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Abstract

Foot contact is an important cue for human motion cap-
ture, understanding, and generation. Existing datasets tend
to annotate dense foot contact using visual matching with
thresholding or incorporating pressure signals. However,
these approaches either suffer from low accuracy or are
only designed for small-range and slow motion. There is
still a lack of a vision-pressure multimodal dataset with
large-range and fast human motion, as well as accurate and
dense foot-contact annotation. To fill this gap, we propose a
Multimodal MoCap Dataset with Vision and Pressure sen-
sors, named MMVP. MMVP provides accurate and dense
plantar pressure signals synchronized with RGBD observa-
tions, which is especially useful for both plausible shape
estimation, robust pose fitting without foot drifting, and ac-
curate global translation tracking. To validate the dataset,
we propose an RGBD-P SMPL fitting method and also
a monocular-video-based baseline framework, VP-MoCap,
for human motion capture. Experiments demonstrate that
our RGBD-P SMPL Fitting results significantly outperform
pure visual motion capture. Moreover, VP-MoCap outper-
forms SOTA methods in foot-contact and global translation
estimation accuracy. We believe the configuration of the
dataset and the baseline frameworks will stimulate the re-
search in this direction and also provide a good reference
for MoCap applications in various domains. Project page:
https://metaverse-ai-lab-thu.github.io/MMVP-Dataset/

1. Introduction

Human motion capture is an important foundation for mo-
tion analysis, behavior understanding, and pose generation,
with a wide range of applications in AR/VR, disease di-
agnosis, robot manipulation, sports training, etc. In re-
cent years, human motion capture based on computer vision
technology has been developing rapidly, which has mainly
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Figure 1. MMVP is a multimodal dataset that provides monocular
RGBD video and accurate foot pressure (contact) of large-range
and fast human motion.

benefited from the development of deep learning technol-
ogy as well as, more importantly, the release of a large num-
ber of human motion capture datasets. Most of the existing
datasets focus on human shape and pose annotations. Given
pairs of image and shape and pose annotations for training,
learning-based methods can infer plausible human motion
from visual signals alone [5, 12, 23–26, 30, 37, 45, 56].
However, there are still many limitations when only using
pose and shape annotations for supervision, resulting in ar-
tifacts such as foot drifting and erroneous global transla-
tion&rotation, etc.

To solve the above problem, recent datasets introduce ad-
ditional annotations, mainly contacts, such as foot-contact,
body-scene contact [15, 18] or self-contact [10, 34], to en-
hance additional physical constraints for visual motion cap-
ture. Among these contact annotations, the most classical
one is the foot-contact annotation. With foot contact anno-
tation, Rempe et al. [40] has inferred the 0-1 foot-contact
label for the foot joints from an image, which successfully
restricts the foot drifting artifacts and realizes much more
accurate global translation results. It is worth mentioning
that the labeled contact information can not only improve
the accuracy of motion capture but also be used as impor-
tant cues to directly improve the rationality of motion anal-
ysis [43, 44, 52] and even motion generation [16].
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However, it is very difficult to accurately annotate the
contact. Most of the existing datasets use purely visual
matching and distance thresholding for contact annotation
[14, 15, 18]. Specifically, these datasets usually require a
pre-scanning of the 3D scene, and then, based on the image
observations, use an optimization method to fit the parame-
terized human model (SMPL [32] or SMPL-X [38]) to the
3D scene, and finally the GT (ground truth) contact was an-
notated by thresholding the distance between the vertices of
the SMPL model and the 3D scene. Since this is an in-direct
annotation strategy, the accuracy is inevitably affected by
the pose estimation error, shape estimation error, and even
scene scanning error. The situation becomes even worse
under fast and large-range motion when the contact time is
short and the foot motion is sophisticated. In short, when
the purely visual fitting error is larger, it is impractical to
set a fixed distance threshold for accurate and detailed foot
contact annotation. As a result, the foot contact annotation
of these datasets is not precise enough and the annotation
granularity is relatively coarse.

On the other end of the spectrum, in the field of health
examination and clinical diagnosis, the use of specialized
pressure sensors, such as the INSOLE, to obtain plantar
pressure has been a proven and feasible option [11, 41, 50].
However, these datasets often lack the simultaneous acqui-
sition of visual signals, making it difficult to apply to CV
tasks. The most related multimodal datasets to ours are
PSU-TMM100 [42] and MOYO [48]. Jesse et al. collected
the PSU-TMM100 dataset with 2 RGB cameras and a pair
of insole. However, this dataset is only designed for an-
alyzing the stability of motion when humans perform Taiji
Quan, so the movements are slow and the motion categories
are relatively simple. Most recently, MOYO [48] uses mul-
tiple RGB sensors with a fixed position force plate for cap-
turing yoga and analyzing the stability. However, the force
plate restricts the pressure acquisition area for capturing
large-range motion.

As a result, there is still a lack of a motion capture dataset
that can simultaneously take into account a large range of
motion, fast body movements, and visual-pressure syner-
gistic acquisition, as well as accurate and dense foot-contact
annotation. To fill this gap, we design a vision-pressure syn-
chronized multimodal human motion capture system and
acquire a new dataset named Multimodal MoCap dataset
with Vision and Pressure Sensors (MMVP), as shown in
Fig. 1. Specifically, we captured single-view RGBD se-
quences and plantar pressure under a large range of rapid
movements with sophisticated footwork. Based on the high-
end insole sensor, we can obtain precise and dense foot
pressure and contact annotations which are significantly
more accurate and detailed than previous datasets. To fully
utilize the synchronized RGBD and dense foot-contact sig-
nals for motion capture, we further design a novel RGBD-

P SMPL fitting method based on multimodal input, which
is far more accurate than vision-only methods, especially
around foot regions. Finally, based on the new dataset
and the fitted SMPLs, we propose and evaluate a base-
line framework for monocular video-based human motion
capture, VP-MoCap, which incorporates a per-vertex-level
foot-pressure predictor (FPP-Net) and contact-based pose
optimization strategy together to significantly improve the
global translation and pose estimation accuracy.

In summary, our contributions are:
• We present MMVP, a novel multimodal human motion

capture dataset that provides precise foot pressure and the
most accurate dense contact annotations for large-range
and rapid movements with detailed footwork.

• An RGBD-P SMPL fitting method is introduced to fully
utilize the multimodal signals and achieve high-quality
human motion capture results with plausible shape, stable
foot movement, and accurate global translations. We also
introduce a monocular RGB-based human motion capture
baseline framework called VP-MoCap, which combines
an FPP-Net and a joint optimization strategy.

• Comparisons with SOTA SMPL fitting and monocular
MoCap methods demonstrate the effectiveness of our
dataset, RGBD-P fitting strategy, and the VP-MoCap
framework.

2. Related Work

2.1. Multimodal MoCap Datasets

The Human datasets [1, 3, 19, 33, 39, 55] have greatly pro-
moted the development of pose detection. Nevertheless,
these datasets only include visual signals and provide an-
notations for body shapes and poses. To further analyze hu-
man motion, multimodal datasets are needed. Tab. 1 sum-
marizes existing multimodal datasets.

Some datasets introduce additional interaction anno-
tations, such as human-scene contact [15, 18], self-
contact [10, 34] or object contact [6], providing new in-
sights for the study and analysis of human motion. These
contacts can significantly reduce pose ambiguities in mo-
tion capture and enhance the understanding of visual im-
ages. Whether manually annotated or based on thresh-
olds, these labels are derived solely from visual informa-
tion, making it difficult to guarantee accuracy.

Some datasets incorporate signals from other modalities.
LiDAR is typically applied in large scenarios, and its signal
modality is similar to vision [8, 28, 51, 51]. Inertial Mea-
surement Units (IMUs) can measure the accelerations and
orientations of body parts. Thus the combination of vision
and IMUs can solve heavy occlusion or extreme illumina-
tion [13, 49]. Pressure is a commonly used signal in human
gait analysis, clinical rehabilitation assessment, and other
biomedical fields. But medical datasets [11, 41, 50] often
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Datasets Visual Signal Additional Signal Additional Annotation

PROX [14] S.V. RGBD N/A Scene-contact
RICH [18] M.V. RGB N/A Scene-contact
HumanSC3D [10] M.V. RGB N/A Self-contact
FlickrSC3D [10] S.V. RGB N/A Self-contact
TUCH [34] S.V. RGB N/A Self-contact
HOT [6] S.V. RGB N/A Object contact
TotalCapture [49] M.V. RGB IMU N/A
HPS [13] M.V. RGB IMU N/A
LiDARHuman26M [28] S.V. RGB LiDAR N/A
Schreiber et al. [41] N/A EMG, force plate Foot pressure
Grouvel et al. [11] N/A IMU, insole, and force plate Foot pressure
Zee et al. [50] N/A Insole Foot pressure
MoYo [48] M.V. RGBD Force plate Pressure and body contact

Ours S.V. RGBD Insole Foot pressure and contact

Table 1. Comparison of existing multimodal human motion capture datasets. S.V.: single-view, M.V.: multi-view. Note that MoYo
provides pressure and contact captured by a fixed-position force plate, so the capture range is limited. MMVP is the first dataset that
provides accurate foot pressure and contact annotations with a large range and rapid body movements.

lack visual information. TMM100 [42] and MOYO [48]
are the most representative vision & pressure datasets. The
pressure can provide accurate contact information and phys-
ical features. However, both of these tend to favor slow and
steady movements. Currently, there is still a lack of datasets
that synchronize pressure and visual data to describe a wide
range of fast body movements.

2.2. Human Pose Estimation

Existing methods have made remarkable progress in human
pose and shape estimation [12, 21, 22, 29, 31, 60]. While
single image and monocular pose estimation has received
more widespread attention [4, 9, 23, 24, 26, 27, 30, 38, 59].
However, these methods solely focus on the correlation be-
tween image features and human pose, neglecting the con-
nection between subjects and their environment. Conse-
quently, this limitation often results in visually and physi-
cally implausible outcomes in the world frame, such as jit-
ter, penetration, sliding, and so on.

LIDAR is employed to localize the global position of dis-
tant targets. LiDARCap [28], HSC4D [7], and Sloper4d [8]
employ LIDAR data to estimate global human poses.
CIMI4D [51] leverages LiDAR to acquire the human-scene
contact information and regress the human pose for off-
grounded motions. Due to the distance of the subjects, these
methods often lack fine-grained motion details.

Some approaches have explored the fusion of RGB
data with IMU data to enhance the accuracy and robust-
ness of pose estimation. Matthew et al. [49] incorporates
Long Short-Term Memory (LSTM) networks to fuse IMU
tracking data and visual pose embeddings to improve the
accuracy of pose estimation. HybridFusion [61] utilizes

IMU data to address the occlusion problems in a real-time
monocular MoCap system. Pan et al. [35] fuses RGB and
IMU data using a complementary filter algorithm within the
mocap framework to address the challenge of reliability in
vision information. EgoLocate [53] leverages MoCap pri-
ors from inertial inputs to enhance the accuracy and robust-
ness of the mocap system.

Contact provides strong interaction priors for pose esti-
mation. Thanks to the contact-based datasets, many meth-
ods [10, 15, 18] can estimate contact from a single image.
The contact helps not only reduce ambiguity and achieve
higher accuracy in pose estimation [10, 14, 34] but also pro-
vides dynamic constraints for rigid body dynamics-related
methods [43, 44, 52]. In addition to determining con-
tact, pressure can also provide force information. Zhang
et al. [57] estimate human pose from three depth cameras
and a pair of pressure-sensing shoes. Tripathi et al. [48] en-
hance the stability in pose estimation by encouraging plau-
sible floor contact and overlapping the center of pressure
and the SMPL’s center of mass.

3. MMVP Dataset
3.1. Data Collection and Pre-processing

We collect a multimodal dataset containing synchronized
RGBD video and foot pressure data. For visual data, we
record the RGBD video using an Azure Kinect camera at
a frame rate of 30Hz. For pressure data, we use Xsensor
pressure insoles (HX 210-510). Each Xsensor pressure in-
sole contains 242 independent pressure sensors that accu-
rately capture the changes in pressure, with a frame rate of
up to 150Hz. Due to the hardware limitation, we cannot
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Figure 2. Comparison of the foot contact and pose annotations in
RICH [18] (left) and MMVP (right). RICH fits the SMPL model
for annotating the foot contact by distance thresholding, while
MMVP incorporates dense pressure and contact directly for much
more accurate SMPL fitting results. Note that due to the vision-
only SMPL fitting error of RICH, the right foot, which is hanging
in the air, was annotated as full contact with the ground.

synchronize the two streams of signals automatically, so
we do manual synchronization before usage. The MMVP
dataset covers up to 10 types of large-range and fast move-
ments, including running, standing-long-jumping, and skip-
ping, among other common types of exercises and dances.
The majority of the subjects are teenagers, covering differ-
ent age groups and both genders. For more details, please
refer to the supplementary material.

3.2. Calculate Dense Foot Contact

Unlike defining contact on joints [40], dense contact [15]
defines contact on the vertices of the human body model
to describe detailed body-scene interaction. Existing meth-
ods [14, 18] usually first require scanning a 3D model of
the scene and tracking the movements of subjects based on
visual observations. Then annotate the dense contact by
thresholding the distance between the body mesh and the
scene. However, the inevitable pose estimation errors and
scene reconstruction errors result in erroneous foot contact
annotations, as shown in Fig. 2 (left).

Benefiting from the highly accurate pressure insole, we
can calculate precise and dense foot contact annotations. To
ease the usage of the dense pressure and contact informa-
tion, we define it on the surface of the SMPL [32]. We
select 192 vertices in total on the feet of the SMPL model
and the dense contact label can be defined as C ∈ R192.

The foot pressure can vary dramatically depending on
body weight and motion status. So it’s hard to design a

L

R
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Thresholding

Body Weight

Stand still foot pressure

Rapid motion foot pressure Normalized pressure

Dense foot contact annotation

Weight Guided 
Normalization

Figure 3. Illustration of the dense foot contact annotating method.
From left to right are the reference image, original pressure, nor-
malized pressure, and dense contact.

fixed-value threshold to annotate the dense contact. Luckily,
with insoles, it’s easy for us to get the accurate body weight
of different subjects by simply summarizing the pressure at
the beginning when the subject is standing still. Therefore
we normalized and mapped the pressure to [0, 1] as

Pnorm = Sigmoid(P/ws), (1)

where P , Pnorm , ws are the originally captured pressure,
normalized pressure, and body weight, respectively.

Finally, we empirically set the threshold to 0.5 to ensure
a relatively strict contact annotation:

C =

{
1, Pnorm ≥ 0.5,
0, Pnorm < 0.5.

(2)

Fig. 3 illustrates the calculation process of the dense foot
contact annotation.

3.3. RGBD-P SMPL Fitting

As illustrated in Fig. 2, existing datasets calculate contact
after fitting the body model to the pre-scanned scene with
purely vision signals. Therefore, it is difficult to accu-
rately maintain the interaction relationship between the hu-
man body and the scene during fitting. By constructing
loss terms according to the ready-to-use contact informa-
tion derived from the pressure signal, we can obtain more
accurate pose and shape-fitting results. Specifically, we use
SMPL [32] to numerically represent the body shape and
pose. The SMPL model takes pose parameters θ ∈ R72,
shape parameters β ∈ R10, global rotation R ∈ SO(3),
and global translation T ∈ R3 as input, producing a trian-
gulated mesh of 6890 vertices. The k joints of the model
are represented as J(θ,β,R,T ) ∈ Rk×3. To guaran-
tee the shape-fitting performance for teenagers with var-
ious body scales in our dataset, we follow the operation
in AGORA dataset [36], which introduces a blending pa-
rameter α to balance the shape difference between children
and adults. According to AGORA, SMPL template MA

and SMIL [17] template MC are blended as Mblend =
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Figure 4. VP-MoCap pipeline. Given an RGB sequence, RTMPose [20] and CLIFF [30] are applied to detect 2D keypoints and regress
the initial pose. FPP-Net predicts foot pressure distribution and dense foot contact with keypoint sequence. Guided by foot contact, joint
optimization is applied to estimate pose and trajectory. (Green represents the learning part, while orange represents the optimization part.)

αMA + (1 − α)MC . The vertices of the blended model
are denoted as V .

We optimize Eq. (3) to fit the human model to the
RGBD-P sequence with 3D depth fitting error Edepth intro-
duced in Doublefusion [54] to align the depth point cloud
and SMPL surface vertices, 2D projection fitting error E2d

and Gaussian Mixture Model(GMM) constraint EGMM

following SMPLify [4].

E(θ,T , α,β) =λdepthEdepth + λC denseEC dense+

λ2dE2d + λC tempEC temp+

λGMMEGMM .

(3)

To fully utilize the annotated dense foot contact to elimi-
nate foot-ground drifting, we introduce a dense contact loss
EC dense in Eq. (4).

EC dense =
∑
C=1

∥Πfloor(V foot)∥, (4)

where Πfloor(V foot) denotes the distance between the
ground and the foot surface vertex in contact.

Furthermore, to maintain the temporal smoothness of
the foot fitting results during contact, we extend the hu-
man mesh to incorporate foot planes parallel to the pseudo
ground. Each item in the plane corresponds to one vertex
in the foot surface. These planes can be controlled in the
same manner as human template vertices. Consequently,
we design EC temp as Eq. (5) to enhance the temporal con-
sistency of the contacted plane vertices. Please refer to the
supplementary video for more details.

EC temp =
∑

Ct−1=1∩Ct=1

∥(V t−1 − V t)planes∥2 , (5)

where Ct−1 = 1∩Ct = 1 denotes the intersection between
the sets of foot plane vertices in frame t − 1 and frame t
with a contact label of 1.

4. Method: VP-MoCap

Previous monocular RGB-based human mesh recovery
methods [30] usually suffer from translation drifting, foot
sliding, and foot-plane penetration, which make them un-
stable when handling relatively large-range and rapid move-
ments. In the RGBD-P SMPL fitting section, we observed
a much more accurate and plausible pose and translation
by using depth and pressure signals for joint optimization.
Thus, we further explore a more general question: given
only monocular RGB sequences, can we also achieve stable
and physically plausible human motion capture results for
large-range and rapid movements with inferred dense con-
tact and 3D scene?

Therefore, we first construct FPP-Net to estimate foot
contact and then use Zoedepth [2] to estimate the 3D ground
from a monocular RGB sequence. Finally, with foot contact
and ground depth, we try to obtain better pose and transla-
tion through optimization using only the monocular RGB
sequence. The overall framework is summarized in Fig. 4.
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4.1. FPP-Net

To estimate foot pressure distribution and foot contact from
an RGB sequence, we design a foot pressure predictor
(FPP-Net), which is illustrated in the green dashed box in
Fig. 4. We assume that foot pressure and contact are more
related to body pose and motion dynamic state. Thus we
follow Physcap [43] and Jesse et al. [42] to use sequen-
tial 2D keypoints for contact prediction. The goal of this
strategy is to also decouple the network training process
from the dataset-capturing environments (when compared
with direct image regression methods like BSTRO [18]
and DECO [47]) thus significantly enhancing the gener-
alization capacity. The 2D keypoints sequence J 2d =
{j2d1 , j2d2 , ...j2dt } is detected by RTMPose [20]. The task
can be formulated as

C̃ = f(J 2d). (6)

We first use a encoder f1 to extract motion feature
featmotion

t ∈ R2048 for each frame f1(j
2d
1 ), f1(j2d2 ), ...,

f1(j
2d
t ). Then the motion feature is fed to a Gated Recurrent

Unit (GRU) layer f2 to yield temporal feature feat temp
t ∈

R484. At last, a Multilayer Perceptron (MLP) is applied as
the decoder to regress the final contact label C̃ ∈ R192.

Our training loss is

L = Lcont + Lpress. (7)

Contact loss Lcont is the binary cross entropy loss between
the ground truth contact and the predicted contact C̃ [18].
Pressure loss Lpress is the mean squared error loss between
the ground truth pressure and the predicted pressure [42].

4.2. Pose and Translation Optimization

Since we pay more attention to human body pose and
global translation, we do not optimize the intrinsic param-
eter K, shape β̃, and global rotation R̃; instead use weak-
perspective projection to estimate K and adopt β̃, R̃, and
initial pose θ̃ from CLIFF [30]. It is important to note
that an image sequence corresponds to a specific individ-
ual. Therefore, we fix an average of β̃ for the same person
across the entire image sequence. To simplify the notation,
we use J(θ,T ) to represent J(θ, β̃, R̃,T ).
2D keypoints loss. Due to large-range and rapid move-
ments, our image sequence exhibits increased blur and oc-
clusions, impacting the accuracy of the inferred pose param-
eter priors, θ̃. To improve the accuracy of θ, we construct
2D keypoints loss, which serves to penalize the weighted
distance between the reprojected SMPL joints and the cor-
responding estimated 2D keypoints J 2d:

E2d =
∑
i

ci∥J 2d
i −ΠKJ(θ,T )i∥22, (8)

where ΠK is the projection process from 3D to 2D through
the intrinsic parameter K. The weight c is representative of
the confidence associated with each estimated 2D keypoint.
Mimic loss. We also define a mimic loss to quantify the
similarity of the pose and the initial pose,

Ep = ∥θ − θ̃∥22. (9)

Contact joint loss. To recover the positional relationship
between the human and the ground, we utilize the off-the-
shelf depth estimation model ZoeDepth [2] to obtain a depth
map for each RGB image and use the corresponding point
cloud P to construct the 3D contact trace on the ground.
Therefore, the spatial translation constraint term can be de-
fined by penalizing the 3D distance between the SMPL foot
joint J(θ,T )foot and the contact point cloud P (J 2d

foot):

E3d =
∑

∥P (J 2d
foot)− J(θ,T )foot∥22. (10)

Foot consistency loss. Meanwhile, we assume that the foot
joints’ position of two consecutive frames is consistently
close during contact. At the same time, the jitter of 2D key-
points J 2d

foot will cause the corresponding contact joint on
the ground to shift significantly. To solve the above prob-
lems, we define a temporal constraint term as

Et =
∑

∥J(θt,T t)foot − J(θt−1,T t−1)foot∥22, (11)

Combining all the above constraints Eqs. (8) to (11), the
total objective function can be summarized as:

argmin
θ,T

E2d + λpEp + λ3dE3d + λtEt, (12)

where λp, λ3d and λt are corresponding weights.

5. Experiments
5.1. Comparison of Ground Truth Registration

We compare our RGBD-P fitting method with two existing
RGBD methods: PROX [14] and LEMO [58]. Both of these
methods consider human-scene contact in pose fitting. We
employ the 3D depth error E3d to quantify the alignment
between human models and depth observations. To evalu-
ate the interaction between the model and the scene, we cal-
culate the model contact by setting a unified threshold and
compare the Mean Foot-Contact Error (MFCE), F1 score,
and IOU with the ground truth contact. Tab. 2 demonstrates
the effectiveness of the proposed method.

5.2. Comparison of Foot Contact Estimation

We apply precision, recall, F1 score, and IOU as evalu-
ation metrics and conduct a quantitative comparison with
BSTRO [18], BSTRO[FT], and DECO [47] on MMVP-test
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Method E3d↓ M.↓ F1↑ IOU↑
PROX [14] 0.045 9.348 0.475 0.439
LEMO [58][stage 2] 0.150 8.199 0.423 0.433
LEMO[stage 3] 0.175 8.231 0.377 0.399

Ours 0.043 7.968 0.518 0.507

Table 2. Evaluation of pose and shape registration on MMVP. M.:
MFCE.

Method prec.↑ recall↑ F1↑ IOU↑
BSTRO [18] 0.212 0.755 0.318 0.205
BSTRO[FT] 0.521 0.531 0.496 0.496
DECO [47] 0.112 0.853 0.191 0.112

Ours 0.529 0.586 0.532 0.522

Table 3. Quantitative comparison of contact estimation on
MMVP-test.

Figure 5. Qualitative comparison of contact estimation. From left
to right, the second row includes: foot pressure distribution pre-
dicted by our method, foot contact predicted by our method, and
contact predicted by BSTRO[FT].

(Tab. 3). BSTRO[FT] represents the BSTRO fine-tuned on
the MMVP training dataset. From Tab. 3, it is evident that
our method achieves the best performance. It is worth men-
tioning that BSTRO and DECO, due to contact annotations
in their training dataset (illustrated in Fig. 2), tend to predict
feet as in contact for the majority of cases. As a result, their
recall values are very high, while other metrics are unde-
sirable. It is challenging to perceive the foot contact solely
based on a single-frame image. By incorporating tempo-
ral motion information, we believe that’s why the proposed
method surpasses the fine-tuned BSTRO.

To validate the generalization, we also compare our
method with BSTRO[FT] on public datasets. Due to the
inaccurate contact labels in other datasets, we only conduct
qualitative comparisons (Fig. 5). It can be observed that

Methods M. ↓ PM. ↓ PVE ↓ PF. ↓ Traj ↓
CLIFF [30] 86.8 58.7 110.9 105.7 211.4
TRACE [46] 96.8 64.4 118.6 125.4 598.0
SMPLer-X [5] 92.2 51.1 112.9 121.8 679.7

Ours 83.0 56.0 110.6 91.9 129.3
(w/o Lt) 87.0 57.9 114.0 97.3 133.4
(w/o L3d, Lt) 84.1 57.0 108.2 98.9 184.1

Table 4. Evaluation of pose and translation estimation on MMVP.
M.: MPJPE, PM. : PMPJPE, PF. : PVE (Feet).

the proposed method not only achieves more accurate con-
tact predictions but also estimates reasonable foot pressure
distributions. For more details, please refer to the supple-
mentary material.

5.3. Pose and Translation Optimization Results

To assess the accuracy of our 3D pose estimation, we em-
ploy various metrics: MPJPE (Mean Per Joint Position
Error), PMPJPE (Procrustes-aligned Mean Per Joint Posi-
tion Error), PVE (Per Vertex Error), and PVE (Feet) which
specifically focuses on the error of SMPL mesh vertices cor-
responding to the soles of the feet. For evaluating transla-
tion estimation, we utilize the offset distance of the pelvis
point relative to the starting position, denoted as Traj.
Quantitative results. We conduct a comparative analy-
sis of our method against CLIFF [30], TRACE [46], and
SMPLer-X [5] on MMVP. As depicted in Tab. 4, our
method exhibits satisfactory performance across all metrics.
Notably, our method excels in Traj, indicating a significant
improvement in acquiring more accurate and robust transla-
tion by leveraging foot contact for SMPL fitting.
Qualitative results. We compare 3D translation between
our method, CLIFF [30], and TRACE [46] on MMVP
(Fig. 6). In the Side-Stepping case, both CLIFF and
TRACE exhibit drift in the depth direction, whereas our
method demonstrates a consistent and stable translation in
the depth direction. Similarly, in the Standing-Long-Jump
and Throwing-Medicine-Ball case, the 3D translation esti-
mated by CLIFF and TRACE manifests drift in the depth
direction during the preparation stage. In contrast, our
method avoids any depth-direction translation. At the bot-
tom, we present the average absolute acceleration of foot
joints which means the level of jitter. Our method achieves
the smallest value, indicating superior foot stability.

5.4. Ablation Studies

To investigate the impacts of L3d and Lt, we conduct an
ablation experiment on the MMVP dataset. As shown in
Tab. 4, the omission of Lt results in a marginal increase in
all error metrics. This observation indicates that the tempo-
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Figure 6. Qualitative comparison of 3D translation estimation in Side-Stepping (Left), Standing-Long-Jump (Middle) and Throwing-
Medicine-Ball (Right) case. We estimate 3D translation stability and compare our results (Pink) with CLIFF [30] (Blue) and TRACE [46]
(Green). The bottom row represents the acceleration of foot joints over time, which is used to measure the jitter of foot joints.

ral foot contact signals serve not only to improve the accu-
racy of translation but also to improve the accuracy of the
pose. Without L3d, MPJPE, PA-MPJPE, and PVE dropped
slightly, but PVE (Feet) and Traj increased a lot. This is
because when the 3D constraints of the feet and the ground
are introduced, it will affect the 2D constraints to a certain
extent and cause the accuracy of the pose to drop a little, but
in exchange for the accuracy of the soles of the feet vertices
and global translation. To attain enhanced translation, it is
necessary to make a trade-off by sacrificing a certain degree
of pose accuracy. Additionally, getting a better translation
requires striking a balance between 2D and 3D constraints.

6. Conclusion
The interaction between the human body and the scene
has received increasing attention in recent years. How-
ever, most existing works struggle to provide precise con-
tact annotations. To tackle this problem, we collect MMVP,
a novel vision-pressure dataset with a wide range of rapid
movements. In addition, we present VP-MoCap, a monoc-
ular MoCap baseline framework that incorporates the pre-
diction of dense pressure and contact for pose optimization.

Compared to solely relying on contact annotations, pres-
sure signals contain richer dynamics information, particu-
larly for fast and large-scale movements. We believe that
our dataset holds great potential for future research.
Limitations and future work: Our method is mainly de-
signed for static viewpoints, so it remains challenging to
handle moving camera configurations. The existing MMVP
has relatively homogeneous scenes, making it difficult for
current visual networks to achieve scene generalization on
this dataset. In the future, we plan to collect data from var-
ious outdoor scenes to expand the dataset. Additionally, it
would be an intriguing research endeavor to learn human
body dynamics solely from pressure sequences.
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