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Abstract

Previous works concerning single-view hand-held ob-
Ject reconstruction typically rely on supervision from 3D
ground-truth models, which are hard to collect in real world.
In contrast, readily accessible hand-object videos offer a
promising training data source, but they only give heav-
ily occluded object observations. In this paper, we present
a novel synthetic-to-real framework to exploit Multi-view
Occlusion-aware supervision from hand-object videos for
Hand-held Object reconstruction (MOHO) from a single
image, tackling two predominant challenges in such setting:
hand-induced occlusion and object’s self-occlusion. First, in
the synthetic pre-training stage, we render a large-scaled
synthetic dataset SOMVideo with hand-object images and
multi-view occlusion-free supervisions, adopted to address
hand-induced occlusion in both 2D and 3D spaces. Sec-
ond, in the real-world finetuning stage, MOHO leverages the
amodal-mask-weighted geometric supervision to mitigate
the unfaithful guidance caused by the hand-occluded su-
pervising views in real world. Moreover, domain-consistent
occlusion-aware features are amalgamated in MOHO to
resist object’s self-occlusion for inferring the complete ob-
ject shape. Extensive experiments on HO3D and DexYCB
datasets demonstrate 2D-supervised MOHO gains superior
results against 3D-supervised methods by a large margin.

1. Introduction

Understanding hand-object interaction is becoming in-
creasingly important in many practical scenarios includ-
ing robotics [31, 70], augmented and virtual reality [29],
as well as embodied artificial intelligence systems [30, 60].
Although there exist previous works [8, 25, 62, 64] aiming at
reconstructing fine hand-held object meshes from multi-view
image sequences, single-view methods [12, 13, 23, 28, 63,
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Figure 1. As a synthetic-to-real framework, MOHO is pre-trained
by the rendered occlusion-free supervisions on SOMVideo, and
then finetuned by the real-world hand-occluded supervising views.
In the inference stage, MOHO generates the photorealistic recon-
structed mesh given a single reference view, resisting both hand-
induced occlusion and object’s self-occlusion.

66] are drawing more attention recently since they can be
applied more conveniently in real-world environment.

Given the ill-posed nature of single-view reconstruction,
current top-preforming methods [12, 13, 63] typically use
Signed Distance Fields (SDFs) as the geometric represen-
tation and employ 3D ground-truth meshes as supervision
for training. However, the applicability of such approaches
in real-world scenarios is highly challenging, as obtaining
clean and precise object meshes remains a formidable task.
In contrast, readily accessible raw videos capturing hands in-
teracting with objects offer a promising training data source.
Nevertheless, leveraging these videos as multi-view supervi-
sion for single-view hand-held object reconstruction intro-
duces two significant challenges: hand-induced occlusion
and object’s self-occlusion. Firstly, hand-induced occlusion
is an unavoidable issue in our easily obtained training data,
leading to frequent instances of incomplete object views as
objects are manipulated by hands. This incompleteness poses
a significant hurdle for the network in effectively learning
the reconstruction of the complete object shape. Thus, we
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adopt additional occlusion-free information from synthetic
environments to mitigate the unfaithful guidance caused by
the occluded supervising views in real world. Additionally,
the single-view setting exacerbates the problem with object’s
self-occlusion, as only one reference view is available, leav-
ing the visible portion of the object incomplete and further
complicating the task of enabling the network to recover the
object’s full shape. Therefore, the occlusion-aware features
need to be imposed for the network for full reconstruction.

To address the aforementioned problems, we present

a novel synthetic-to-real framework to exploit Multi-view

Occlusion-aware supervision from hand-object videos for

single-view Hand-held Object reconstruction (MOHO).

First, in the synthetic pre-training stage, we render a large-

scale synthetic dataset SOMVideo with hand-object images

and multi-view occlusion-free supervisions (Fig. 1 (A)).

MOHO takes one hand-object image as input and the other

occlusion-free image describing the complete object in a

novel view as supervision. Thus, MOHO is empowered to re-

move hand-induced occlusion in 3D space. Simultaneously,
an auxiliary 2D amodal mask recovery head is integrated into
the pre-training process, which predicts the hand-occluded
parts of the object in the reference view. Second, in the real-
world finetuning stage, we freeze the 2D amodal mask recov-
ery head to establish the amodal-mask-weighted geometric
supervision, designed to combat the incomplete and defec-
tive supervisions presented by real-world hand-occluded
videos (Fig. 1 (B)). Moreover, in order to overcome object’s
self-occlusion in the whole synthetic-to-real process, we
leverage domain-consistent occlusion-aware features includ-
ing generic semantic cues and hand-articulated geometric
embeddings. These features are obtained with small cross-
domain discrepancy, indicating which portions are visible
in the reference view as well as hallucinating the shape of
the self-occluded object surfaces. Consequently, MOHO re-
covers complete 3D shape with photorealistic textures of
the hand-held object via the geometric volume rendering
technique during real-world inference (Fig. 1 (C)).
To summarize, our main contributions are threefold:

* We propose a synthetic-to-real framework MOHO to pur-
sue photorealistic hand-held object reconstruction from
a single-view image without relying on 3D ground-truth
supervision. To mitigate hand-induced occlusion, the ren-
dered SOMVideo is adopted in the synthetic pre-training
stage for occlusion-free supervisions, while the amodal-
mask-weighted geometric supervision is proposed during
the real-world finetuning.

* The domain-consistent occlusion-aware features are ex-
ploited in order to overcome object’s self-occlusion in the
whole synthetic-to-real process.

» Extensive experiments on real-world datasets HO3D [22]
and DexYCB [8] demonstrate that 2D-supervised MOHO
gains superior results against 3D-supervised methods.

2. Related Works

Hand and Object Pose Estimation. The separate regression
of hand pose and object pose constitutes a methodological
stream for reconstructing hand-held objects. Hand pose esti-
mation from RGB(-D) input can be broadly categorized into
two streams: model-free methods that lift detected 2D key-
points to 3D joint positions [26, 38—40, 43, 44, 72], as well
as model-based approaches that estimate statistical models
with low-dimensional parameters [3, 45, 46, 49, 69, 71].
On the other hand, many works focus on initially re-
gressing object poses based on predefined object tem-
plates [15, 16, 52, 55, 56], and subsequently, they proceed
to reconstruct object meshes. In contrast, MOHO stands
apart by its capability to reconstruct agnostic objects with-
out relying on any prior assumptions. Our approach adopts
the MANO model [45], which shows more robustness to
occlusion [63], to provide hand articulations.

Hand-held Object Reconstruction. Hand-held object re-
construction plays a crucial role in advanced understanding
of human-object interaction. Previous works [17, 22, 50, 51]
typically assume access to predefined object templates, em-
ploying joint regression techniques to estimate both hand
poses and 6DoF object poses. Some studies [11, 18, 34, 47]
explore implicit feature fusion, incorporating geometric
constraints [4, 5, 14, 19, 67] or promoting physical real-
ism [42, 53] for such joint reasoning. Recent studies have
shifted their focus toward directly reconstructing hand-held
object meshes from monocular RGB inputs without rely-
ing on any prior assumptions. For instance, [23] develops a
joint network that predicts object mesh vertices and MANO
parameters of the hand, while [28] predicts these param-
eters within a latent space. Additionally, [12, 13, 63, 66]
leverage Signed or Directed Distance Field (S/DDF) rep-
resentations for hand and object shapes. However, these
methods require hard-to-collect 3D ground-truth data for
training, limiting their applicability in real-world scenarios.
Contrarily, MOHO alleviates the need for 3D ground-truth
by exclusively utilizing 2D video supervision.

Volume Rendering Techniques. There has been a surge in
the utilization of volume rendering techniques in the con-
text of neural radiance fields (NeRFs) [2, 32, 36, 41, 57],
which have proven to be influential for advancing novel
view synthesis and photorealistic scene reconstruction. In
the earlier stages, the focus is primarily on the develop-
ment of scene-specific volume rendering [36, 57], where
one network can only represent a single scene. Subsequent
studies [9, 27, 33, 59, 65] extend the scope of the problem
to scene-agnostic, focusing on reconstruction of various ob-
jects from one single reference view or sparse views, which
closely resembles the setting of single-view hand-held object
reconstruction. However, the performance of these previous
methods is largely contingent on ideal conditions, where
occlusion is not a significant factor. MOHO addresses this
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Figure 2. Overview of MOHO. Synthetic-to-real Framework: We pre-train MOHO on the SOMVideo to resist hand-induced occlusion
in both 3D (T-1) and 2D (T-2) spaces. The 2D recovered amodal masks are transferred into the real-world finetuning for releasing the
incomplete hand-occluded supervisions (T-3). Network: Given a segmented hand-object image as input, the estimated camera pose (I-1)
and hand pose (I-2) are initialized by an off-line system [46]. Subsequently, MOHO extracts domain-consistent occlusion-aware features
including generic semantic cues (N-1) and hand-articulated geometric embeddings (N-2), as well as color features (N-3) for the volume
rendering heads (N-4) to yield the textured mesh reconstruction of the full hand-held object (N-5).

limitation by introducing a novel synthetic-to-real framework
and leveraging domain-consistent occlusion-aware features.
These additions aim to effectively mitigate the challenges
posed by heavy occlusion in real world.

3. Method

3.1. Overview

As is shown in Fig. 2, MOHO, following the synthetic-to-
real paradigm, is first pre-trained by the large-scaled ren-
dered dataset SOMVideo for gaining the removal ability
against hand-induced occlusion in both 3D and 2D spaces
((T-1) and (T-2)), and then finetuned on real-world videos
with incomplete object observations. We adopt the proposed
amodal-mask-weighted geometric supervision (T-3) to miti-
gate the misguidance caused by heavily occluded real-world
supervisions in the finetuning stage. Meanwhile, the domain-
consistent occlusion-aware features are leveraged in the
whole synthetic-to-real process, which include generic se-
mantic cues F; extracted by the pre-trained DINO [ 1] model
D (N-1), and hand-articulated geometric embeddings F}, cal-
culated by the predicted hand pose 8 4 (N-2). These domain-
consistent occlusion-aware features, as well as color features
F. yielded by the CNN-based encoder ¢ (N-3), are con-

catenated as the condition for geometric volume rendering
heads [57] ©g, Yo (N-4) to respectively predict the SDF
value and the color density, enabling reconstruction of the
agnostic occluded hand-held object without any instance
priors. During inference, given a single input reference im-
age 7 depicting hand-object interaction, its corresponding
camera pose Py (I-1), offline-estimated object segmentation
S,, and hand pose prediction 6 4 (I-2), MOHO synthesizes
the novel views as well as reconstructs the textured mesh of
the complete hand-held object (N-5).

3.2. Domain-consistent Occlusion-aware Features
for Geometric Volume Rendering

Generating novel views and the full mesh for a hand-held
object given by the only reference view is typically an ill-
posed problem due to severe object’s self-occlusion. As [59]
demonstrates, reconstructing the whole scene from a single
reference view may cause the volume rendering technique
to generate unsatisfactory results, whose surface toward the
reference view is recovered decently, but the reconstruc-
tion of unseen parts is degraded. Hence, we need to feed
sufficient information to the network for completing the
unobserved area in the reference image. Such imposed in-
formation should have least domain discrepancy, to ensure
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effective knowledge transfer in the whole synthetic-to-real
framework. Specifically, we exploit the domain-consistent
occlusion-aware features from two aspects: generic seman-
tic cues Fs (Fig. 2 (N-1)) and hand-articulated geometric
embeddings Fj, (Fig. 2 (N-2)).

Generic Semantic Cues. The generic semantic cues F; are
exploited to provide MOHO with high-level structural priors
for amodal object perception. Concretely, we harness seman-
tic cues from the pre-trained DINO [1] model, which pro-
vides local descriptors with consistent structural information
to indicate the position of the observed object parts within
the whole shape. Note that DINO is well demonstrated for
its semantic stability across different domains [1]. With such
domain-consistent semantic cues, MOHO learns to com-
plement the full object better from the partial observation
under the whole synthetic-to-real process. Specifically, the
pre-trained DINO model D extracts the patch-wise feature
maps F! = D(Z) ® S,. We use the top three principal com-
ponents of 7 by principal component analysis (PCA) con-
sidering the trade-off between efficiency and performance.
Since MOHO adopts the volume rendering technique, the
feature map ! needs to be converted to the features corre-
sponding to the 3D sampled points. Given the camera poses
P; and camera parameters K, the 3D points {P; }7* ; along
the sampled rays are first projected onto the image plane
to get the corresponding pixel positions. The patched color
features of each sampled point 7! are fetched on F! via
bilinear interpolation.

Hand-articulated Geometric Embeddings. Considering
that the holding hand shape implies the unobserved hand-
held object shape, we add the hand-articulated geometric
embeddings F; for each sampled point P;. The adopted em-
beddings are explicitly yielded by calculating the geodesic
distances from the sampled point P; to the nearest hand
joints. Such explicit embeddings remain stable and consis-
tent during the whole synthetic-to-real transferring without
any domain gaps. Specifically, we first use an offline hand
pose estimator [46] to get 6 4 from the reference image. Then,
we run forward kinematics of MANO model [45] to derive
the transformation 7'(64) as well as the hand joint coordi-
nates. Afterwards, the sampled point P; is mapped to the
nearest K hand joint coordinates by their transformation
matrices. Finally, such K positions of the sampled point in
the nearest K hand joint coordinates are concatenated as F;
to provide the distance information. We select K = 6 during
the implementation. Notably, we treat the hand articulation
locally using nearest hand joints rather than globally using
all hand joints as the previous methods [13, 63] do. We find
that taking all the joints’ coordinates is unnecessary and
leads to more complexity empirically (Sec. 4.4).

Color Features. Since MOHO needs to recover the tex-
ture of the hand-held object, we follow [65] to use a
ResNet34 [24] as the image encoder ¢ to extract the ob-

ject color feature map by F! = ¢(Z © S,) of the reference
view Z. The F! of the sampled 3D point P; is obtained
by the same projection and interpolation operations as the
generation of F..

Conditional Geometric Volume Rendering. After incor-
porating all the domain-consistent occlusion-aware features,
we construct the conditional geometric volume rendering
technique to render novel views as well as generate textured
meshes (Fig. 2 (N-4)). Specifically, given 3D sampled points
{P;}, ray directions {D;} and corresponding point features
{Fi .} ={Cat(F:, F}, Fi)} extracted from the single ref-
erence view Z, a geometric field ¢ g predicting the SDF value
s; = g (P;|FL,,) as well as a color field yc predicting the
RGB density ¢; = ¢ (P;, D;|F?) are constructed. As for
volume rendering, 3D points { P;} are sampled along camera
raysby {P} ={P(z)|P(z) = O+2zD, z € [z, zf]}, where
O denotes the origin of the camera, D refers to the viewing
direction of each pixel, z,, z; are the near and far bounds
of the ray. O and D are calculated by the input camera pose
‘Pr and camera intrinsic /. Then, the color of the pixel is
rendered by

zf
¢= [ wl@ueP@).DF )
where w(z) = T(z)p(z) is an unbiased and occlusion-
aware function proposed by [57], converting the SDF value
U5 (Pl Feon) 0T(2), p() by T(z) = exp (= [ pl2)d2),
28 (s (P(2)| Feon))
oM (s (P(2)|Feon))

the Sigmoid function with a trainable parameter h. During
implementation, the formulations above are numerically dis-
cretized as referred to [57].

. o here denotes

p(z) = max

3.3. Synthetic-to-real Training Framework

We propose a synthetic-to-real training framework for
MOHO to overcome the omnipresent hand-induced occlu-
sion met in real-world single-view hand-held object re-
construction. In the synthetic pre-training stage, we foster
MOHO for the capability to be aware of the hand-occluded
regions of the object in both 3D and 2D spaces, with the
utilization of our large-scaled rendered dataset SOM Video.
For removing hand-induced occlusion in 3D space, MOHO
inputs the hand-occluded reference view Z ® S, (® means
bitwise multiplication), and is supervised by the synthetic
complete object in novel views (Fig. 2 (T-1)). Further, an
auxiliary 2D amodal mask recovery head I' (Fig. 2 (T-2))
is utilized to predict the probabilistic hand coverage map
in 2D space. After pre-training, MOHO is finetuned with
real-world hand-object videos, so as to be better applied
for real-world inference. However, real-world hand-object
multi-view images oftentimes contain truncated regions and
incomplete views, resulting in detrimental effects when di-
rectly used for training. Naively utilizing the defective masks
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Figure 3. Visual illustration of SOMVideo rendered with occlusion-
free multi-view supervisions.

of the hand-occluded objects misleads the network to recon-
struct patchy geometric surfaces. Thus, the predicted hand
coverage maps from the pre-trained 2D head are leveraged
on real-world data (Fig. 2 (T-3)) to construct a soft con-
straint and introduce the amodal-mask-weighted geometric
supervision for reconstructing full hand-held objects.
Synthetic Object Manipulation Video (SOMVideo)
Dataset. Current video datasets capturing hand-object inter-
actions [8, 22] are collected in real world. They typically con-
tain limited object instances and are unfriendly for construct-
ing occlusion-free supervisions for purely 2D-supervised
methods. Therefore, following the generation pipeline of
synthetic object manipulation scenes [23], we render the
Synthetic Object Manipulation Video (SOM Video) dataset
for MOHO, boasting large-scaled hand-object images as
well as corresponding occlusion-free multi-view supervi-
sions (Fig. 3).

Generally, SOMVideo is synthesized by setting up the
hand-object interaction scene and moving the camera. First,
we select the same 2,772 objects as the ObMan [23] dataset
from ShapeNet [7]. Objects’ textures are randomly sampled
from the texture maps provided by ShapeNet. Then, the
grasping generation procedure adopting Grasplt [37] and
the body and hand models in the SMPL+H [35, 45] are
used for the hand-object interaction scene setup. Finally, we
add rotations and translations on the camera towards the
hand-object interaction scene to capture hand-object multi-
view images. Besides, to enable occlusion-free supervisions,
we render corresponding video clips containing only ob-
jects without hands and bodies by setting the scene without
SMPL+H models and keeping the camera parameters the
same. SOMVideo consists of 141,550 scenes in total, in
which each hand-object scene is captured by 10 views. Each
corresponding occlusion-free video clip for supervision is
also captured from 10 same view angles. For more rendering
details, please refer to the supplementary material.
Synthetic Pre-Training with SOMVideo. MOHO is first
pre-trained to remove hand-induced occlusion in 3D space
by the rendered occlusion-free supervisions. Concretely, the
input reference view fed to MOHO is a hand-object im-
age, while the supervision views are corresponding rendered
occlusion-free pictures from novel poses (Fig. 2 (T-1)). Dur-
ing each iteration in the pre-training, one hand-object refer-
ence image is fed to MOHO, while 8 novel views sampled

from the corresponding occlusion-free video are regarded as
supervision.

Simultaneously, an auxiliary 2D amodal mask recov-
ery head I is utilized in the pre-training. The 2D recovery
head, whose architecture refers to [10], predicts the hand-
covered object’s parts M 1o in the input reference view Z by
Mhe = T(FI) (Fig. 2 (T-2)), where F! is the color feature
maps defined in Sec. 3.2. The supervision of this head is
enforced by the binary cross-entropy loss between M ho and
M7° © My, where M7° means the rendered complete mask
of the input reference view Z, My refers to the input hand-
occluded object mask, and © means bitwise subtraction. The
benefits of incorporating such 2D perception are twofold.
First, 2D hand coverage perception strengthens the ability of
MOHO to handle hand-induced occlusion patterns. Second,
considering more cross-domain consistency of the 2D neural
network [6], we exploit the predictions of this 2D head for
the real-world finetuning stage to promote the knowledge
transfer about hand-induced occlusion removal learned in
the pre-training stage. To this end, we freeze the 2D recov-
ery head during the real-world finetuning stage, and infer
the probabilistic hand coverage maps (Fig. 2 (T-3)). These
maps are regarded as the relaxed constraints for the proposed
amodal-mask-weighted geometric supervision.
Real-World Finetuning with Amodal-Mask-Weighted Su-
pervision. After pre-training, MOHO is finetuned on hand-
object videos from real-world datasets which typically suffer
from partial observations caused by hand-induced occlusion.
Therefore, we introduce the amodal-mask-weighted geomet-
ric supervision, taking the probabilistic hand coverage maps
predicted by the pre-trained 2D amodal mask recovery head
in real world into consideration (Fig. 2 (T-3)). The amodal-
mask-weighted loss is defined by

Lamw = BCE(M ® Mr,Or), )

where T refers to a novel target view, M%" means the re-
covered amodal mask, Oy is the predicted object mask by
the volume rendering heads and & means bitwise addition.
Having gained knowledge about how to handle hand occlu-
sion with such supervision, MOHO is capable of inferring
the shape of the complete object in real world.

Volume Rendering Losses for Synthetic-to-real Training.
Several losses are designed for supervising the 3D volume
rendering heads of MOHO to get geometric consistent sur-
faces as well as photorealistic texture results in the whole
synthetic-to-real framework. The overall loss function is
defined as

L= Lcolor+)\1£eik+)\2£mask+>\3£ +)\4£ns7no' (3)

Nori

Tyereby, the color lpss Leolor 1s derived by Liopior =
|Cr — Cr|, where Cr and Cr mean the predicted and
ground-truth color maps of a novel view T respectively.
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The Eikonal term [20] Leip = £ 3. (||Vs(P)|[2 — 1)
is added for geometric regularization, in which P; refers
to the sampled points for volume rendering and n is the
number of sampling points. The mask loss L, is defined
differently in the pre-training stage and the finetuning stage,
for exploiting the occlusion-free supervisions of SOMVideo
and adopting the amodal-mask-weighted supervision in real
world respectively. At the pre-training stage, the mask loss
is defined as

Lomask = BOE(M$°, Or), 4)

where M¢° refers to the occlusion-free object mask of a
novel view 7" in SOMVideo. At the finetuning stage, the
mask loss is substituted by L4056 = Lamw defined in
Eq. (2). Two additional losses regularizing the predicted
surface normals are used for restricting the orientation of
visible normals towards the camera (£,, ;) [54] and making
the predictions smoother (L,,_, ) [48], which are detailed
in the supplementary material. The weighted factors are set
to A1 = 1.0, Ao = 1.0, A3 = 103, Ay = 1072 during imple-
mentation. All factors are kept the same in both the synthetic
pre-training and real-world finetuning.

4. Experiment
4.1. Experimental Setup

Datasets. We conduct experiments on two representa-
tive real-world datasets capturing hand-object interactions,
HO3D [22] and DexYCB [8]. HO3D [22] contains 77,558
images from 68 sequences with 10 different persons manipu-
lating 10 different objects. The pose annotations are yielded
by multi-camera optimization pipelines. We follow [63] to
split training and testing sets. DexYCB [8] is currently one
of the largest real-world hand-object video datasets [13]. We
follow [12, 61] to concentrate on right-hand samples and
use the official sO split. 29,656 training samples and 5,928
testing samples are downsampled referring to the setting of
[13]. Note that for both datasets, MOHO only utilizes the
RGB pictures, segmentations, and poses for training, but
without any need for the 3D ground-truth meshes.
Baselines. 3D-supervised baselines including Atlas-Net-
based [21] HO [23], implicit-field-based GF [28], SDF-based
IHOI [63], AlignSDF [12] and gSDF [13] are adopted for
geometric comparisons with MOHO. We mainly compare
the reconstructed meshes with them to demonstrate the abil-
ity of MOHO for surface reconstruction. Moreover, several
2D-supervised object-agnostic NeRF-based baselines are
implemented, including PixeINeRF [65] and the more recent
SSDNeRF [9]. We follow their single-view reconstruction
setting and use the same training data as MOHO. We re-
port both geometric reconstruction and novel view synthesis
metrics against the NeRF-based baselines.

Method F51 F10 1 CD |
HO [23] 0.11 0.22 419
GF [28] 0.12 0.24 4.96
[HOI [63] 0.28 0.50 1.53
PixelNeRF [65] 0.17 0.32 6.91
SSDNeRF [9] 0.25 0.40 2.60
Ours 0.31 0.50 0.91

Table 1. Geometric results on HO3D [22] compared with 3D super-
vised methods (top) and 2D supervised methods (bottom).

Method F-51 F-10 1 CD |
HO [23] 0.38 0.64 0.42
GF [28] 0.39 0.66 0.45
AlignSDF [12] 0.41 0.68 0.39
gSDF [13] 0.44 0.71 0.34
PixelNeRF [65] 0.25 0.46 0.94
SSDNEeRF [9] 0.27 0.49 0.58
Ours w/o SYN 0.52 0.74 0.18
Ours 0.60 0.81 0.15

Table 2. Geometric results on DexYCB [8] compared with 3D
supervised methods (top) and 2D supervised methods (bottom).

Evaluation Metrics. For geometric metrics, we follow [13,
63] to uniformly sample 30,000 points on the reconstructed
mesh, and report mean Chamfer Distance (CD, mm) and
F-score at thresholds of 5mm (F-5) and 10mm (F-10). For
metrics of novel view synthesis, we randomly sample 10
images in each video as the input reference views and another
10 views as the target views for each input reference. We
report average PSNR, SSIM [58], and LPIPS [68] of the
whole video dataset. Only the region within the object mask
is considered for the aim of object reconstruction.

Implementation Details. We train MOHO on a single
NVIDIA A100 GPU using an Adam optimizer with a learn-
ing rate of 10~ for synthetic pre-training and 4 x 10~* for
real-world finetuning. The learning rate is scheduled by the
cosine decay to the minimum of 5 x 10~°. In the pre-training,
we randomly select one hand-object reference view as the
network input and 8 occlusion-free target views for supervi-
sion at each iteration. In the finetuning, the reference view
and target views are selected in real-world video data. We
pre-train MOHO on SOM Video for 300K iterations and the
real-world finetuning stage continues for another 300K itera-
tions. For volume rendering, we use the same coarse-to-fine
ray sampling technique as [57] by first uniformly sampling
40 points along the ray and then upsampling another 40
points near the coarsely predicted surface. During training,
we randomly sample 150 rays in the object bounding box
for each picture, following the protocol of ray origin and
direction sampling strategy of [65]. Our SOMVideo data will
be released along with our codes. For more details about the
network architecture and synthetic data generation, please
refer to the supplementary material.
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Figure 4. Visualization of textured meshes reconstructed by several baselines IHOI [63], gSDF [13], SSDNeRF [9] and MOHO on HO3D [22]
(top) and DexYCB [8] (bottom). The reconstruction results are exhibited on the camera view and one novel view.

4.2. Geometric Reconstruction

We compare the quality of the geometric reconstruction
ability of MOHO with two lines of methods including
3D-supervised baselines (typically SDF-based) and 2D-
supervised baselines (typically object-agnostic NeRF-based).
Tab. 1 and Tab. 2 exhibit the geometric metrics on HO3D [22]
and DexYCB [8] respectively. In addition, we analyze the
efficiency of MOHO in the supplementary material.

In Tab. 1, we report all baselines’ metrics following the
setting of [63] which utilizes the synthetic-to-real paradigm
to release the problem of data scarcity and lack of diver-
sity in real world. All 3D-supervised methods in the top
block strictly follow [63] to initialize with models pre-
trained on ObMan [23] and then finetune on HO3D [22].
For 2D-supervised methods in the bottom block, we mimic
the pre-training above using the hand-object multi-view
images in SOMVideo for fair comparison. Compared to
2D-supervised baselines, MOHO exceeds PixelNeRF by
82.3% and the more recent SSDNeRF by 24.0% on the
F-5 metric. This superiority demonstrates that due to the
well-designed synthetic-to-real framework and the incorpo-
ration of the occlusion-aware features, MOHO better handles
the extreme occlusion met when reconstructing hand-held
objects from a single view. In contrast, the previous object-
agnostic NeRF-based methods are only illustrated to be ef-
fective under the ideal occlusion-free condition. Compared
with 3D-supervised methods, MOHO yields a significantly
lower CD against the current top-performing approach IHOI
by 40.5%, while leads by more against previous HO and GF.
This indicates that the geometric surfaces reconstructed by
MOHO contain much fewer outliers.

Experiments on the larger dataset DexYCB [8] shown
in Tab. 2 further demonstrate the superiority of MOHO.

Method HO3D [22] DexYCB [8]
PSNR 1 SSIM 1 LPIPS ||PSNR 1 SSIM 1 LPIPS |,
PixeINeRF [65]| 24.82 00955 0.055 | 3277 0986 0.019
SSDNeRF [9] | 21.08 0.943 0070 | 32.83 0985 0.022
Ours 26.01 0.960 0.049 | 3580 0989 0.013

Table 3. Novel view synthesis results.

Due to the relatively sufficient data of DexYCB, the pre-
vious work [13] reports metrics of prior 3D supervised
baselines [12, 13, 23, 28] directly trained on the real-
world data. Thus, for fair comparison, we adopt this set-
ting in Tab. 2 for both 3D and 2D supervised baselines and
also report metrics of MOHO without the synthetic pre-
training stage using SOMVideo (Ours w/o SYN). Thanks
to the effective geometric volume rendering guided by the
domain-consistent occlusion-aware features, MOHO w/o
SYN achieves higher F-5 by 18.2% than the state-of-the-
art 3D-supervised gSDF, while obtaining 92.6% superior-
ity against the top-performing 2D supervised SSDNeRF on
F-5 metric. When considering our proposed synthetic-to-
real training framework, the lead margin is further extended
to 36.4% and 122.2% respectively. This demonstrates that
by considering the imposed features and training strategy
together, MOHO is endowed with stronger robustness for
handling various occlusion scenarios in real world.

4.3. Novel View Synthesis

As MOHO adopts the volume rendering technique, we
also report its performance of novel view synthesis with
other counterparts in Tab. 3, to demonstrate the capabil-
ity to recover the object texture from the single view in-
put. Notably, the previous predominant SDF-based meth-
ods [12, 13, 23, 28, 63] in the field cannot generate re-
construction results with object texture. However, MOHO
can not only get geometrically coherent object surfaces,
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.. HO3D [22] DexYCB [8]
Method Pre-training F51 D | F54 D
THOI [63] X 0.16 2.06 - -
THOI [63] v 0.28 1.53 - -
gSDF [13] X - - 0.44 0.34
¢SDF [13] v - - 0.46 0.30
PixelNeRF [65] X 0.13 14.07 0.25 0.94
PixelNeRF [65] v 0.20 6.02 0.30 0.54
Ours X 0.22 1.18 0.52 0.18
Ours v w/o AMW | 0.29 0.99 0.57 0.16
Ours v 0.31 0.91 0.60 0.15
PSNR 1 LPIPS | | PSNR 1 LPIPS |
Ours X 24.96 0.052 3541 0.014
Ours v 26.01 0.049 35.80 0.013

Table 4. Ablations for the synthetic-to-real training framework.

F.3  Fs.l6 FnG FnL | 51 FEI0f CDJ
0.52 0.72 0.18
0.54 0.75 0.17
0.55 0.76 0.16
0.59 0.79 0.15
0.60 0.81 0.15

NN X N\ X%
x X N\ % %
x N\ X% % %
N X X X% X

Table 5. Ablations for the domain-consistent occlusion-aware fea-
tures on DexYCB [8].

but also yield photorealistic object texture, which enables
it to adapt in more application scenarios. Concretely, for
novel view synthesis, MOHO leads by 4.8% on PSNR and
10.9% on LPIPS against PixelNeRF on HO3D and exceeds
by 9.0% and 40.9% respectively compared with SSDNeRF
on DexYCB, which illustrates the superior performance of
MOHO than the NeRF-based competitors.

Visualization. To demonstrate both the abilities to get geo-
metric surface as well as photorealistic texture, we visualize
the textured meshes predicted by MOHO and compare them
with 3D-supervised IHOI / gSDF and 2D-supervised SSD-
NeRF in Fig. 4. The results show that the 2D-supervised base-
line typically fails and only yields incomplete and patchy re-
constructed meshes when given heavily occluded real-world
supervision (Row 2, 3). The 3D-supervised baselines ob-
tain oversmoothed geometric surfaces without object texture.
Moreover, they fail to reconstruct tiny objects like the scis-
sors in Row 2. In contrast, MOHO is able to reconstruct
geometrically coherent and photorealistic meshes. More vi-
sualization results are shown in the supplementary material.

4.4. Ablation Studies

We conduct ablation studies from two main aspects, i.e.,
the effectiveness of the proposed synthetic-to-real training
scheme (Tab. 4), and the generic semantic cues as well as
the hand-articulated geometric embeddings included in the
domain-consistent occlusion-aware features (Tab. 5). Ad-
ditionally, we also analyze the zero-shot performance of
MOHO and the sensitivity of the input hand pose predictions
in the supplementary material.

We first exhibit the effects of the ObMan-based [23] 3D-

supervised synthetic-to-real training proposed by [63] on
the top block of Tab. 4. Results show that such a strategy
enhances the quality of geometric reconstruction (0.12 of
F-5 for IHOI on HO3D), even on the larger-scale DexYCB
(0.02 of F-5 for gSDF). Then, we conduct our proposed
synthetic-to-real framework on 2D-supervised PixelNeRF to
demonstrate its effectiveness. PixeINeRF directly trained on
HO3D performs much inferiorly. However, after adopting
our proposed synthetic-to-real framework, PixeINeRF gains
superior results (0.07 on F-5). The same result is observed
on DexYCB for PixelNeRF (0.05 enhancement on F-5). As
for MOHO, the synthetic-to-real framework brings a boost
of 0.09 and 0.08 of F-5 on two datasets respectively. When
the amodal-mask-weighted geometric supervision (AMW) is
removed, the performance of F-5 decreases by 0.02 and 0.03
on the two datasets respectively. Moreover, we find that the
proposed framework also improves the novel view synthesis
results due to suitable knowledge transfer.

Tab. 5 presents the ablations of the imposed domain-
consistent occlusion-aware features. F5-16 means extending
the PCA dimension of the semantic cues to 16. We find the
performance enhancement is limited (0.01 of F-5). Thus,
F4-3 setting is used for the MOHO implementation. Ad-
ditionally, we compare the global hand-articulated embed-
dings adopting all hand joints with the local ones adopted
in MOHO (Sec. 3.2). The local F3-L contributes to the per-
formance improvement, since for the specific self-occluded
part, the most credible heuristics implied by the holding hand
come from the nearest joints.

5. Conclusion

This work has presented MOHO for single-view reconstruc-
tion of the hand-held object with multi-view occlusion-
aware supervision from hand-object videos, tackling two
predominant challenges of hand-induced occlusion and ob-
ject’s self-occlusion. MOHO presents a novel synthetic-
to-real paradigm to unleash hand-induced occlusion by
adopting occlusion-free supervisions of SOMVideo in the
synthetic pre-training and the amodal-mask-weighted ge-
ometric supervision in the real-world finetuning. Mean-
while, MOHO incorporates domain-consistent occlusion-
aware features in order to overcome object’s self-occlusion
in the whole synthetic-to-real process. Extensive experi-
ments on HO3D and DexYCB datasets demonstrate that
2D-supervised MOHO gains superior results against 3D-
supervised methods. In the future, we aim to adopt MOHO
for robotic grasping in human-robot interaction scenes. Lim-
itations are discussed in the supplementary material.
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