networks trained
in one source domain are applied to another target domain.
To address this challenge, we introduce a unified unsuper-
vised domain adaptation (UDA) framework for volumet-
ric and heterogeneous medical image segmentation, named
Masked Autoencoding and Pseudo-Labeling Segmentation
(MAPSeg). To the best of our knowledge, MAPSeg is the
first framework that can be used in centralized, federated,
and test-time UDA for volumetric medical image segmen-
tation while maintaining comparable performance. This
versatility is particularly advantageous in the field of med-
ical image segmentation, where data sharing is restricted
and annotations are expensive. While centralized UDA
delivers the best performance in most cases, the strict re-
quirement of co-located data limits its application in multi-
institutional studies due to regulations such as the Health
Insurance Portability and Accountability Act (HIPAA) and
EU General Data Protection Regulation (GDPR) [35, 61].
MAPSeg circumvents this restriction with federated and
test-time adaptation, enabling clinical and research collab-
oration across different medical centers. In contrast, some
previous studies, despite showing promising results in one
scenario, may become infeasible or suffer significant perfor-
mance drop in others due to the requirement for co-located
data or synchronous adaptation.

In addition, we conduct extensive experiments on a
private infant brain MRI dataset, which includes expert-
provided annotations, to evaluate MAPSeg on cross-
sequence, cross-site, and cross-age adaptation tasks.
MAPSeg is also compared with previously reported state-
of-the-art (SOTA) results on a public cardiac CT → MRI
segmentation task. MAPSeg consistently outperforms pre-
vious SOTA methods by a large margin (10.5 Dice improve-
ment on the private MRI dataset and 5.7 on the public CT-
MRI dataset in the centralized UDA setting). While previ-
ous studies have separately explored one of the abovemen-
tioned domain shifts [12, 57, 70], they may not generalize
to others. For example, cross-age domain shift is mainly
composed of changes in brain size and contrast, and meth-
ods based on image-translation fail to handle it as they also
change the size when translating data from target domain to
source domain, leading to segmentation errors. We system-

atically evaluate MAPSeg across various domain shifts and
imaging modalities, demonstrating its consistent and gener-
alizable effectiveness.

Moreover, in all three UDA settings, MAPSeg does not
rely on any target labels for model validation and selection.
On the contrary, some previous studies on cardiac CT →
MRI segmentation [3, 4] validate and select the best model
using labeled target data, which may not be readily available
in real-world problems. We demonstrate that MAPSeg sur-
passes the previous SOTA results without using any target
label for validation, and the performance drop between us-
ing and without using target label is minor (0.9 mean Dice).
This further justifies its practical value in real-world med-
ical image segmentation tasks. The contributions of this
study are multi-fold:
1. We propose MAPSeg, a unified UDA framework capa-

ble of handling various domain shifts in medical image
segmentation.

2. MAPSeg is suitable for universal UDA scenarios, sug-
gesting its versatility and practical value for real-world
problems.

3. MAPSeg is extensively evaluated on both private and
public datasets, outperforming previous SOTA methods
by a large margin. We conduct detailed ablation studies
to investigate the impact of each component of MAPSeg.

2. Related Work
2.1. Masked Image Modeling

Masked image modeling (MIM) represents a category of
methods that learn representations from corrupted or in-
complete images [7, 13, 26, 51], and can naturally serve
as a pretext task for self-supervised learning. For exam-
ple, masked autoencoder (MAE) trains an encoder by re-
constructing missing regions from a masked image input
and has demonstrated improved generalization and per-
formance in downstream tasks [24, 36, 38, 59, 65–67].
MAPSeg heavily relies on MIM, leveraging MAE and
masked pseudo-labeling (MPL), to achieve versatile UDA.

2.2. Pseudo-Labeling

Pseudo-labeling facilitates learning from limited or imper-
fect data and is prevalent in semi- and self-supervised learn-
ing [32, 40, 53]. Consistency regularization is widely used
in pseudo-label learning [39, 54], which is a scheme that
forces the model to output consistent prediction for inputs
with different degrees of perturbation (e.g., weakly- and
strongly-augmented images). Mean Teacher [60], a teacher-
student framework that generates pseudo-labels from the
teacher model (which is a temporal ensembling of the stu-
dent model), is also a common strategy. In this work, we
utilize the teacher model to generate pseudo labels based on
complete images and guide the learning of student model
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on masked images.

2.3. Unsupervised Domain Adaptation

Discrepancy minimization, adversarial learning, and
pseudo-labeling are the three main directions explored in
UDA. Previous studies have explored minimizing the dis-
crepancy between source and target domains within differ-
ent spaces, such as input [3, 27, 70], feature [14–17, 25, 47],
and output spaces [33, 63], and they sometimes overlap with
approaches base on adversarial learning as the supervisory
signal to align two distributions may come from statisti-
cal distance metrics [20, 46] or a discriminator model [15,
27, 63]. Meanwhile, self-training with pseudo-label is also
a prevalent technique [72, 73, 76] and has shown signifi-
cant improvement on natural image segmentation [29–31].
Hoyer et al. [31] proposed masked image consistency as a
plug-in to improve previous UDA baselines. In contrast,
MAPSeg leverages the synergy between MAE and MPL,
and employs MPL as a standalone component for various
scenarios.

In this study, we exploit the vanilla pseudo-labeling
with three straightforward yet crucial measures to stabi-
lize the training. We hypothesize that random masking is
an ideal strong perturbation for consistency regularization
in pseudo-labeling, and the model pretrained via MAE can
be efficiently adapted to infer semantics of missing regions
from visible patches. This hypothesis is justified in Sec. 4.3.
In addition, we leverage the anatomical distribution prior in
medical images and make predictions jointly based on local
and global contexts, which also help mitigate the pseudo-
label drifts. We demonstrate the superior performance and
versatility of MAPSeg in different UDA scenarios in the fol-
lowing sections.

2.4. Federated Learning

Federated Learning (FL) is a distributed learning paradigm
that aims to train models on decentralized data [49]. FL has
attracted great attention in the research community in the
last few years and numerous works have focused on the key
challenges raised by FL such as data/system heterogene-
ity [58] and communication/computation efficiency [41].
By virtue of keeping privacy-sensitive medical data local,
FL has been adopted for various medical image analysis
tasks [22]. Sheller et al. [55] pioneered FL for brain tu-
mor segmentation on multimodal brain scans in a multi-
institutional collaboration and showed its promising perfor-
mance compared to centralized training. Yang et al. [68]
proposed a federated semi-supervised learning framework
for COVID-19 detection that relaxed the requirement for
all clients to have access to ground truth annotations. Fed-
Mix [64] further alleviated the necessity for all clients to
possess dense pixel-level labels, allowing users with weak
bounding-box labels or even image-level class labels to

collaboratively train a segmentation model. In contrast,
MAPSeg assumes all clients have completely unlabeled
data when extended to federated UDA scenario. Mush-
taq et al. [50] proposed a Federated Alternate Training
(FAT) scheme that leverages both labeled and unlabeled
data silos. It employs mixup [71] and pseudo-labeling to
enable self-supervised learning on the unlabeled partici-
pants. MAPSeg, on the other hand, adopts masked pseudo-
labeling and global-local feature collaboration for adapting
to unlabeled target domains. Yao et al. [69] introduced the
federated multi-target domain adaptation problem and a so-
lution termed DualAdapt. It decouples the local-classifier
adaptation with client-side self-supervised learning from
the feature alignment via server-side mixup and adversar-
ial training. MAPSeg addresses the same federated multi-
target UDA problem, and we compare our results to those
of FAT and DualAdapt in Sec. 4.3.

2.5. Test-Time UDA

While federated UDA eases the constraint of centralized
data, its learning paradigm still requires synchronous learn-
ing across server and clients. Test-time UDA [5, 10, 18,
25, 37, 44] assumes the unavailability of source-domain
data when adapting to target domains. This assumption sig-
nificantly limits the applicability of methods based on im-
age translation, adversarial learning, and feature distribu-
tion alignment which require simultaneous access to both
source and target data. Gandelsman et al. [18] explored us-
ing MAE retraining during test-time to improve classifica-
tion without employing pseudo labeling. Chen et al. [5]
proposed using prototype and uncertainty estimation for
denoised pseudo labeling of 2D fundus images. Karani
et al. [37] designed a 2D denoising autoencoder to refine
pseudo labels. He et al. [25] employed AE during test-
time to align source and target feature distributions by min-
imizing AE reconstruction loss. We demonstrate that, with
slight performance drop on source domain, MAPSeg can be
extended to test-time UDA with comparable performance to
that of centralized UDA on target domain (Sec. 4.3).

3. Methods
3.1. Preliminary

In this section, we introduce each component of MAPSeg
(Fig.2) and how MAPSeg can serve as a unified solution
to centralized, federated, and test-time UDA (Fig.1b). We
deploy MAPSeg for domain adaptative 3D segmentation of
heterogeneous medical images and it consists of three com-
ponents: (1) 3D masked multi-scale autoencoding for self-
supervised pre-training, (2) 3D masked pseudo-labeling for
domain adaptive self-training, and (3) global-local feature
collaboration to fuse global and local contexts for the final
segmentation task. The hybrid cross-entropy and Dice loss
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(Eq.1) is often adopted for regular supervised segmentation
training, and we employ it as the basic component of the
objective functions for MAPSeg:

Lseg(ŷ, y) = − 1

n

∑
i

∑
j

yi,j log(ŷi,j)−
2
∑
yŷ + ε∑

y +
∑
ŷ + ε

(1)
where n denotes the number of pixels, yi,j and ŷi,j repre-
sent the ground truth label and predicted probability for the
ith pixel to belong to the jth class, and ε is used to prevent
zero-division.

In the following sections, notations are defined as: x and
y indicate the original image and label of the randomly sam-
pled local patch;X and Y refer to downsampled global scan
and label; the subscripts s and t refer to the source and tar-
get domains, respectively; the superscript M indicates the
image is masked (e.g., xMt refers to a masked local patch
from the target domain).

3.2. 3D Multi-Scale Masked Autoencoder (MAE)

In this study, we propose a 3D variant of MAE using a 3D
CNN backbone (Fig.2a). The detailed configuration can be
found in Appendix Sec. 1.1. Training is jointly performed
on two image sources with identical size (963 voxels): local
patches x randomly sampled from the volumetric scan, and
the whole scan downsampled to the same size, denoted as
X . Both x and X are masked before feeding into the MAE:
x is divided into non-overlapping 3D sub-patches with size
83, of which 70% are masked out randomly based on a uni-
form distribution (Fig.2a); The same procedure is applied
to X with patch size 43 since it contains a larger field-of-
view (FOV). The masked versions of x and X are denoted
as xM and XM , respectively. We train the MAE encoder
and decoder to reconstruct x/X based on xM/XM using
mean squared error on the masked-out regions as the objec-
tive function.

3.3. 3D Masked Pseudo-Labeling (MPL)

MPL uses a teacher-student framework which is a standard
strategy in semi-/self-supervised learning [21, 60] to pro-
vide stable pseudo labels on an unlabeled target domain
during training. After MAE pre-training, we keep the MAE
encoder g and append a segmentation decoder h to build the
segmentation model f = h ◦ g (Fig.2b-c). Given an input
image xs and label ys from the source domain and an in-
put image xt from the target domain, the teacher model fθ
takes as input the target image xt and generates pseudo la-
bels fθ(xt), with gradient detached. The student model fφ
is then optimized by minimizing the segmentation loss be-
tween the predictions of xMt /xMs and fθ(xt)/ys, which can
be formulated as:

LMPL = LSeg(fφ(xMt ), fθ(xt)) + βLSeg(fφ(xMs ), ys)
(2)

where β is the weight of source prediction and set as 0.5.
The teacher model’s parameters θ are then updated during
training via exponential moving average (EMA) based on
the student model’s parameters φ [60].

θt+1 ← αθt + (1− α)φt, (3)

where t and t + 1 indicate training iterations and α is the
EMA update weight. For model initialized from the large-
scale MAE pretraining, we set α as 0.999 during the first
1,000 steps and 0.9999 afterwards. For model pretrained on
small-scale source and target datasets (e.g., only dozens of
scans), we set α as 0.99 during the first 1,000 steps, 0.999
during the next 2,000 steps, and 0.9999 for the remaining
training. The teacher model fθ is initialized with student
model’s parameters φ after some warm-up training (e.g.,
1,000 iterations) on the source-domain data.

3.4. 3D Global-Local Collaboration (GLC)

Directly applying MPL for UDA segmentation with large
domain shift (e.g., cross-modality/sequence) may lead to
unreliable pseudo-label and disrupt the training. There-
fore, we design a GLC module (Fig.2c) to improve pseudo-
labeling by leveraging the spatial global-local contextual
relations induced by the inherent anatomical distribution
prior in medical images. With the image encoder pre-
trained to extract image features at both local and global
levels during multi-scale MAE, we take advantage of the
global-local contextual relations by concatenating local and
global semantic features in the latent space and make pre-
diction based on the fused features. We differ from previ-
ous study [8] by only applying GLC on the output of the
encoder g instead of all layers to save computation cost and
employing a different regularization to prevent segmenta-
tion decoder from predicting solely based on local features.

In GLC, a binary mask M is used to indicate the cor-
responding location of the local patch x inside the down-
sampled global volume X . The encoder g takes as input x
and X and generates the local latent feature χloc = g(x)
as well as cropped and resized global latent feature χglo =
upsample(M � g(X)), where � indicates cropping g(X)
based on M followed by upsampling to match the spatial
size of χloc. Therefore, segmenting a local patch x can be
rewritten as f(x) = h(χloc ⊕ χglo), where ⊕ is the con-
catenation along channel dimension (Fig.2c). In addition,
f is also trained on downsampled global volume X with
LSeg(f(X), Y )), in which the global latent feature g(X)
is duplicated and f(X) = h(g(X) ⊕ g(X)), to prevent
model from solely relying on local semantic features and
encourage the encoder to extract meaningful semantic fea-
tures from both local and global levels.

We also add a regularization term between the χloc and
χglo to maintain their similarity following [8]. Instead of
the L2 regularization used in [8], we maximize the cosine
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Figure 2. Components of the proposed MAPSeg framework. (a) 3D multi-scale masked autoencoding. (b) 3D masked pseudo labeling in
source and target domains. (c) 3D Global-local collaboration.

similarity between the χloc and χglo as:

Lcos(x,X) = 1− χloc · χglo
max(‖χloc‖2, ‖χglo‖2, ε)

(4)

where ε is used to prevent zero-division. The loss function
for GLC calculated on the source data is formulated as:

LSGLC = γ(LSeg(fφ(Xs), Ys) + LSeg(fφ(XM
s ), Ys))

+ δ(Lcos(xs, Xs) + Lcos(xMs , XM
s )) (5)

where γ and δ are the weights of the auxiliary global loss
and cosine similarity, and set as γ = 0.05 and δ = 0.025
in our experiments. Similarly, the GLC loss is also calcu-
lated on the target data based on pseudo-label fθ(Xt) and
formulated as:

LTGLC = 2γLSeg(fφ(XM
t ), fθ(Xt)) + 2δLcos(xMt , XM

t )
(6)

Therefore, the overall loss function of GLC is:

LGLC = LSGLC + LTGLC (7)

With the regular fully-supervised segmentation loss on
source data LFSS = βLSeg(fφ(xs), ys), where β is de-
fined as in Eq.2, the overall objective function L for cen-
tralized UDA is formulated as:

L = LFSS + LMPL + LGLC (8)

It is clear that Eq.8 requires centralized and synchronous ac-
cess to source and target data. In the section 3.5 and 3.6, we
demonstrate how MAPSeg can be adapted to federated (de-
centralized and synchronous access to data) and test-time
(decentralized and asynchronous access to data) UDA sce-
narios.

3.5. Extension to Federated UDA

In reality, labeled source-domain data and unlabeled target-
domain data are often collected at different sites. We con-
sider a practical scenario where a server (e.g. a major hos-
pital) hosts potentially large amount of both labeled and un-
labeled scans, and distributed clients (e.g. clinics or imag-
ing sites) possess only unlabeled images. This is an under-
explored scenario as FL typically assumes either fully or

partially labeled data from all clients. We extend MAPSeg
to solve this federated multi-target UDA problem according
to the details in Algorithm 1 of Appendix Sec. 1.2. Specif-
ically, the server updates the student model fφ by minimiz-
ing the loss for the labeled source-domain data DS :

Ls = β(Lseg(fφ(xs), ys) + Lseg(fφ(xMs ), ys))

+ γ(Lseg(fφ(Xs), Ys) + Lseg(fφ(XM
s ), Ys))

+ δ(Lcos(xs, Xs) + Lcos(xMs , XM
s )) (9)

The clients update the student model fφ by minimizing the
loss for its own unlabeled target-domain data Dk

T :

Lu = β(Lseg(fφ(xMt ), fθ(xt)) + Lseg(fφ(xt), fθ(xt)))

+ γ(Lseg(fφ(XM
t ), fθ(Xt)) + Lseg(fφ(Xt), fθ(Xt)))

+ δ(Lcos(xt, Xt) + Lcos(xMt , XM
t )) (10)

Comparing to the centralized UDA loss (Eq.8), we decom-
pose it into two components: fully supervised loss for server
training (Eq.9) and self-supervised loss for client updates
(Eq.10), which avoids the need for centralized data. After
each local update, each client sends the EMA teacher model
parameters θ to the server for aggregation following typical
federated averaging[49].

3.6. Extension to Test-time UDA

Test-time UDA often involves two separate stages of train-
ing, including the source-only training at one center and the
target-only finetuning at another site. In the federated UDA
setting, Eq.9 and Eq.10 are jointly used to update the server
model through synchronous federated averaging after each
round. We can further ease the constraint of synchronous
communication between source and target sites by train-
ing fφ on the source data using Eq.9 for some (e.g. 1,000)
warm-up steps before distributing the model parameters φ
to the target site for initializing the teacher model fθ. On
the target site, fθ provides stable pseudo-labels to guide
the self-supervised training with Eq.10 and is updated by
the EMA of φ following Eq.3. We find that in this asyn-
chronous setting MAPSeg still performs well on the target-
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domain data, albeit with a minor performance tradeoff on
the source-domain data (see Tab.3).

3.7. Implementation Details

Model architecture and implementation. We implement
the encoder backbone g using 3D-ResNet-like CNN. The
segmentation decoder h is adapted from DeepLabV3 [6].
The framework is implemented using PyTorch. More de-
tails of the model and the training procedure are provided
in Appendix Sec. 1.1 and 1.2.
Selecting the best model. For choosing the best model dur-
ing training, some studies choose to train for fixed iterations
and use the last checkpoint. On the other hand, some of the
previous UDA studies [3, 4] face a dilemma in selecting
the best model during training by validating against a hold-
out portion of target-domain labels, which is unrealistic as
UDA assumes full absence of target labels. We demonstrate
that MPL not only provides an efficient pathway to domain
adaptative segmentation but also serves as an indicator of
how well the model is being adapted to the target domain.
We validate the model after each epoch and the best model
is selected based on the score: Score = DiceSrc − 0.5 ×
LSeg(fφ(xMt ), fθ(xt)), where DiceSrc is the Dice score on
source-domain validation set and LSeg(fφ(xMt ), fθ(xt)) is
the mean of LSeg(fφ(xMt ), fθ(xt)) during the last training
epoch. From Eq.1, it is clear that limŷ→y Lseg(ŷ, y) =
−1, therefore, Score has an upper bound of 1.5. We
demonstrate in Tab.4 that the difference between valida-
tion using target labels versus Score is acceptable (81.2 vs.
80.3). Even without accessing target labels for validation,
MAPSeg still surpasses the previous SOTA results that use
target labels for validation. It is worth noting that we only
use target labels for validation in Tab.4 for a fair comparison
with previously reported results; other results presented use
Score for validation by default. For federated and test-time
UDA, Score = −LSeg(fφ(xMt ), fθ(xt)).

4. Experiments and Results
4.1. Datasets

Brain MRI Datasets. We include 2,421 (1,163 T1w)
brain MRI scans acquired from newborn to toddler in this
study. Among them, 2,306 are unannotated scans dedi-
cated for the 3D multi-scale MAE pretraining. These MRI
scans are acquired from multiple sites with different se-
quence parametrization and scanner types. All scans are
preprocessed with skull stripping [28] and bias-field correc-
tion [62]. These MRI brain scans were acquired worldwide,
and detailed descriptions can be found in Appendix Sec.
1.4.

To evaluate cross-sequence/site/age UDA segmentation
for seven subcortical regions (i.e., hippocampus (HC),
amygdala (AD), caudate (CD), putamen (PT), pallidum

Table 1. Performance of centralized UDA on brain MRI segmen-
tation.

Cross-Sequence

Method Dice(%) ↑
HC AD CD PT PD TM AB Avg

AdvEnt[63] 56.7 52.7 66.7 66.1 61.8 74.1 40.1 59.8
DAFormer[29] 40.5 53.3 62.2 64.7 45.9 61.8 39.9 52.6

HRDA[30] 42.6 37.7 66.5 71.9 0.0 67.6 0.3 40.9
MIC[31] 40.3 47.0 72.5 52.9 0.0 62.1 0.0 39.3

DAR-UNet[70] 61.3 65.2 76.7 75.8 68.1 82.0 48.4 68.2
MAPSeg (Ours) 70.3 73.2 81.4 83.9 76.5 89.6 69.2 77.7

Cross-Site

Method Dice(%) ↑
HC AD CD PT PD TM AB Avg

AdvEnt[63] 27.1 6.7 21.0 23.1 12.5 36.0 20.5 21.0
DAFormer[29] 40.0 45.8 75.3 70.0 68.4 64.0 51.3 59.3

HRDA[30] 30.9 44.3 80.8 79.8 66.4 83.0 53.4 62.7
MIC[31] 48.1 36.2 67.7 82.8 69.5 66.8 52.3 60.5

DAR-UNet[70] 51.9 43.6 69.8 55.2 55.5 81.2 45.8 57.6
MAPSeg (Ours) 70.0 53.5 85.6 85.4 67.9 88.1 61.4 73.1

Cross-Age

Method Dice(%) ↑
HC AD CD PT PD TM AB Avg

AdvEnt[63] 58.7 54.1 44.0 63.8 56.9 78.0 30.9 55.2
DAFormer[29] 30.2 65.7 72.7 55.8 38.4 88.8 57.3 58.4

HRDA[30] 48.6 66.6 81.9 67.7 35.7 74.1 56.0 61.5
MIC[31] 61.3 66.0 80.9 73.4 44.3 76.1 51.0 64.7

DAR-UNet[70] 58.8 56.3 64.4 64.5 53.6 82.6 28.6 58.8
MAPSeg (Ours) 75.8 76.7 83.1 71.4 58.2 90.7 70.1 75.2

(PD), thalamus (TM), and accumbens (AB)), our analysis
include manual segmentation of 115 scans. They com-
prise independent subjects from the BCP cohort (BCP50)
with private expert segmentation for both T1w and T2w
scans (acquired from 0 to 24 months postnatal age); 5 new-
born scans from the ECHO cohort (ECHO5) with private
expert segmentation; and 10 newborn scans from the M-
CRIB project (MCRIB10) with publicly available segmen-
tation [1].
Cardiac CT-MRI Dataset. Following the previous stud-
ies [3, 4], we include 40 independent scans (20 CT and 20
MRI) of cardiac regions from Multi-Modality Whole Heart
Segmentation (MMWHS) Challenge 2017 dataset [48, 74,
75] with ground truth labels of ascending aorta (AA),
left atrium blood cavity (LAC), left ventricle blood cavity
(LVC), and myocardium of the left ventricle (MYO). Simi-
larly, we apply bias-field correction to the MRI scans.

4.2. Dataset Partition

Pretraining. For multi-scale MAE pretraining on brain
MRI scans, we have four models pretrained on different
amounts of data to investigate the influence of pretrain-
ing data size. The model pretrained on large-scale data
takes advantage of all 2,306 unannotated scans introduced
in Sec. 4.1. Since there is no overlapping with the annotated
scans, the pretrained model can be directly applied to all
downstream UDA tasks (i.e., cross-site/age/sequence). We
also pretrain the model solely relying on source and target
training data of each task.

For multi-scale MAE pretraining on cardiac CT-MRI
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scans, the model is only pretrained on training scans of
source (16 CT scans) and target (16 MRI scans) domains,
following the partition adopted by previous studies.
Cross-Sequence UDA segmentation of brain. The model
is trained on T1w MRI scans (source domain) and tested
on T2w MRI scans (target domain). The BCP50 dataset is
randomly split into two non-overlapping subsets of 25 sub-
jects per each. The model is trained on T1w scans of the
first group (source domain 18 scans for training and 7 for
validation) and T2w scans of the second group (target do-
main 15 for training and 10 for testing). The best validation
model is then applied to the T2w testing scans.
Cross-Site UDA segmentation of brain. The model is
trained on a single site (BCP50, source domain) and tested
on two other sites (MCRIB10 and ECHO5, target domains).
Utilizing 50 T2w MRI scans from BCP as the source do-
main, we randomly select 40 scans for training and 10 for
validation. Six scans from MCRIB10 and three scans from
ECHO5 are used for UDA training, and remaining scans are
used for testing.
Cross-Age UDA segmentation of brain. We also conduct
experiments in cross-age segmentation using longitudinal
scans from BCP50. We set the 24 T2w MRI scans of 12-
24 month-old infant as the source domain and 14 T2w MRI
scans of 0-6 month-old infants as the target domain. For the
source domain, 19 scans are randomly sampled for training
and remaining 5 scans are used for validation. For the target
domain, 8 scans are used for UDA training and 6 scans are
used for testing.
Cross-Modality UDA segmentation of cardiac. For the
cardiac scans, for a fair comparison, we follow the same
partition employed by the previous studies. We set CT as
the source domain and MRI as the target domain, and use
16 CT scans and 16 MRI scans for training, 4 CT scans for
validation, and the remaining 4 MRI scans for testing.

4.3. Results

Centralized Domain Adaptation. To assess MAPSeg’s
performance in different UDA tasks for infant brain MRI
segmentation, we compare it with methods utilizing adver-
sarial entropy minimization [63], image translation [70],
and pseudo-labeling [29–31]. The results are reported
in Tab.1. MAPSeg consistently outperforms its counter-
parts across all tasks. DAR-UNet ranks second in the
cross-sequence task but shows degraded performance in
others, partially due to translation error (details in Ap-
pendix). Among pseudo-labeling approaches, HRDA and
MIC achieve the second best performance in cross-site and
cross-age tasks, respectively. However, they fail to segment
pallidum and accumbens in the cross-sequence task. A ma-
jor challenge here is the small size of subcortical regions
(accounting for approximately 2% of overall voxels) and
significant class imbalance (e.g., thalamus comprises about

Table 2. Performance of federated UDA on brain MRI segmenta-
tion.

Method Dice(%) ↑
Cross-Sequence Cross-Site Cross-Age

FAT[50] 27.6 63.8 69.0
DualAdapt[69] 28.4 66.1 54.8

Fed-MAPSeg (ours) 69.9 73.6 71.0

Table 3. Comparison between centralized and test-time UDA on
brain MRI segmentation. Performance of source domain are re-
ported on source validation set.

Task Centralized UDA Test-time UDA
∆Source ∆TargetSource Target Source Target

X-seq 84.0 77.7 79.2 75.9 -4.8 -1.8
X-age 85.8 75.2 84.2 72.9 -1.6 -2.3
X-site 85.7 73.1 79.9 70.3 -5.8 -2.8

0.8% of overall voxels, while accumbens accounts for only
0.03%). This imbalance poses a significant challenge for
previous pseudo-labeling methods. Additional visualiza-
tions and discussions are available in Appendix Sec 1.7.
Federated Domain Adaptation. To evaluate our frame-
work in the federated domain adaptation setting, we des-
ignate the labeled source-domain dataset as the server
dataset and the unlabeled target-domain datasets as the
client datasets. In the cross-sequence setting, the 25 T1w
scans of the first group are considered as the server dataset,
and the 25 T2w scans of the second group are split roughly
equally into three disjoint client datasets. In the cross-site
setting, the BCP50 is considered as the server dataset, and
the ECHO5 and MCRIB10 naturally serve as two different
client datasets. In the cross-age setting, we treat the scans
from the first age group as the server dataset, and split the
scans from the second age group equally into two client
datasets.

We compare our Fed-MAPSeg with two other related
work, FAT [50] and DualAdapt [69]. To our best knowl-
edge, there is no direct comparison from the literature that
addresses this challenging federated multi-target unsuper-
vised domain adaptation for 3D medical image segmen-
tation. FAT [50] proposes an alternating training scheme
between the labeled and unlabeled data silos and adopts
a mixup approach to augment the unlabeled input data
for self-supervised learning with pseudo-labels. Dual-
Adapt [69] considers a similar single-source to multi-target
unsupervised domain adaptation setting, except that it only
reports segmentation performance for 2D image datasets
such as the DomainNet [52] and CrossCity [9]. Implemen-
tation details for our Fed-MAPSeg as well as the baselines
are included in Appendix Sec. 1.3. We report our results in
Tab.2. Fed-MAPSeg not only outperforms the two baselines
by a large margin (esp. in the the cross-sequence setting), it
also maintains a fairly close performance compared to the
centralized UDA.
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Table 4. Performance of centralized UDA on cardiact CT→ MRI
segmentation. Underline indicates the target labels are not used
for validation.

Cardiac CT→MRI segmentation

Method Dice(%) ↑
AA LAC LVC MYO Avg

PnP-AdaNet[15] 43.7 47.0 77.7 48.6 54.3
SIFA-V1[3] 67.0 60.7 75.1 45.8 62.1
SIFA-V2[4] 65.3 62.3 78.9 47.3 63.4

DAFormer[29] 75.2 59.4 72.0 57.1 65.9
MPSCL[45] 62.8 76.1 80.5 55.1 68.6

MA-UDA[34] 71.0 67.4 77.5 57.1 68.7
SE-ASA[17] 68.3 74.6 81.0 55.9 69.9

FSUDA-V1[42] 62.4 72.1 81.2 66.5 70.6
PUFT[14] 69.3 77.4 83.0 63.6 73.3

SDUDA[12] 72.8 79.3 82.3 64.7 74.8
FSUDA-V2[43] 72.5 78.6 82.6 68.4 75.5

MAPSeg (Ours) 78.5 81.8 92.1 68.8 80.3
78.2 81.8 92.9 72.0 81.2

Table 5. Ablation studies of MAPSeg components on cross-
sequence brain MRI segmentation.

Components Performance
MAE GLC MPL Dice(%) ↑

31.6
X 51.3

X 53.0
X 39.5

X X 59.0
X X 71.3
X X 75.3
X X X 77.7

Test-Time Domain Adaptation. We further extend
MAPSeg to Test-time UDA, and the results for different
tasks are reported in Tab.3. With decentralized data and
asynchronous training, MAPSeg still performs very well in
all tasks, with performance drop smaller than 3% in the
target domain. However, we observe a slightly more per-
formance degradation in the source domain (Tab.3), par-
ticularly in cross-sequence and cross-site tasks, suggesting
that the model suffers from forgetting of the source domain
knowledge during test-time UDA.
Cross-Modality Segmentation of Cardiac. To evaluate
the generalizability of MAPSeg, we further conduct exper-
iment for cross-modality cardiac segmentation and the re-
sults are reported in Tab.4. MAPSeg surpasses all previ-
ously reported results. Results of MRI→ CT segmentation
can be found in Appendix Sec. 1.5.
Ablation Studies. To further investigate each compo-
nent of MAPSeg, we conduct ablation studies focusing on
MAE, GLC, MPL, masking ratio, masking patch size of lo-
cal patch, and pretraining data size in the context of cross-
sequence segmentation. From Tab.5, it is clear that directly
applying MPL only brings a minor improvement, suggest-
ing using MPL alone suffers from pseudo-label drifts. By
incorporating GLC to leverage global-local contexts, MPL

Figure 3. Ablation studies on masking ratio, patch size, and pre-
train data. Experiments on masking ratio and patch size are con-
ducted on cross-sequence task.

yields better results. MAE pretraining significantly boosts
the performance from using MPL alone (39.5 to 75.3), justi-
fying MAE and MPL are complementary parts in MAPSeg.
Combining MAE, MPL, and GLC together yields the opti-
mal performance.

The impact of masking ratio and local patch size is re-
ported in Fig.3. The masking ratio and patch size remain the
same in MAE and MPL. The results indicate that MAPSeg
is more sensitive to patch size. A patch size of 4 or 16
decreases the performance significantly. For the masking
ratio, MAPSeg achieves optimal performance when 70%
of the regions are masked out. Additionally, we evaluate
model’s performance using only source and target training
data (< 50 scans) for MAE pretraining, much fewer than the
large-scale pretraining (> 2,000 scans). This suggests that,
even with dozens of scans involved in MAE, MAPSeg still
delivers comparable performance. Another benefit of large-
scale pretraining is its immediate applicability to new target
domains; the pretrained encoders can be directly employed
for MPL, bypassing the need for training from scratch. Ad-
ditional analyses about sensitivity to other hyperparameters
can be found in Appendix Sec. 1.6.

5. Conclusions
In this paper, we introduce the MAPSeg framework as a uni-
fied UDA framework that works on centralized, federated,
and test-time UDA scenarios. We evaluate it under multiple
domain shift and adaptation settings, and it outperforms all
the baselines in all scenarios. We conduct extensive ablation
study to demonstrate the effectiveness of each component.
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