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Abstract

This paper proposes a coupled learning framework to
break the performance bottleneck of infrared-visible image
fusion and segmentation, called MRFS. By leveraging the
intrinsic consistency between vision and semantics, it em-
phasizes mutual reinforcement rather than treating these
tasks as separate issues. First, we embed weakened in-
formation recovery and salient information integration into
the image fusion task, employing the CNN-based interactive
gated mixed attention (IGM-Att) module to extract high-
quality visual features. This aims to satisfy human visual
perception, producing fused images with rich textures, high
contrast, and vivid colors. Second, a transformer-based
progressive cycle attention (PC-Att) module is developed to
enhance semantic segmentation. It establishes single-modal
self-reinforcement and cross-modal mutual complementar-
ity, enabling more accurate decisions in machine seman-
tic perception. Then, the cascade of IGM-Att and PC-Att
couples image fusion and semantic segmentation tasks, im-
plicitly bringing vision-related and semantics-related fea-
tures into closer alignment. Therefore, they mutually pro-
vide learning priors to each other, resulting in visually sat-
isfying fused images and more accurate segmentation deci-
sions. Extensive experiments on public datasets showcase
the advantages of our method in terms of visual satisfaction
and decision accuracy. The code is publicly available at
https://github.com/HaoZhang1018/MRFS.

1. Introduction

Due to limitations in imaging principles, neither infrared
nor visible images alone can provide a complete depiction
of the imaging scene [17, 38, 42]. In this context, infrared
and visible modality fusion (IVMF) combines their specific
advantages, aiding both humans and machines in better un-
derstanding scenes [5, 10, 19, 37]. Owing to such practical
benefits, IVMF has found applications in various fields, e.g.,
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Figure 1. Comparison with the state-of-the-art SeAFusion [27]
and SegMiF [14] that combine image fusion and semantic seg-
mentation. Our method presents more salient visual objects and
more accurate segmentations.

security monitoring, and night-assisted driving [16, 22].
From the intended use, IVMF can be categorized into

image fusion and semantic fusion. The former aims to
generate high-quality visualizations consistent with human
visual perception, typically featuring rich textures, signifi-
cant contrast, and vivid colors [13, 23, 36]. The latter fo-
cuses on achieving more advantageous scene feature ex-
pression, enabling machines to make semantic-level deci-
sions and descriptions for scenes, e.g., semantic segmenta-
tion and object detection [12, 49]. This paper specifically
concentrates on semantic segmentation [9, 45] as a repre-
sentative of semantic fusion.

In recent decades, deep learning advancements have pro-
pelled significant progress in IVMF. In image fusion, where
ground truth is lacking, research emphasizes designing un-
supervised loss functions to preserve information. A com-
mon approach involves similarity losses based on vari-
ous representation variables between fused and source im-
ages, aiming to extract desired image characteristics aligned
with human visual perception [18, 32, 35]. For exam-
ple, PMGI [41] maintains intensity and gradient propor-
tionally, favoring high-contrast, high-frequency texture fea-
tures. Differently, in semantic fusion, where labeled data
is available, researchers focus on innovative network struc-
tures to ensure effective interaction between features for
mutual complementation and integration [2, 31, 43, 51]. For
instance, LASNet [9] integrates multi-modal features with
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collaborative location, complementary activation, and edge
sharpening modules, facilitating expressive feature extrac-
tion crucial for semantic decision-making.

Current methods show promising results in visual out-
comes and segmentation, yet challenges persist. Firstly, the
feature neutralization drawback and low-light information
loss hinder image fusion. The former refers to the atten-
uation of thermal contrast and textures caused by unsuper-
vised loss with a fixed proportion [18, 28, 41], while the lat-
ter denotes the erroneous discard of details in low-light visi-
ble images during fusion due to low intensity [35, 46]. Sec-
ondly, in the implementation of feature interaction, current
IVMF modules neglect the problem of misjudging the im-
portance of pooled features. Additionally, there is a paucity
of discussion on the inherent logical transmission relation-
ship between single-modal self-reinforcement and cross-
modal mutual complementarity. These oversights lead to
issues like feature validity score mismatch [3, 21] and in-
sufficient feature aggregation [39, 51], constraining image
fusion and segmentation accuracy. Lastly, most methods
treat image fusion and semantic segmentation as isolated
problems [44, 45], overlooking their intrinsic mutually ben-
eficial relationship. Although SeAFusion [27] and Seg-
MiF [14] seek improvement by incorporating image fusion
as a precursor task to semantic segmentation, such a sequen-
tial connection may establish interdependencies and impose
performance limitations on both tasks, as depicted in Fig. 1.

To address these challenges, we propose a coupled learn-
ing framework to enhance both image fusion and semantic
segmentation performance. This framework leverages the
intrinsic consistency between vision and semantics, mak-
ing the tasks mutually reinforcing rather than independent.
Firstly, we integrate salient information integration and
weakened information recovery into image fusion to ad-
dress the feature neutralization drawback and low-light in-
formation loss. On the one hand, instead of the unsuper-
vised loss with a fixed proportion, we dynamically select
salient contrast and textures as optimization goals for con-
sistent preservation. On the other hand, we employ a series
of data augmentation strategies to construct positive sam-
ples and incorporate them into fusion guidance, adaptively
enabling low-intensity texture recovery and thermal object
saliency enhancement. Secondly, we introduce a CNN-
based interactive gated mix attention (IGM-Att) module
for visual completion and a transformer-based progressive
cycle attention (PC-Att) module for semantic completion.
These modules correct mismatched feature validity scores
and alleviate insufficient feature aggregation. Specifically,
IGM-Att integrates a trainable gating mechanism to identify
misjudged positional features and corrects mismatched high
or low scores, thereby refining the conventional pooling-
based attention. Meanwhile, PC-Att achieves single-modal
self-reinforcement and cross-modal mutual complementar-

Figure 2. Illustration of the feature neutralization drawback and
the low-light information loss. GANMcC [18] is a classic deep im-
age fusion method using unsupervised loss with a fixed proportion.
The edge contours are calculated using the Canny operator [4].

ity, forming a closed loop for effective fusion between in-
frared and visible features. Finally, we unite image fusion
and semantic segmentation by using IGM-Att and PC-Att
as intermediaries. Vision-related features aligned with hu-
man perception in image fusion (e.g., restored details, sig-
nificant thermal contrast) benefit semantic segmentation.
Conversely, semantics-related features in segmentation con-
tribute favorable appearance characteristics to the fused im-
age (e.g., outlines of objects). Collaborative optimization
of these aspects is anticipated to yield higher returns than
individual optimizations.

In summary, our contributions are as follows:
• We enhance image fusion with the capabilities of salient

information integration and weakened information recov-
ery, effectively mitigating the feature neutralization draw-
back and low-light information loss. Consequently, sig-
nificant contrast and rich textures will be effectively trans-
ferred to the fused image.

• We design a CNN-based interactive gated mix attention
module for visual completion, and a transformer-based
progressive cycle attention module for semantic comple-
tion. They respectively solve the problem of mismatched
feature validity scores and strengthen the sufficiency of
feature aggregation.

• The strategic coupling of image fusion and semantic seg-
mentation establishes a mutually reinforcing relationship,
leading to a dual improvement in their performance.

2. Background and Motivations

Feature Neutralization Drawback and Low-light Infor-
mation Loss. Infrared and visible images often exhibit sig-
nificant differences in intensity and gradient distribution. In
such cases, traditional unsupervised loss with a fixed pro-
portion can diminish valuable characteristics, such as con-
trast, illustrated in Fig. 2. A potential solution is to dynam-
ically prioritize superior features from source images dur-
ing optimization, ensuring the preservation of significant
contrast and textures. Besides, under poor lighting con-
ditions, low-intensity visible images tend to obscure valu-
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(a) Positive features surrounded by negative ones (b) Negative features surrounded by positive ones
0

𝟏

Figure 3. Illustration of the feature validity score mismatch. Red
denotes positive features while blue indicates negative ones. Aver-
age pooling suppresses positive features when they are surrounded
by negative ones. Average and max pooling both overestimate
negative features when they are surrounded by positive ones.

able details. During fusion, these details are often over-
looked and discarded, leading to the loss of crucial infor-
mation, as shown in Fig. 2. Digging out more details from
low-intensity regions would effectively improve the overall
quality of the fused image.
Feature Validity Score Mismatch. In conventional
pooling-based attention, the score of specific features is typ-
ically determined using statistics from all features in the
corresponding channel or spatial location [3, 21]. Main-
stream statistical operations like average pooling and max
pooling [7, 30, 33] compute the average and maximum re-
sponse of features in specific dimensions. However, aver-
age pooling may misassign a low score to a positive feature
surrounded by negative ones in the same spatial location or
channel, as shown in Fig. 3 (a). Similarly, both average
and max pooling may incorrectly assign a high score to a
negative feature surrounded by positive ones, as depicted
in Fig. 3 (b). Introducing a correction mechanism to redis-
tribute scores by evaluating each feature’s impact on others
would be highly desirable.
Insufficient Feature Aggregation. During feature fusion,
many methods use cross-attention for mutual query and em-
bedding, enhancing information complementarity [39, 51].
However, relying solely on cross-modal complementarity is
insufficient, as it doesn’t fully exploit its own modality in-
formation, as shown in Fig. 4. Introducing self-attention
during feature extraction partially addresses this issue.
Yet, it is not specifically tailored for feature fusion, and
therefore lacks optimal compatibility with cross-attention.
Hence, considering both single-modal self-reinforcement
and cross-modal complementarity in feature fusion is ben-
eficial. They naturally create a closed loop, enhancing the
expressiveness of aggregated features.
Intrinsic Consistency between Vision and Semantics.
For low-level vision tasks like image fusion, humans pri-
oritize vision-related features for perception, while in high-
level tasks such as semantic segmentation, machines focus
on semantics-related features for accurate decision-making.
This raises an intriguing philosophical question: do ma-
chines and humans perceive the world in similar ways? In
other words, is there consistency between the features hu-
mans rely on for vision and those machines rely on for se-

(a) Segmentation Label (b) Feature from Infrared Image (c) Feature from Visible Image

Insufficient

Figure 4. Illustration of insufficient feature aggregation. Objects
of the same class within the single modality can act as cues for
mutually reinforcing, achieving single-modal self-reinforcement.
Different-modal images can offer information that the other
modality lacks, fulfilling cross-modal mutual complementarity.
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Figure 5. Features used for segmentation and those used for image
fusion show a strong correlation.

mantics? Visualizing channel features in SegMiF [14] and
EAEFNet [11], used for image fusion and segmentation, re-
veals a strong correlation, as shown in Fig. 5. This obser-
vation leads us to explore the intrinsic consistency between
vision and semantics, establishing a mutually reinforcing
mechanism for both tasks.

3. Method
3.1. Overview

Our proposed MRFS elegantly couples image fusion and se-
mantic segmentation tasks into a unified framework by im-
plementing feature interaction through the proposed IGM-
Att and PC-Att. We illustrate the overall framework in
Fig. 6. It can be seen that MRFS continuously extracts
and refines multi-modal features through n blocks. In
each block, the encoder initially conducts feature extrac-
tion through Φvi

n = Evi
n (Θvi

n−1) and Φir
n = Eir

n (Θir
n−1),

where Evi
n and Eir

n denote the nth encoder on the visi-
ble and infrared branches, respectively. Θvi

n−1 and Θir
n−1

represent the visible and infrared features refined by the
(n − 1)th IGM-Att module. These features are initialized
with the visible image Ivi and infrared image Iir when
n = 1. Then, we design an IGM-Att module to facilitate
interaction between Φvi

n and Φir
n . This module employs the

CNN paradigm to predominantly emphasize vision-related
local features. Additionally, it incorporates a gating mech-
anism designed to rectify misjudgments in the conventional
pooling-based attention. Thus, a more effective mutual
refinement of visible and infrared features is obtained by
{Θvi

n ,Θir
n } = Vn(Φ

vi
n ,Φir

n ), where Vn(·) denotes the func-
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Figure 6. The overall framework of our proposed MRFS.

tion of the nth IGM-Att. Besides, PC-Att is developed to
further facilitate interaction and aggregation of multi-modal
features. In contrast to IGM-Att, PC-Att places greater
emphasis on semantics-related features that necessitate a
global understanding. Consequently, we establish a fea-
ture cyclic transfer and fusion architecture within the trans-
former paradigm. The aggregated features obtained after
PC-Att processing can be expressed as Ωf

n = Sn(Θ
vi
n ,Θir

n ),
where Sn(·) represents the function of the nth PC-Att.
Due to the comprehensive consideration of single-modal
self-reinforcement and cross-modal mutual complementar-
ity, the aggregated features Ωf

n encompass complete infor-
mation describing the scene. Afterward, the output of IGM-
Att and source images are fed into the image fusion head F
to generate the fused image: If = F (Θvi

n ,Θir
n , Ivi, Iir). It

adopts CNN architecture, incorporating functions of salient
information integration and weakened information recov-
ery, thereby effectively enhancing the visual quality of the
fused image. Meanwhile, we feed the output of PC-Att
into the MLP-based semantic segmentation head G to attain
pixel-level classification decisions Is = G(Ωf

n). Through
the synergistic optimization of image fusion and semantic
segmentation, their performance can be improved in a mu-
tually reinforcing manner.

3.2. IGM-Att

The IGM-Att module integrates a gating mechanism into
the conventional pooling-based attention for visual com-
pletion, as shown in Fig. 7. First, it adopts conven-
tional channel and spatial attention [33] to model the rel-

ative relationship between features. In the channel atten-
tion, Φvi

n ∈ RH×W×C and Φir
n ∈ RH×W×C are con-

catenated along the channel dimension, and then reduced
by the max and average pooling to capture the response
properties of each channel. Next, we use MLP to project
these maximum and average responses separately. The
resulting vectors are summed and activated by the Sig-
moid function to generate channel-attention weights, de-
noted as W c

n ∈ R2×1×1×C . This process can be for-
malized as W c

n = Sigmoid(MLP (AP (C(Φvi
n ,Φir

n ))) +
MLP (MP (C(Φvi

n ,Φir
n )))). In the spatial attention, we

use max and average pooling on both Φvi
n and Φir

n , yielding
four maps that capture their pixel-wise response properties.
These maps are concatenated along the channel dimension,
and then processed by two convolutions with the Sigmoid
function to produce the spatial-attention weights, denoted
as W s

n ∈ RH×W×1. We formalize this process as W s
n =

Sigmoid(Conv(C(AP (Φvi
n ,Φir

n ),MP (Φvi
n ,Φir

n )))). We
derive hybrid weights W cs

n ∈ R2×H×W×C , by multiplying
channel-attention weights with spatial-attention weights,
expressed as W cs

n = W c
n × W c

s . Nevertheless, as previ-
ously noted, such pooling-based attention may lead to mis-
matched feature validity scores. To address this, we in-
troduce a gating mechanism to correct the obtained hybrid
weights W cs

n . Specifically, we first flatten Φvi
n and Φir

n . The
flattened features are then concatenated along the channel
dimension and input into an MLP with a Sigmoid func-
tion to derive the gated correction scores W g

n ∈ RH×W×C .
We encapsulate the entire gating mechanism process as
W g

n = Sigmoid(MLP (C(FL(Φvi
n ), FL(Φir

n )))). Next,
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Figure 7. Architecture of our proposed IGM-Att module.

the hybrid weights undergo refinement using the correc-
tion scores: W csg−vi

n = W cs
n [0] × W g

n and W csg−ir
n =

W cs
n [1] × (1 − W g

n). This sophisticated strategy enhances
the precision of feature importance assessments, reinforc-
ing valuable features and effectively suppressing redundant
ones. Finally, we refine features for visual completion us-
ing the obtained weights: Θvi

n = Φvi
n +W csg−vi

n ×Φir
n and

Θir
n = Φir

n +W csg−ir
n × Φvi

n .

3.3. PC-Att

The IGM-Att module leverages CNN-based attention, em-
phasizing the refinement of local visual features. In con-
trast, semantic segmentation necessitates global scene un-
derstanding capabilities. Therefore, we develop a PC-
Att module for refined semantic completion, illustrated in
Fig. 8. In the PC-Att module, we employ two informa-
tion reinforcement strategies, namely, single-modal self-
reinforcement and cross-modal mutual complementarity.
For single-modal self-reinforcement, we compute Query
(QX ∈ RHW×C), Key (KX ∈ RHW×C), and Value
(V X ∈ RHW×C) using linear layers from the feature ΥX ∈
RHW×C . QX is then employed to query KX for allocation
scores, and utilize these scores to modulate V X to obtain
the refined value: V Xm

= softmax(Q
XKXT

√
dk

)V X . Sub-

sequently, the refined value V Xm is used to enhance ΥX ,
resulting in improved features ΥXself

= Linear(ΥX +
V Xm

). This entire process is formally expressed as
ΥXself

= Self(ΥX). With this design, valuable cues
from the single-modal image itself (e.g., objects of the
same class) can be leveraged for feature refinement. How-
ever, the ability of self-reinforcement is inherently lim-
ited, so we introduce the cross-modal mutual complemen-
tarity. Without loss of generality, we describe its pro-
cess by using the X-modal feature ΥX to enhance the Y-
modal feature ΥY . QY is derived from ΥY to repre-
sent the demand, while KX and V X are extracted from
ΥX . Following a procedure similar to self-reinforcement,
we leverage QY and KX to compute the allocation score
and modulate V X : V Y←Xm

= softmax(Q
Y KXT

√
dk

)V X .
The resulting cross-modal refined feature is obtained by
ΥY cross

= Linear(ΥY + V Y←Xm
). This process is

ℝ
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Figure 8. Architecture of our proposed PC-Att module.

formally simplified as ΥY cross
= Cross(ΥY ,ΥX). Re-

ferring to Fig. 8, in our PC-Att module, we flatten Θvi
n

and Θir
n and apply the self-reinforcement and cross-modal

complementarity strategies in a closed loop: Υvi
n

self
=

Self(FL(Θvi
n )), Υir

n
cross

= Cross(FL(Θir
n ),Υvi

n
self

),
(Υir

n
cross

)
self

= Self(Υir
n

cross
), Ωf

n = (Υvi
n

self
)
cross

=

Cross(Υvi
n

self
, (Υir

n
cross

)
self

). This process seamlessly
integrates long-distance complete semantic information
from infrared and visible images into the generated fused
feature Ωf

n.

3.4. Task Heads

Image Fusion Head. We adopt the CNN architecture in
our image fusion head, as it has demonstrated effective-
ness in low-level vision tasks, producing visually satisfy-
ing images [15, 20]. Initially, we integrate the function
of weakened information recovery into it. Specifically, we
apply common data augmentation strategies (e.g., gamma
transformation, contrast stretching) to process Ivi, Iir, cre-
ating positive samples Ĩvi, Ĩir. These samples can re-
cover information lost due to weak reflected light and low
contrast, offering valuable guidance for optimizing anchor
points (i.e., fused image If ). Secondly, we introduce
the function of salient information integration to preserve
crucial characteristics. Concretely, the maximum func-
tion is applied to process positive samples in both gra-
dient and intensity domains, constructing an explicit op-
timization goal. Anchor points are then directed to ap-
proach this goal, ensuring the preservation of significant
contrast and rich textures. The corresponding integra-
tion loss is defined as Linte =

∥∥If −max(Ivi, Iir)
∥∥
1
+∥∥∇If −max(∇Ivi,∇Iir)

∥∥
1
. Besides, we enforce color

consistency in YCbCr space to maintain scene colors, and
the color loss is defined as Lcolor =

∥∥∥Cbf − Cbṽi
∥∥∥
1
+∥∥∥Crf − Crṽi

∥∥∥
1
. Therefore, the total image fusion loss is

summarized as Lfusion = Linte + Lcolor.
Semantic Segmentation Head. We employ the MLP de-
coder from SegFormer [34] as the semantic segmentation
head for its simplicity, lightweight nature, and effective un-
derstanding of global scene semantics. The conventional
cross-entropy loss is used to constrain semantic segmenta-
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tion, formalized as Lseg = −
∑

P log Is. Here, P refers
to the label, and Is indicates the classification probability
output by the semantic segmentation head.

4. Experiments
4.1. Datasets and Implementation

Datasets. We evaluate the performance of our MRFS on
semantic segmentation and image fusion tasks using the
MFNet [6], PST900 [25], and FMB [14] datasets. These
datasets consist of 1569, 1038, and 1500 pairs of infrared
and visible images, each with sizes of 480×640, 720×1280,
and 600 × 800, respectively. The number of image pairs
used for testing is 393, 288, and 280, respectively.
Implementation Details. The semantic segmentation and
image fusion tasks are jointly trained for 500 epochs to
achieve adequate coupled learning. The initial learning
rate is set to 6e−5, and the batch size is 3, utilizing the
Adam optimizer. The encoders in Fig. 6 are configured
as transformer-based structures following SegFormer[34],
with the number of blocks set to 4 based on its original con-
figuration. All experiments are conducted on the NVIDIA
GeForce RTX 3090 GPU with 24GB memory and the AMD
EPYC 7H12 64-Core Processor CPU.

4.2. Semantic Segmentation

We conduct comparative experiments for semantic seg-
mentation, evaluating against nine state-of-the-art com-
petitors: SeAFusion [27], SegFormer [34], EGFNet [48],
LASNet [9], SegMiF [14], MDRNet+[45], SGFNet[31],
MMSMCNet [50], and EAEFNet [11]. Due to unavail-
able training codes for EGFNet and MMSMCNet, we use
their original reported results on the MFNet and PST900
datasets, and do not retrain them on the FMB dataset. We
provide visualizations in Figs. 9 and 10 for objective com-
parison, excluding the PST900 dataset due to its sparse
and poor image quality. Clearly, our method yields su-
perior visual segmentation, characterized by optimal clas-
sification precision and comprehensive object delineation.
For instance, our method effectively preserves the fine con-
tours of pedestrians, yielding vivid postures, while other
methods can only determine approximate areas. Further,
we present quantitative results in Tables 1, 2, and 3. Our
MRFS attains the highest mean pixel intersection-over-
union (mIOU) across all three datasets. Overall, these find-
ings substantiate that our method achieves state-of-the-art
excellence in semantic segmentation.

4.3. Image Fusion

Comparative experiments are conducted to assess image fu-
sion performance, involving eight state-of-the-art competi-
tors: SDNet [40], U2Fusion [35], SeAFusion [27], DetFu-
sion [26], DATFuse [29], CDDFuse [46], TGFuse [23], and

SeAFusion SegFormer EGFNet LASNet SegMiF

MDRNet+ SGFNet MMSMCNet EAEFNet Ours

VIS / IR

Car Person Bike Curve Car Stop Guardrail Color Cone Bump

Label

SeAFusion SegFormer EGFNet LASNet SegMiF

MDRNet+ SGFNet MMSMCNet EAEFNet Ours

VIS / IR

Label

Figure 9. Qualitative segmentation on the MFNet dataset.

SeAFusion SegFormer LASNet SegMiF

MDRNet+ SGFNet EAEFNet Ours

VIS / IR

Label

SeAFusion SegFormer LASNet SegMiF

MDRNet+ SGFNet EAEFNet Ours

VIS / IR

Label

Background Road Sidewalk Building Lamp Sign Vegetation Sky Person Car Trunk Bus Motorcycle Bicycle Pole

Figure 10. Qualitative segmentation on the FMB dataset.

Table 1. Quantitative segmentation on the MFNet dataset.

MFNet Car Person Bike Curve Car Stop Guar. Cone Bump mIoU

SeAFusion 84.2 71.1 58.7 33.1 20.1 0.0 40.4 33.9 48.8
SegFormer 89.5 73.2 63.8 45.9 20.8 4.14 44.8 51.5 54.7

EGFNet 87.6 69.8 58.8 42.8 33.8 7.0 48.3 47.1 54.8
LASNet 84.2 67.1 56.9 41.1 39.6 18.9 48.8 40.1 54.9
SegMiF 87.8 71.4 63.2 47.5 31.1 0.0 48.9 50.3 56.1

MDRNet+ 87.1 69.8 60.9 47.8 34.2 8.2 50.2 55.0 56.8
SGFNet 88.4 77.6 64.3 45.8 31.0 6.0 57.1 55.0 57.6

MMSMCNet 89.2 69.1 63.5 46.4 41.9 8.8 48.8 57.6 58.1
EAEFNet 87.6 72.6 63.8 48.6 35.0 14.2 52.4 58.3 58.9

Ours 89.4 75.4 65.0 49.0 37.2 5.4 53.1 58.8 59.1

Table 2. Quantitative segmentation on the PST900 dataset.

PST900 Hand-Drill BackPack Frie-Extinguisher Survivor mIoU

SeAFusion 65.6 59.6 41.1 29.5 58.9
SegFormer 74.3 86.4 61.1 69.3 78.1

EGFNet 64.7 83.1 71.3 74.3 78.5
LASNet 77.8 86.5 82.8 75.5 84.4

MDRNet+ 63.0 76.3 63.5 71.3 74.6
SegMiF 66.0 81.4 76.3 75.5 79.7

MMSMCNet 62.4 89.2 73.3 74.7 79.8
SGFNet 82.8 75.8 79.9 72.7 82.1

EAEFNet 80.4 87.7 84.0 76.2 85.6
Ours 79.7 87.4 88.0 79.6 86.9

Table 3. Quantitative segmentation on the FMB dataset.

FMB Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mIoU

SeAFusion 76.2 59.6 15.1 34.4 68.0 80.1 83.5 38.4 51.9
SegFormer 76.5 68.4 38.7 20.9 70.6 81.4 83.8 43.9 56.3

LASNet 73.2 58.3 33.1 32.6 68.5 80.8 83.4 41.0 55.7
SegMiF 78.7 65.5 42.4 35.6 71.7 80.1 85.1 35.7 58.5

MDRNet+ 75.4 67.0 27.0 41.4 68.4 79.8 82.7 45.3 55.5
SGFNet 75.0 67.2 34.6 45.8 71.4 78.2 82.7 42.8 56.0

EAEFNet 79.7 61.6 22.5 34.3 74.6 82.3 86.6 46.2 58.0
Ours 76.2 71.3 34.4 50.1 75.8 85.4 87.0 53.6 61.2

SegMiF [14]. Due to the low quality of the PST900 dataset,
comparisons for image fusion are performed on the MFNet
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VIS / IR SDNet U2Fusion SeAFusion DetFusion

DATFuse CDDFuse TGFuse SegMiF Ours

Figure 11. Qualitative image fusion on the MFNet dataset.

VIS / IR SDNet U2Fusion SeAFusion DetFusion

DATFuse CDDFuse TGFuse SegMiF Ours

Figure 12. Qualitative image fusion on the FMB dataset.

Figure 13. Quantitative fusion on the MFNet and FMB datasets.

and FMB datasets only. Visual results for objective evalua-
tion are presented in Figs. 11 and 12. Our MRFS effectively
recovers weak details, enhancing overall visual quality. For
example, in Fig. 11, our fused image improves the visibil-
ity of the tree canopy and highlights faint thermal objects
better than other methods, crucial for human visual percep-
tion. Additionally, Fig. 12 demonstrates another strength
of our method. Leveraging salient information integration,
MRFS effectively suppresses artifacts around thermal ob-
jects in infrared images, while other methods cannot. More-
over, due to the absence of ground truth in image fusion, ex-
isting reference metrics assessing similarity between fused
and source images are biased by source image degrada-
tion. Hence, we employ non-reference metrics, entropy
(EN) [24] and standard deviation (SD) [1], to evaluate the
amount of information and contrast. As shown in Fig. 13,
MRFS achieves the highest scores on most metrics, demon-
strating its advanced image fusion performance.

4.4. Ablation Studies

We conduct extensive ablation studies to evaluate specific
designs in our method, examining six variants. Model
I: replaces salient information integration with a propor-
tional strategy [41]; Model II: omits weakened informa-
tion recovery; Model III: substitutes IGM-Att with con-
ventional pooling-based attention [3]; Model IV: replaces
PC-Att with cross-attention-based feature integration [47];
Model V: removes the image fusion head; Model VI: elim-

VIS / IR

Label Model  I Model  IV

Model  II Model  V

Model  III Full Model

Figure 14. Qualitative segmentation of ablation studies.

Table 4. Quantitative segmentation of ablation studies.

Model Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mIoU

I 78.9 70.1 33.4 48.2 74.9 84.9 87.2 50.8 60.5
II 77.3 67.7 42.3 43.7 72.6 84.9 87.2 50.9 60.9
III 78.3 70.0 36.6 51.5 74.0 84.0 86.6 52.5 60.2
IV 78.8 68.7 31.9 43.5 72.8 85.3 87.7 52.3 59.5
V 75.4 69.7 24.6 51.4 73.8 85.3 97.0 53.6 59.8

Full model 76.2 71.3 34.4 50.1 75.8 85.4 87.0 53.6 61.2

VIS IR Model I Model II

Model III Model IV Model VI Full Model

Figure 15. Qualitative fusion of ablation studies.

Figure 16. Quantitative fusion of ablation studies.

inates the semantic segmentation head. Fig. 14 and Table 4
show the impact of these variants on semantic segmentation,
where removing any design leads to decreased performance.
Particularly, replacing PC-Att and removing the image fu-
sion head cause significant performance degradation, em-
phasizing PC-Att’s role in multi-modal feature fusion and
the importance of image fusion in enhancing semantic seg-
mentation. Figs. 15 and 16 illustrate these designs’ roles in
image fusion, where removing any diminishes performance.
For instance, replacing IGM-Att introduces black artifacts,
and removing the segmentation head reduces the visibility
of ground traffic markings. These results underscore the ef-
ficacy of these designs in improving image fusion and high-
light semantic segmentation’s positive influence.
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Table 5. Gains of IGM-Att & PC-Att to dual-stream competitors.

FMB Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mIoU

LASNet 73.2 58.3 33.1 32.6 68.5 80.8 83.4 41.0 55.7
LASNet+ 75.1 56.6 37.0 45.1 73.2 80.2 83.2 43.3 58.1
SGFNet 75.0 67.2 34.6 45.8 71.4 78.2 82.7 42.8 56.0

SGFNet+ 74.4 67.2 32.9 43.5 75.3 79.8 84.1 42.7 57.7

Table 6. Quantitative semantic verification with object detection.

Method Segmentation Image Fusion FLOPs (G) Params (M)

SegFormer ✔ ✘ 185.47 64.01
LASNet ✔ ✘ 371.03 93.58

MDRNet+ ✔ ✘ 891.82 210.87
SGFNet ✔ ✘ 225.63 125.12

EAEFNet ✔ ✘ 316.49 147.21
SDNet ✘ ✔ 64.55 0.07

U2Fusion ✘ ✔ 633.09 0.659
DetFusion ✘ ✔ 278.62 83.04
DATFuse ✘ ✔ 8.68 0.01
CDDFuse ✘ ✔ 863.22 1.19
TGFuse ✘ ✔ 137.34 19.34

SeAFusion ✔ ✔ 102.53 13.06
SegMiF ✔ ✔ 526.20 45.60

Ours ✔ ✔ 219.16 134.97

4.5. Application Gain of IGM-Att and PC-Att

Our proposed IGM-Att and PC-Att are used to solve the
problems of the feature validity score mismatch and insuf-
ficient feature aggregation, respectively. Therefore, it is
plug-and-play for approaches using a dual-stream architec-
ture similar to our MRFS. To evaluate the application gain
of our IGM-Att and PC-Att, we transfer them to two dual-
stream competitors, i.e., LASNet and SGFNet. The quan-
titative gains on the FMB dataset are reported in Table 5.
It can be seen that after using IGM-Att and PC-Att, LAS-
Net and SGFNet achieved gains of 2.4 and 1.7, respectively.
These results demonstrate the broad gains of our IGM-Att
and PC-Att on the semantic segmentation task.

4.6. Complexity Discussion

We quantify the number of parameters and the FLOPs
(tested on images with the size of 600 × 800) for various
semantic segmentation and image fusion methods to gauge
their complexity, as detailed in Table 6. While our method
may not attain optimal performance on these two indicators,
it remains acceptable and even outperforms some dedicated
semantic segmentation and image fusion methods.

4.7. Semantic Verification with Object Detection

The ablation studies have demonstrated that semantic seg-
mentation can promote image fusion performance. Can this
promotion be understood as an injection of broad seman-
tics? To investigate, we initially generate fused results using
various fusion methods on the LLVIP dataset [8]. Subse-
quently, we retrain the YOLO-v5 detector using these fused
images to assess their embedded semantic attributes. Each
retraining involves 400 fused images for training and 120

Table 7. Quantitative semantic verification with object detection.

Precision Recall mAP@0.5 mAP@0.75 mAP@[0.5:0.95]

VIS 97.0 94.1 96.3 73.4 63.8
IR 97.6 97.3 98.9 88.1 72.8

SDNet 97.6 97.3 98.8 90.7 73.9
U2Fusion 96.2 98.5 97.8 91.0 73.7

SeAFusion 97.7 99.1 99.1 91.1 73.4
DetFusion 97.4 98.5 99.2 89.6 74.2
DATFuse 96.5 99.1 99.3 90.1 73.6
CDDFuse 97.9 98.2 99.1 91.4 73.6
TGFuse 98.2 97.6 98.9 90.3 73.7
SegMiF 98.2 97.3 98.8 91.0 73.4

Ours 98.2 97.6 99.3 92.9 74.2

Label VIS IR SDNet U2Fusion SeAFusion

DetFusion DATFuse CDDFuse TGFuse SegMiF Ours

Label
Prediction

Figure 17. Qualitative semantic verification with object detection.

for testing. The results in Fig. 17 and Table 7 demon-
strate that our MRFS outperforms most other methods in
detection performance. The only exception is DetFusion,
which shows comparable performance, as it follows an ob-
ject detection-driven technical route within the image fu-
sion domain. Overall, our MRFS effectively enhances the
semantic attributes of fused images, offering potential value
for applications in other high-level semantic tasks.

5. Conclusion

This work proposes a coupled learning framework for in-
frared and visible image fusion and semantic segmenta-
tion. Leveraging the intrinsic consistency between vision
and semantics, it makes these tasks mutually reinforcing,
achieving dual improvement. Firstly, weakened informa-
tion recovery and salient information integration are incor-
porated into the image fusion task, ensuring fused results
align with human perception. Secondly, the IGM-Att and
PC-Att modules address challenges from mismatched fea-
ture validity scores and enhance feature aggregation suffi-
ciency. Cascading these modules facilitates implicit con-
vergence of vision-related and semantics-related features,
enabling mutual guidance in learning processes and lead-
ing to improved solutions. Extensive experiments on public
datasets demonstrate that our MRFS achieves both visual
satisfaction and decision accuracy.
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