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Abstract

We propose to improve transformers of a specific modal-
ity with irrelevant data from other modalities, e.g., improve
an ImageNet model with audio or point cloud datasets. We
would like to highlight that the data samples of the target
modality are irrelevant to the other modalities, which distin-
guishes our method from other works utilizing paired (e.g.,
CLIP) or interleaved data of different modalities. We pro-
pose a methodology named Multimodal Pathway - given a
target modality and a transformer designed for it, we use an
auxiliary transformer trained with data of another modal-
ity and construct pathways to connect components of the
two models so that data of the target modality can be pro-
cessed by both models. In this way, we utilize the universal
sequence-to-sequence modeling abilities of transformers
obtained from two modalities. As a concrete implementa-
tion, we use a modality-specific tokenizer and task-specific
head as usual but utilize the transformer blocks of the aux-
iliary model via a proposed method named Cross-Modal
Re-parameterization, which exploits the auxiliary weights
without any inference costs. On the image, point cloud,
video, and audio recognition tasks, we observe significant
and consistent performance improvements with irrelevant
data from other modalities. The code and models are avail-
able at https://github.com/AILab-CVC/M2PT.

1. Introduction

Transformers [12, 14, 36, 37] are widely adopted in var-
ious tasks across modalities, such as text classification [8],
object detection [3], point cloud analysis [47], and au-
dio spectrogram recognition [16]. Apart from numerous
unimodal tasks, transformers are also effective on multi-
modal data, e.g., CLIP [32] uses image-text pairs to achieve
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superior performance in image recognition. Transform-
ers’ success in multiple modalities demonstrates their abil-
ities to universally establish sequence-to-sequence model-
ing, given the input sequences (i.e., tokens) which can be
seen as the universal embeddings of data of multiple modal-
ities [3, 12, 16, 46, 47]. For brevity, we refer to such ability
as the universal modeling ability.

We would like to note that CLIP [32] represents the sig-
nificant success of a methodology that improves a model’s
performance on a certain modality (i.e., image) with the
help of data from another modality (i.e., text), but the lim-
itation is also apparent - the data samples from the two
modalities must be relevant (e.g., paired, in this case).
This limitation seems so inevitable that it hardly attracts
research interest from the literature. Taking another two
modalities, image and audio, as an example, we may expect
that training with image-audio pairs may help the model
recognize images (if we build a dataset with enough image-
audio pairs and re-design the model to use the audio la-
bels as the supervision, just like CLIP does with image-
text pairs), but it seems hard to believe that a pure audio
dataset would improve a model’s performance on Ima-
geNet classification without any relevance between the
audio and image samples.

In this paper, we propose to improve a transformer’s per-
formance on a certain modality even with irrelevant data
from another modality, as shown in Figure 1. The motiva-
tion is that we can see a training process on a certain modal-
ity as converting the data of the modality to sequences (i.e.,
tokens) and establishing sequence-to-sequence mappings
with the transformer blocks. For a specific modality, we
reckon that the trained model has knowledge encoded in the
sequence-to-sequence modeling that can facilitate another
modeling process whose input sequences are obtained from
another modality. In other words, apart from the obvious
modality-specific knowledge acquired through training on
a specific modality, we seek the modality-complementary
knowledge of sequence-to-sequence modeling in trans-
formers and will show that it does exist.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Compared to the known paradigms which use well-aligned multimodal data, we focus on scenarios where the data samples are
from multiple modalities but irrelevant, which is an open problem in the literature.

However, given a target modality, it seems difficult to
design the model to utilize some irrelevant data of another
modality because the data samples of different modalities
(e.g., image and audio) may vary significantly in the se-
mantics, data format, preprocessing, and it seems hardly
possible to design a reasonable objective function since
there is no relevance between any two samples. In this
paper, we solve this problem by not directly mixing train-
ing data of two modalities but seeing a model trained on a
specific unimodal dataset as a proxy of the corresponding
modality and using the model instead. Specifically, given
a target modality and an auxiliary modality, we propose a
framework named Multimodal Pathway to improve the per-
formance on the target modality by using two transform-
ers respectively trained with the unimodal data of the two
modalities. We construct pathways across the components
of the target and auxiliary models to exploit the modality-
complementary knowledge encoded in the latter to help the
former. Note pathway is an abstract concept that may re-
fer to any connection between the two models. We name
the model as Multimodal Pathway Transformer (M2PT)
for brevity.

This paper proposes a simple yet effective implementa-
tion of M2PT, where the key is the concrete implementa-
tion of pathways that connect the two models. As discussed
above, thanks to the universal modeling ability, transform-
ers on different modalities may have different tokenizers,
but their main bodies (i.e., transformer blocks) may have
the same structure. 1 For a target model and an auxiliary

1Except for transformers, a recent work, UniRepLKNet [11], reveals

model with the same structure as the main bodies, a layer
in the main body of the former should have a counterpart in
the latter. For example, the counterpart of the Query layer
in the 9th block of the target model, which is the 9th Query
layer in the auxiliary model, should exist, and they play a
similar role in the two models. Considering this, we build
the connections between the two models by augmenting ev-
ery linear layer in the transformer blocks of the target model
with its counterpart in the auxiliary model. In such a con-
ceptual design, we let the two layers take the same inputs
and add up their outputs, as shown in Figure 2 (middle).

However, considering the budget on compute and la-
tency, we desire an implementation of the Multimodal Path-
way that realizes the pathways and makes good use of the
auxiliary model but brings only marginal training cost and
completely no inference cost, compared to a regular model
trained on the target modality. We note that the conceptual
structure described above can be equivalently implemented
by a re-parameterization method, which equivalently con-
verts the connections between model structures (i.e., linear
layers) into connections between the two models’ weights.
Specifically, we construct a pathway for each target linear
layer by adding the corresponding weights of its counter-
part in the trained auxiliary model scaled by a learnable
multiplier that indicates the strength of the pathway, so that
the method is named Cross-Modal Re-parameterization. A

ConvNets also effectively handle embeddings extracted from different
modalities with the same architecture (akin to transformers universally tok-
enizing and processing data of multiple modalities), achieving state-of-the-
art performances in tasks including global weather forecasting and audio
recognition.
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Figure 2. (Left) Framework of Multimodal Pathway Transformer (M2PT). We use point cloud and image modalities as an example.
Common practices with transformers follow the same pipeline: using 1) tokenizers to convert the input data to sequences, 2) transformer
blocks to process the sequences, and 3) heads to decode the sequences. We upgrade the sequence-to-sequence modeling by establishing
pathways between the components of different modalities so processing the tokens of a specific modality can utilize the transformer
blocks trained with another modality. (Middle) Conceptual design of M2PT, where the pathways are implemented by letting a linear layer
(including the Query/Key/Value/projection layers in the attention block and those in the FFN block) in the target model cooperate with its
counterpart in the auxiliary model. (Right) Cross-Modal Re-parameterization efficiently realizes M2PT by re-parameterizing the weights
of the target model with those of the auxiliary model, introducing marginal training costs and completely no inference costs.
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Figure 3. Consistent improvements brought by M2PT across each
pair of four modalities - image, video, point cloud, and audio. The
metrics are ImageNet-1K accuracy, Kinetics-400 accuracy, Part-
Net mIoU, and AudioSet accuracy, respectively. The numbers rep-
resent the percentage of improvement of M2PT models relative to
the performance of baseline models that are pretrained with MAE-
style methods [22, 23, 30, 49] on the four modalities, respectively.

significant strength of re-parameterization is that the extra
training costs are marginal (i.e., the re-parameterized model
will have the same number of linear layers as the original
model, and each linear layer merely needs to compute the
sum of two weight matrices before projecting the inputs)
and we can merge the weights after training so that the
structure and number of parameters of the resultant model
will be identical to a regular model.

We experimented with the image, video, point cloud, and

audio modalities. Figure 3 shows the relative improvements
M2PT consistently brings among four modalities. Such re-
sults reveal that the modality-complementary knowledge of
sequence-to-sequence modeling in transformers does exist.
As an early exploration, our empirical studies confirm that
such improvements are not solely due to the more parame-
ters, and suggest that such modality-complementary knowl-
edge may be related to the ability to generally process hi-
erarchical representations. Abstraction hierarchy exists in
multiple modalities with concepts ranging from low-level
to high-level, which may explain the universality of the
learned knowledge. In other words, as a transformer is be-
ing trained with images, it learns both (ability A) how to
understand images and (ability B) how to generally trans-
form the tokens from the lower-level patterns to a higher
level without assuming they originally come from images.
Meanwhile, as another transformer is being pretrained with
audio data, it learns both a different “ability A” for audio
and a similar “ability B”, so that it can help the aforemen-
tioned transformer in image recognition.

In summary, our contributions are as follows:

• We propose Multimodal Pathway, which is a framework
to improve transformers via exploiting models trained on
other modalities.

• We propose an inference-cost-free implementation of
Multimodal Pathway, which is named Cross-Modal Re-
parameterization.

• Multimodal Pathway represents an early exploration in
this direction, which offers a novel perspective. We re-
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alize significant and consistent improvements in four rep-
resentative modalities, which demonstrates the potential
of our method as a promising approach.

2. Related Work
Unimodal pretraining. The evolution of unimodal pre-

training paradigms has transitioned from supervised to self-
supervised paradigms. For instance, Devlin et al. [8] intro-
duced the mask-reconstruction paradigm and achieved re-
markable outcomes. At that time, visual pretraining largely
emphasized contrastive learning [4, 6, 21]. Subsequently,
leveraging the vast amounts of unlabeled data, the BERT
paradigm gained traction and pioneers like MAE [22] suc-
cessfully applied it to visual pretraining, while others [16,
30, 35, 46] extended this paradigm to areas like point cloud,
audio, and video perception.

We use MAE-style unimodal pretraining methods to ob-
tain the weights on each modality for simplicity. We do
not use supervised pretraining because we would like to en-
sure that two unimodal datasets are completely irrelevant
by avoiding using labels, considering that the labels of two
datasets may somehow overlap.
Multimodal pretraining. Existing multimodal learning
methods require paired [19, 39, 40, 50] or interleaved
data [1]. In either case, the data samples of different modal-
ities are well-aligned (i.e., strongly related). A recent study
highlighted a main trend in the literature - existing mul-
timodal pretraining methods are overly dependent on the
well-aligned multimodal sample pairs/tuples [43]. For in-
stance, VideoBERT [34] and CBT [33] utilize well-aligned
video and speech data;

Nowadays, using the weakly-aligned or unpaired/u-
naligned multimodal data as the pretraining corpora re-
mains understudied [43]. This work represents an early ex-
ploration in this direction, which serves to fill this gap in the
field and contributes to multimodal calibration [38].
Structural Re-parameterization is a methodology that
constructs extra structures (e.g., convolutional layers) dur-
ing training and converts the trained structures via trans-
forming the parameters [9–11]. A primary drawback of
Structural Re-parameterization is that the constructed layers
must participate in the computations with the inputs, result-
ing in significant extra training costs.

In contrast, Cross-Modal Re-parameterization is a sim-
ple re-parameterization method that is more efficient than
Structural Re-parameterization. Specifically, the extra com-
putation of each re-parameterized layer in the forward com-
putation adds up two weight matrices,

3. Method

3.1. Architectural Design
We design a transformer for a specific modality as three
modules - the modality-specific tokenizer, the modality-
agnostic transformer blocks, and the modality-specific
head. We assume the dimension of tokens is D, which is
a pre-defined architectural hyper-parameter, and describe
how to tokenize the input data of multiple modalities into
D-dimensional tokens.
Image tokenizer. We represent an image by xI ∈
RH×W×C , where (H,W ) specifies the image’s resolution,
and C is the number of channels. With an image patch of
(S, S), we obtain:

xI ∈ RH×W×C → x′
I ∈ R

HW
S2 ×D . (1)

Video tokenizer. Analogous to 2D images, we use video
patches as the basic units for learning video representations.
Given an N -frame video x ∈ RN×H×W×C , similar to im-
ages, we use an S×S embedding layer so that

xV ∈ RN×H×W×C → x′
V ∈ R

NHW
S2 ×D . (2)

Following ViT [12], we use S = 16 by default.
Point cloud tokenizer. Given a point cloud X = {xi}Pi=1

comprising P points, each point xi is defined as xi =
(pi,fi), where pi ∈ R3 denotes the 3D coordinates and
fi ∈ Rc encodes the attributes, e.g., color, viewpoint, nor-
mal, etc. We use the Farthest Point Sampling to sample a
representative skeleton from the original points at a fixed
sampling ratio of 1/4, then K-Nearest Neighbor method
to group proximate points. Then we model the geomet-
ric relevance by constructing an adjacency matrix RP

4 ×P
4

between each pair of groups, which is then projected into
D-dimensional tokens. That is

xP ∈ RP×(3+c) → x′
P ∈ RP

4 ×P
4 → x′′

P ∈ RP
4 ×D . (3)

Audio spectrogram tokenizer. Let T and F be the num-
bers of time frames and frequency bins, we use xA ∈ RT×F

to represent a sample. Analogous to 2D images, we see an
audio sample as a single-channel image and use a similar
embedding layer so that

xA ∈ RT×F → x′
A ∈ R

TF
S2 ×D. (4)

In our AudioSet experiments, we have T=F=128, S=16.
Transformer blocks. We adopt the structural design of the
transformer blocks in Vision Transformer (ViT) [12], where
each transformer block comprises a self-attention block and
a Feed-Forward Network (FFN) block. The linear layers
include the Query/Key/Value/projection layers in the atten-
tion block and two layers in the FFN block. For fairness
and reproducibility, we use the same architectural hyper-
parameters (e.g., dimension of tokens, number of blocks,
and number of heads) as ViT-Base for every M2PT model
on every modality.
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3.2. Cross-Modal Re-parameterization
For an M2PT model on a specific modality, we use Cross-
Modal Re-parameterization in the transformer blocks to
utilize another model’s weights trained on another modal-
ity. Specifically, let θ be an arbitrary trainable parame-
ter of a layer in the transformer, x be the input, and y be
the output, we use f to denote the operation so that y =
f(x; θ). With Cross-Modal Re-parameterization, we simply
re-parameterize the layer with parameters of its counterpart
in another modal that is trained on another modality. Let θ′
be the parameter of the counterpart, the operation becomes

y = f(x; θ + λθ′) . (5)

We refer to λ as the Cross-Modal Scale and θ′ as the Cross-
Modal Parameter. After training, we merge the model by
computing and saving θ̂ = θ + λθ′ so that the model will
no longer have extra parameters and the inference costs and
model size will be identical to a regular model.

With Cross-Modal Re-parameterization, we equivalently
realize the proposed M2PT transformer block with marginal
training costs and completely no inference costs. For a lin-
ear layer whose parameters form a matrix W ∈ RDin×Dout

and the inputs and outputs are matrices x ∈ RB×Din and
y ∈ RB×Dout . We omit the bias term for brevity and the
original operation is formulated by

y = xW . (6)

As described in the conceptual structure depicted in Fig-
ure 2, the linear layer and its counterpart take the same in-
put. The output will be

y = xW + λ(xW ′) . (7)

Note
xW + λ(xW ′) = x(W + λW ′) , (8)

so that the two layers can be equivalently implemented by
a single layer that has a trainable scalar λ and an additional
trainable matrix which is initialized with the counterpart in
the auxiliary model. Both the original weight matrix and the
additional one are trainable. At each forward computation,
the layer computes the equivalent weight matrix and then
uses it to project the input, which is

y = x(W + λW ′) . (9)

After training, we merge the parameters by computing
Ŵ = W +λW ′ and save it only. For inference, we simply
construct a regular linear layer and load Ŵ .

In summary, to construct and use an M2PT with Cross-
Modal Re-parameterization, we
• Construct the tokenizer and head according to the target

modality.

• Construct the transformer blocks with Cross-Modal Re-
parameterization. For each linear layer, except for the
original weight matrix, we add an extra trainable weight
matrix and initialize it with the corresponding one from a
transformer trained on the auxiliary modality, and add a
trainable scalar parameter initialized with 0.

• Train the re-parameterized cross-modal model just like
we train a regular model.

• After training, convert the trained model and save the con-
verted one for inference.

4. Experiments

4.1. Setup
Datasets. For image recognition, we evaluate the mod-
els’ performance on three representative image datasets.
1) ImageNet-1K [7] contains nearly 1.3 million images
of 1000 categories. 2) MSCOCO 2017 [27] is a com-
mon benchmark for object detection. M2PT is trained on
the train set and evaluated on the val set with Mask
RCNN [20]. 3) ADE-20K [48] is used for semantic seg-
mentation experiments with UperNet [41] and we adopt the
single-scale evaluation setting. For point cloud, we evalu-
ate the performance of M2PT on ShapeNetPart [44], which
contains 16,880 models and 16 categories. For audio recog-
nition, following AudioMAE [23], we utilize the AudioSet-
2k [15] dataset. For video, we experiment on the action
recognition dataset, Kinetics-400 [24], which contains 240k
training videos and 20k validation videos from 400 classes.
Experimental details. For a pair of target modality
and auxiliary modality, we obtain the auxiliary model
by self-supervised training on a dataset of the auxiliary
modality. Specifically, the auxiliary image model is pre-
trained with MAE [22] on ImageNet-1K [7], the auxil-
iary point cloud model is pretrained with Point-MAE [30]
on ShapeNet [5], the auxiliary audio model is pretrained
with AudioMAE [23] on AudioSet-2M [15], the auxiliary
video model is pretrained with VideoMAE [35] on Kinetics-
700 [24]. We do not use supervised pretraining because we
would like to eliminate the effects of labels in the pretrain-
ing datasets so that we can ensure the irrelevance of the data
samples, considering that the labels of two datasets may
somehow overlap. In terms of the initialization of the target
model, we adopt two settings. 1) The target model (i.e., the
parameters denoted by W in Eq. 9) is initialized with the
aforementioned weights pretrained with the self-supervised
methods on the target modality. We finetune the M2PT
model with the default finetuning configurations described
by the corresponding pretraining methods. The baseline
model is also initialized with the pretrained weights and
fine-tuned with identical configurations so that this setting
is referred to as the pretrained setting for brevity. 2) The
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Table 1. Experimental results on image recognition tasks. On ImageNet, we report the results with the linear layers in transformer
blocks finetuned (tune acc) or fixed (fix acc). The architecture of every model is ViT-B. The relative improvements over the baselines are
shown in green. * The standard error of M2PT on image recognition tasks is 0.04.

Method ImageNet MS COCO ADE20K
tune acc(%) fix acc(%) APbox(%) APmask(%) mIOU(%)

Pretrained setting
SemMAE[25] 83.4 65.0 - - 46.3
MFF [28] 83.6 67.0 48.1 43.1 47.9
MAE∗[22] 83.3 65.6 47.3 42.4 46.1
M2PT-Video (Ours) 83.6 ↑ 0.4% 67.1 ↑ 2.3% - - -
M2PT-Audio (Ours) 83.7 ↑ 0.4% 67.3 ↑ 2.6% - - -
M2PT-Point (Ours) 83.9 ↑ 0.7% 67.8 ↑ 3.4% 50.0 ↑ 5.7% 44.0 ↑ 3.8% 47.9 ↑ 3.9%

From-scratch setting
ViT [12] 76.5 14.5 46.2 40.5 39.7
M2PT-Point (Ours) 81.9 ↑ 7.1% 19.5 ↑ 34.5% 48.9 ↑ 5.8% 42.2 ↑ 4.2% 42.5 ↑ 7.1%

target model is initialized as usual, and we use the widely
adopted training configurations to train the M2PT model.
The baseline model is trained from scratch with identical
configurations for fair comparisons so that the setting is re-
ferred to as the from-scratch setting for brevity.
Metrics. We report the performance of M2PT mod-
els on various datasets, including top-1 accuracy for
ImageNet-1K, AudioSet, Kinetics-400, mIoU for ADE20K,
ShapeNetPart and PartNet, and box/mask AP for MS
COCO. To fairly assess the performance improvements over
the baselines in multiple metrics, we also report the relative
percentage of improvement in Table 1, 2, 3, and 4.

4.2. Main Results

Image recognition. We first conduct a group of experi-
ments under the pretrained setting, where the target weights
are initialized with a ViT pretrained with MAE on Ima-
geNet, and the auxiliary weights are from the models pre-
trained on video, audio, and point datasets, respectively.
Such three models, which are labeled as M2PT-Video,
M2PT-Audio, and M2PT-Point, respectively, and the base-
line (the original MAE-pretrained ViT) are trained on Ima-
geNet with the finetuning configurations originally adopted
by MAE [22], and the resultant accuracies are reported in
the “tune acc” column in Table 1. Then we transfer the best-
performing model, which is M2PT-Point, to COCO object
detection and ADE20K semantic segmentation tasks. The
improvements are significant: the ImageNet accuracy im-
proves from 83.3 to 83.9, the COCO box AP improves from
47.3 to 50.0, and the ADE20K mIoU improves from 46.1
to 47.9, so the relative improvements are 0.7%, 5.7%, and
3.9%, respectively.

Apart from finetuning the target and auxiliary weights,
we test another setting where the parameters of linear

weights in transformer blocks are fixed, and only the Cross-
Modal Scales together with the classifier are trainable. The
accuracies are reported in the “fix acc” column. Natu-
rally, under this setting, the baseline should be the MAE-
pretrained ViT where only the classifier is trainable. Im-
pressively, the relative improvement becomes more signifi-
cant (65.6→67.8 so that the relative improvement is 3.4%),
demonstrating that the weights obtained from the auxiliary
modality work on another modality, even if the weights are
fixed. We would like to note MAE is a powerful pretraining
method, and it is challenging to gain further improvements
on top of MAE. Some insightful recent methods [25, 28]
improved MAE but our results are more significant.

On the other hand, under the from-scratch setting, the
baseline is a ViT trained from scratch, and the target weights
of M2PT are also randomly initialized. The accuracy is
drastically improved from 81.9 to 76.5 so the relative im-
provement is 7.1%, suggesting the auxiliary weights signif-
icantly facilitate the training process. Intuitively, the Cross-
Modal Scales are initialized with 0 but will soon become
non-zero as the training proceeds so the model will be grad-
ually influenced by the auxiliary weights and benefit from
the modality-complementary knowledge. When we trans-
fer such two models to COCO and ADE20K, we observe
consistent improvements in the box AP and mIoU.

3D point cloud understanding. Table 2 presents the ex-
perimental results on ShapeNetPart and PartNet datasets,
where we compare M2PT with existing point cloud pre-
training methods such as Point-BERT [30] and Point-
MAE [45]. M2PT consistently improves the class mIoU
from 84.2 to 85.6 and instance mIoU from 86.1 to 87.5 on
ShapeNetPart and raises the mIoU from 47.4 to 50.1 on
PartNet. Under the from-scratch setting, we also observe
consistent improvements.

Audio recognition. For the pretrained setting, the tar-

6113



Table 2. Experimental results on point cloud datasets. We re-
port the class mIoU (mIoUC ) and instance mIoUI on ShapeNet-
Part and mIoU on PartNet. The relative improvements over the
baselines are shown in green.

Method ShapeNetPart PartNet
mIoUC (%) mIoUI (%) mIoU (%)

Pretrained setting
PointNet++ [31] 81.9 85.1 42.5
Point-BERT [45] 84.1 85.6 -
Point-MLP [29]. 84.6 86.1 48.1

Point-MAE [45] 84.2 86.1 47.4
M2PT-Video 85.6 ↑ 1.7% 87.5 ↑ 1.6% 50.1 ↑ 5.7%
M2PT-Image 85.6 ↑ 1.7% 87.5 ↑ 1.6% 49.2 ↑ 3.8%
M2PT-Audio 85.6 ↑ 1.7% 87.5 ↑ 1.6% 48.1 ↑ 1.5%

From-scratch setting
N/A 50.2 68.4 -
M2PT-Video 50.8 ↑ 1.2% 68.8 ↑ 0.6% -

Table 3. Experimental results on AudioSet-2k. The relative im-
provements over the baselines are shown in green.

Method Model Top-1 Acc. (%)
Pretrained setting

PSLA [17] CNN+Trans 31.9
AST [16] ViT-B 34.7
SSAST [18] ViT-B 31.0

AudioMAE [23] ViT-B 35.3
M2PT-Point ViT-B 35.6 ↑ 0.8%
M2PT-Video ViT-B 35.5 ↑ 0.6%
M2PT-Image ViT-B 35.6 ↑ 0.8%

From-scratch setting
N/A ViT-B 11.0
M2PT-Point ViT-B 11.4 ↑ 3.6%

Table 4. Experimental results on Kinetics-400. The relative im-
provements over the baselines are shown in green

Method Model Top-1 Acc. (%)
SlowFast-101 [13] ResNet-101 79.8
MViTv2-B [26] ViT-B 81.2
TimeSFormer [2] ViT-B 80.7

VideoMAE [35] ViT-B 81.5
M2PT-Point ViT-B 82.3 ↑ 1.0%
M2PT-Image ViT-B 82.2 ↑ 0.9%
M2PT-Audio ViT-B 82.3 ↑ 1.0%

get weights are initialized with an AudioMAE-pretrained
model. As shown in Table 3, we compare M2PT with exist-
ing competitive methods including SSAST [18], AST [16],
and AudioMAE [23]. M2PT improves the top-1 accuracy
by 0.8% relatively on the Audioset balanced split, demon-
strating that M2PT is also effective in audio recognition.
Under the from-scratch setting, M2PT brings out a relative
improvement of 3.6%.
Video understanding. For the experiments on Kinetics-
400, we adopt only the pretrained setting because it is not a

common practice to train a model from scratch on a video
dataset, which would deliver inferior performance. We
use the Video-MAE-pretrained ViT to initialize the target
weights. Naturally, the baseline should be the VideoMAE-
pretrained model directly finetuned on Kinetics-400. Ta-
ble 4 shows that compared with previous works including
SlowFast [13], MViTv2 [26], TimeSFormer [2], and Video-
MAE [35], M2PT outperforms by at least +0.8 top-1 accu-
racy (82.3 vs. 81.5), which reveals that the temporal aware-
ness for video understanding can also be enhanced with ir-
relevant data from other modalities.

4.3. Ablation Studies
As shown in Table 5, we evaluate the design choices of

M2PT separately through a group of ablation studies under
the pretrained setting on ImageNet and the auxiliary modal-
ity is the point cloud. We make the following observations.
1) Applying Cross-Modal Re-parameterization to every
linear layer delivers the best performance. In each trans-
former block, we may choose to apply our method to any
of the Query/Key/Value/projection layers in the attention
block and the two linear layers in the FFN. Table 5 shows
changing any one of the layers brings improvements, and
the best result is achieved by changing them all.
2) Cross-Modal Scale should be initialized with 0. By
default, we initialize the Cross-Modal Scale λ with 0 for
every layer. We observe that initializing it to a higher value
degrades the performance, suggesting that the initial state
of the M2PT should be identical to the target weights (i.e.,
the weights pretrained with MAE, in this case).
3) Cross-Modal Scale should be learnable. Fixing the
Cross-Modal Scale degrades the performance, suggesting
it is important to let the model learn how to combine the
target weights and the corresponding auxiliary weights.

4.4. Empirical Discussions
4.4.1 On the Modality-Complementary Knowledge

The observed improvements on multiple modalities have
shown that the auxiliary transformer has learned some
knowledge that can be transferred to the target modality.
We continue to investigate the properties of such modality-
complementary knowledge through two groups of experi-
ments (Table 6).
1) Modality-complementary knowledge & Abstraction
Hierarchy. Vision Transformers excel in general hierar-
chical representations by stacking blocks [12]. For exam-
ple, in the image and point cloud modalities, this hierar-
chy may include textures (in images) or individual points
(in point clouds), object parts, and whole objects. In Ta-
ble 6, we construct the multimodal pathway by connect-
ing transformer blocks of different depths. Specifically,
the counterpart of the first target block should be the first
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Table 5. Ablation studies on design choices of M2PT including the layers to re-parameterize and configurations of Cross-Modal Scale λ.
We use the point cloud and video as auxiliary modalities for image and 3D evaluation. The first row reports the results of direct tuning.

Multimodal Pathway Components Cross-Modal Scale ImageNet ShapeNetPart PartNet
Attn QKV Attn Proj FFN 1st FFN 2nd Init. Trainable (%) (%) (%)

- - 83.3 84.2/86.1 47.4
✔ 0 ✔ 83.4 84.6/86.5 48.3

✔ 0 ✔ 83.6 84.8/87.1 48.2
✔ 0 ✔ 83.6 84.9/87.0 48.4

✔ 0 ✔ 83.7 85.2/87.2 48.3
✔ ✔ ✔ ✔ 0 ✔ 83.9 85.6/87.5 50.1
✔ ✔ ✔ ✔ 10−2 ✘ 83.5 84.6/86.3 48.2
✔ ✔ ✔ ✔ 10−2 ✔ 83.6 84.3/86.2 48.0
✔ ✔ ✔ ✔ 10−4 ✔ 83.6 84.7/86.2 48.1
✔ ✔ ✔ ✔ 10−6 ✔ 83.7 84.7/86.4 48.2

Table 6. ImageNet accuracy with changed order of auxiliary
weights or fewer pretraining epochs.

Order of aux weights Epochs pretrained Top-1 acc
Normal 20 83.55
Normal 220 83.69
Normal 300 83.93

Reversed 300 83.61

Table 7. Training efficiency of Multimodal Pathway.

Model Train Time Train Param. Inference Time Inference Param.
MAE 16.95 Hours 86.3M 11.64 ms 86.3M
M2PT 22.84 Hours 172.6M 11.64ms 86.3M

auxiliary block. Under the reverse-order setting, we ob-
serve that doing so decreases the accuracy to 83.61%, which
is 0.32% lower than the normal M2PT. We observe that
modality-complementary knowledge in the auxiliary trans-
former can transfer to another modality but can be harmed
if the low-to-high correspondence is interrupted, suggesting
that modality-complementary knowledge reinforces hierar-
chical representations of the transformer architecture.

2) More trainable parameters? Just better initializa-
tion? For this part, we use insufficiently pretrained aux-
iliary weights. Specifically, the default auxiliary weights
are pretrained for 300 epochs with mask modeling on point
cloud data, but we alternatively use the checkpoints saved
at the 20th and 220th epoch, respectively, as the auxiliary
weights. Not surprisingly, we observe that the performance
degrades to 83.55% and 83.69%, respectively, which is still
higher than the baseline. This phenomenon suggests that
the improvements brought by the auxiliary weights cannot
be explained as better initialization, because after pretrain-
ing the auxiliary model from 20 to 300 epochs, the accuracy
increases from 83.5 to 83.9. If improvements were due to
initialization, the results of pretraining 20 epochs should be
close to random initialization (83.5 v.s. 81.9).

4.4.2 Discussion on the Data Scale

1) From small-scale data to large-scale data. Previ-
ous works such as Image2Point [42] introduces image-
pretrained models to data-insufficient 3D perception tasks.
Differently, M2PT sets up a brand new methodology and
breaks the former consensus - we discover that even though
the data scale of point clouds is limited, such data still
brings out impressive improvements to the image, video,
and audio perception tasks. Impressively, the pretraining
data of the latter modalities is larger in magnitude than that
of the point cloud, but the point cloud data makes a differ-
ence. 2) From large-scale data to small-scale data. On
the other hand, the effectiveness of M2PT highlights that
for 3D vision research and other areas that lack large-scale
data for pretraining, M2PT introduces a promising direction
to leverage irrelevant large-scale data from other modalities.

5. Conclusion and Limitation
This paper explores the feasibility and advantages of im-

proving a transformer’s performance on a specific modal-
ity with irrelevant data from other modalities. We pro-
pose the Multimodal Pathway and a concrete implemen-
tation of no additional inference cost named Cross-Modal
Re-parameterization. It represents an early exploration in
this direction, which offers a novel perspective. We real-
ize significant and consistent improvements on four rep-
resentative modalities, demonstrating the potential of our
method as a promising approach. In the future, we will ex-
plore to construct multimodal pathways among CNNs and
cross-architecture. The primary limitation is that the the-
ory behind the improvements remains to be revealed. Apart
from empirical explanations, we believe further investiga-
tions (e.g., a mathematically provable bound) will be useful.
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