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Figure 1. Geometry generation from hGCA (blue) from five accumulated LiDAR scans (yellow spheres) on real-world Waymo-open dataset.
hGCA is a conditional 3D generative model that can generate geometry beyond occlusions (vehicles, facades) and input field of view (roofs,
trees, poles), from sparse and noisy LiDAR scans. Our method is also spatially scalable, completing this whole scene (120 meters) at high
resolution on a single 24GB GPU without additional tricks.

Abstract
We aim to generate fine-grained 3D geometry from large-

scale sparse LiDAR scans, abundantly captured by au-
tonomous vehicles (AV). Contrary to prior work on AV scene
completion, we aim to extrapolate fine geometry from unla-
beled and beyond spatial limits of LiDAR scans, taking a
step towards generating realistic, high-resolution simulation-
ready 3D street environments. We propose hierarchical Gen-
erative Cellular Automata (hGCA), a spatially scalable con-
ditional 3D generative model, which grows geometry recur-
sively with local kernels following [46, 47], in a coarse-
to-fine manner, equipped with a light-weight planner to in-
duce global consistency. Experiments on synthetic scenes
show that hGCA generates plausible scene geometry with
higher fidelity and completeness compared to state-of-the-art
baselines. Our model generalizes strongly from sim-to-real,
qualitatively outperforming baselines on the Waymo-open
dataset. We also show anecdotal evidence of the ability to
create novel objects from real-world geometric cues even
when trained on limited synthetic content. More results and
details can be found on our project page.

1. Introduction

How can we scalably build large-scale, diverse and realistic
digital worlds for applications in simulation for autonomous
vehicles (AV) or gaming and entertainment? Manually au-
thoring a realistic scene requires significant effort in creating
individual objects and positioning them in realistic spatial
configurations. Procedural models are a promising alterna-
tive which back recent AAA games such as No Man’s Sky.
However, authoring procedural models of objects and envi-
ronments are usually time consuming manual tasks. Densely
scanning the world is now an increasingly popular and more
scalable option, using Neural Radiance Field (NeRF) based
approaches. However, these reconstruction methods typi-
cally don’t capture content beyond what is observed. Sparse
LiDAR scans from autonomous vehicles – a by-product
of their development and deployment – also provide cues
to the geometry of street environments in the world. Our
work aims to use these sparse LiDAR scans as input to a
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conditional 3D generative model that learns to extrapolate
plausible high-resolution scene geometry.

Prior work in the domain has focused on semantic scene
completion (SSC) from a single LiDAR scan [40, 42], using
accumulated sequential LiDAR scans with labeled semantic
classes as supervision [2]. This is useful for AV perception
to learn to expect 3D semantic occupancy beyond instan-
taneous observations. However, using such accumulated
scans as supervision typically results in outputs unsuitable
for simulation, since they have low-resolution geometry and
suffer from heavy occlusions, exacerbated by scans being
taken from a single drive through a dynamic scene [2, 34].
Moreover, typical LiDAR scanners in AV have a restricted
height range which prohibits learning to generate scene ge-
ometry beyond this limit in SSC. From sparse LiDAR scans,
we instead aim to generate high-resolution scene geometry
and go beyond the LiDAR range (Fig. 1), to take a step
towards simulation ready scene geometry. To differentiate
from the task of semantic scene completion (SSC), we name
our task outdoor scene extrapolation. However, for ease of
expression, we use the terms completion, generation, and
extrapolation interchangeably through the rest of the paper.
We train and evaluate on synthetic scenes which allow fine
and complete geometric supervision while maintaining the
ability to complete geometry from real LiDAR scans. We
use a conditional 3D generative model, which is more suited
to this challenging inverse problem, as opposed to prior SSC
methods that typically use discriminative autoencoder.

We propose a spatially scalable 3D generative model of
geometry, with a two-stage hierarchical coarse-to-fine for-
mulation, called hGCA. hGCA builds on top of the recent
Generative Cellular Automata (GCA) framework [46, 47],
which is a 3D generative model that recursively applies local
kernels to incrementally grow geometry from a sparse set of
active cells. GCA was shown to perform competitively with
state-of-the-art for geometry completion from dense indoor
scans. The sparsity and locality of GCA allows spatial scala-
bility. However, we find that naively applying GCA for fine
geometry extrapolation on large outdoor scenes from sparse
LiDAR leads to performance deterioration stemming from
a lack of global context and the need to use a large number
of recursive steps, the latter motivating our coarse-to-fine
approach. To introduce global context, hGCA’s coarse stage
uses a GCA conditioned on features from a light-weight
bird’s eye view planner to generate scene geometry in a low-
resolution voxel grid, without losing spatial scalability. The
second stage synthesizes finer details with cGCA [47], gen-
erating high resolution voxels augmented with local implicit
functions that allow promoting the output to a 3D mesh.

We train on synthetic street scenes, using data from the
CARLA simulator [13], and a city asset from Turbosquid,
using simulated LiDAR scans as input. On synthetic scenes,
hGCA outperforms state-of-the-art SSC and indoor scene

completion methods on multiple metrics for geometry ex-
trapolation. Quantitatively evaluating 3D generative mod-
els in the real world is challenging. Qualitatively, we ob-
serve that hGCA shows strong sim-to-real generalization to
real LiDAR scans compared to prior work, generating more
complete and higher fidelity geometry, demonstrated on the
Waymo-open dataset [34]. We also demonstrate with exam-
ples that despite being trained on limited synthetic content,
hGCA can generate some novel content beyond its training
data, by taking geometric cues from input LiDAR scans.

2. Related Work
3D Shape Completion. Earlier works [9, 44] on data-driven
3D shape completion regressed a single shape from par-
tial 3D observation using deep neural networks. [17] learn
to complete 3D shapes using partial geometry supervision
coming from LiDAR scans. Multiple works [10, 11, 32]
tackle completion of indoor scenes from dense RGB-D
scans. [10, 11] proposed a hierarchical coarse-to-fine ap-
proach for fine-grained completion of indoor scenes. Recent
works [5, 20, 33] have employed deep implicit fields to learn
to generate continuous surfaces [7, 22, 23, 26]. We take inspi-
ration from these using a coarse-to-fine approach and local
implicit functions at the finest level. Most prior works on out-
door scene completion focus on semantic scene completion
(SSC) [2, 8, 25, 40, 42] for autonomous vehicles (AV), i.e.
completing semantic voxel occupancy given a single LiDAR
scan using accumulated sequential point clouds with seman-
tic labels for supervision. JS3CNet [42] proposes a novel
point-voxel interaction module for better feature extraction
and SCPNet [40] utilizes student-teacher distillation from
a multi-frame input teacher, and improves network design
without any dowsampling modules. While the works show
suitable results for AV perception, the methods produce low
resolution geometry and suffer from occlusions arising from
supervision, deficient for simulation. We show superior per-
formance to both indoor scene completion and SSC methods
for AV scene geometry extrapolation on synthetic data, as
well as qualitatively improved sim-to-real generalization on
the Waymo-open [34] dataset.

3D Generative models [4, 15, 18, 37, 43, 45], have
typically focused on synthesizing single objects, leverag-
ing GANs [1, 38], and diffusion based generative mod-
els [45, 48]. Recent methods in text-to-3D generative mod-
els [28], have shown impressive results in generating novel
shapes and small scenes. [41, 49] learn generative models
of LiDAR scans demonstrating scene level point cloud syn-
thesis in autonomous driving. Inspired by the cellular au-
tomaton [36], the GCA [46, 47] framework can generate
multimodal completions for both objects and indoor scenes.
GCA scales to scenes as it recursively applies local kernels
to grow a sparse set of active cells in its generative process.
This resembles diffusion models [3, 19, 31] where samples
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Figure 2. Overview of our method. Given several LiDAR scans, our method generates low resolution completion sT1 using a GCA attached
with a planner that adds global consistency. Then given sT1 and the input, we upsample the completion using a cGCA into high resolution
voxel with a local latent xT2 and decode it to obtain the final generated mesh.

are generated with a recursive learned denoising kernel, and
Neural Cellular Automata [24]. We find that the locality of
GCA fails to capture global context, generating artifacts in
large scenes. hGCA extends GCA to capture global context
and efficiently generate fine geometry.

3. Hierarchical Generative Cellular Automata

Given LiDAR scans captured from an ego-vehicle, the task
is to generate complete scene geometry, including regions
beyond the LiDAR range or away from the street. To effi-
ciently handle expansive scales of outdoor scenes with fine
detail (Fig. 1), hierarchical Generative Cellular Automata
(hGCA) proposes a conditional generative model in a two-
step, coarse-to-fine manner as shown in Fig. 2. The first step
of hGCA extrapolates the scene in a low resolution voxel
representation using a model based on Generative Cellular
Automata (GCA) [46]; a sparse, local and hence spatially
scalable generative model, which we briefly introduce in
Sec. 3.1 for completeness. However, the local generation of
GCA can introduce artifacts in extrapolating larges scenes
beyond sensor measurements. We propose to induce global
context into GCA by jointly training a light-weight bird’s eye
view encoder, called planner (Sec. 3.2). Then we transform
the coarse geometry into high-resolution continuous scene
geometry using local implicit functions [47] (Sec. 3.3). To-
gether, the proposed method can create large outdoor scenes
with spatial scalability, global consistency, higher fidelity
from sparse, partial real-world scans.

3.1. Background: Generative Cellular Automata

Generative process. GCA recursively grows an incom-
plete shape to completion as illustrated in step 1 of Fig. 2,
by locally updating occupancies around the current shape.
GCA represents shapes as sparse voxel occupancies, s =
{(c, oc)|c ∈ Z3, oc ∈ {0, 1}}, where oc indicates binary
occupancy of a voxel / cell with its coordinates c. In the
following text, we use voxel and cell interchangeably. Given
an observed, incomplete state s0, it generates a completed
state sT by recursively sampling s1:T :

st+1 ∼ pθ(·|st), (1)

where T is a predefined number of transition steps and pθ
is a local transition kernel with parameters θ. The tran-
sition kernel uses a U-Net [30] architecture using sparse
convolutions [16] i.e., the convolution only processes occu-
pied cells for efficiency. The transition kernel pθ is com-
puted locally on the neighborhood of the occupied cells,
N (st) = {c′ ∈ Z3 | d(c, c′) ≤ r, oc = 1, c ∈ Z3}, i.e.,
cells within a radius r from current occupied cells under
a distance metric d. For efficient sampling, the transition
kernel is computed for each cell in N (st) independently,

p(st+1|st) =
∏

c∈N (st)

pθ(oc|st), (2)

pθ(oc|st) = Ber(λθ,c), (3)

where pθ(oc|st) is a Bernoulli variable with mean λθ,c esti-
mated by the neural network for cell c, given st. This sparse
and local generative process of GCA allows more spatial
scalability over traditional encoder-decoder methods that
process whole scenes at once. In this work, we use a variant
of GCA where the transition kernel pθ is conditioned on
both the initial state s0 and the current state st, improving
conditioning on the input s0 [47].

Training GCA. GCA is trained with infusion training [3]
to converge to a desired shape sgt, given s0 and sgt. Infusion
training supervises the transition kernel pθ(st+1|st) at each
step, by defining an infusion kernel

qtθ(s̃
t+1|s̃t, sgt) =

∏
c∈N (s̃t)

qtθ(oc|s̃t, sgt) (4)

where the infusion kernel qtθ(s̃
t+1|s̃t, sgt) is factorized per

cell as in Eq. 2. The infusion kernel for a single cell c,
qtθ(oc|s̃t, sgt) = Ber((1− αt)λθ,c + αt1[c ∈ sgt]) (5)

is a Bernoulli variable with its mean defined as the esti-
mated occupancy probability λθ,c infused with target sgt

with weight αt = α1t + α0 | αt ∈ [0, 1], which increases
linearly with t.

For training input s0 to generate sgt ∼ sT , intermediate
infusion states s̃1:T are sampled from the infusion kernel
qθ(s̃

t+1|s̃t, sgt) recursively. For each sampled infusion state
s̃t, GCA is trained with binary cross entropy loss against the
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Figure 3. Left: (a) Input LiDAR scans. (b), (c) GCA completion in
10cm3 and 20cm3 voxel resolution. (d) GCA + planner completion
in 20cm voxel resolution. GCA is local and often cannot capture
the global context, generating imperfect completions (pink box) or
artifacts (green box).

ground-truth sgt on the neighborhood N (s̃t) by minimizing:

LGCA = −
∑

c∈N (s̃t)

∑
oc∈{0,1}

1[oc = oc,sgt ] log pθ(oc|s̃t),

(6)
where oc,sgt ∈ {0, 1} is the occupancy of cell c for ground
truth shape sgt. We refer to [47] for theoretical foundation
of the loss function.

3.2. Planner

While GCA has been shown to complete small indoor scenes,
we find that it lacks global consistency on extrapolating large-
scale scenes. Take the fence in green box in left of Fig. 3 for
instance. The walls of buildings are generated inconsistently
by GCA, at both low and high resolution, showing symptoms
of lack of global consistency. This issue is exacerbated in
sim-to-real inference shown in Fig. 7. We hypothesize that
while GCA’s sparse and recursive kernel brings scalability, it
cannot maintain global context both spatially and temporally.
Spatially, the sparse convolutions deliver information only
through occupied cells, making it difficult to observe wide
spatial context without immediate connection. Moreover,
the Markov transition kernel transmits no other memory
except binary occupancy between transitions, thus inhibiting
long-range "planning" across transition steps.

Hence, we introduce a light-weight planner module that
provides the global context of the scene into GCA, while
it maintains the recursive local operations. Specifically, we
provide the consistent bird’s eye view (BEV) features to
GCA kernels, independent of time step t. The features are
trained to plan ahead and predict very low-resolution, yet
dense, final occupancy from the initial state s0.

BEV features. The planner module is depicted in Fig. 4
inside the green box. We first voxelize the input point cloud
to initial state s0 and transform it to hr × wr bird’s eye
view (BEV) image. Akin to PointPillars [21], each pixel
on the BEV image contains the feature extracted from the
voxels within the vertical ‘pillar.’ Each pillar aggregates

Figure 4. Illustration of GCA attached with planner module.
3× 3× zmax voxels (z is the up-axis, zmax is the maximum
voxels along z axis) of the original voxel grid. After the
x and y coordinates of occupied voxels are converted into
offsets from the pillar center and z coordinate is normalized
by zmax, a local PointNet [29] processes them to obtain
a feature for the corresponding pixel in the low-resolution
BEV image. We further add 2D positional encoding [35] to
encode relative position, and pass them through a dense 2D
UNet [30] to obtain global BEV features fBEV .

Training GCA with BEV features. As shown in Fig. 4,
we use 2D convolutions on fBEV to provide the global guid-
ance (shown in pink) in the decoder layers of the sparse UNet
of the GCA kernel (shown in blue). Inspired by the spatial
conditioning mechanism in SPADE [27], the 2D convolu-
tions compute a mean and variance per pillar. The means and
variances per pillar are added and multiplied to the 3D sparse
features falling within the pillar, effectively de-normalizing
them. To ensure fBEV contains necessary information to
plan geometry, we apply an auxiliary guidance loss. Specif-
ically, fBEV is trained to decode low-resolution 3D occu-
pancy Or of shape (hr, wr, zr) (we typically use zr = 4,
implying voxels of 2 meter height) with a 2D convolution
layer. It is supervised with a cross-entropy loss,

LBEV = CE(Or,Ogt
r ), (7)

where Ogt
r is the ground truth coarse occupancy in the res-

olution of Or. The final loss is a weighted combination of
Eq. 6 and 7 with weight β,

L = LGCA + βLBEV. (8)

3.3. Upsampling to Continuous Geometry

Most prior works in semantic scene completion target AV
perception, and it suffices to predict occupancy at 20cm3

voxel resolution given the LiDAR scan. In contrast, hGCA
can create high-resolution surfaces that are suitable for con-
tent creation. Given the low-resolution generation of the
scene from the previous step, hGCA generates voxels with
latent vectors for local implicit functions [5, 20, 47] in a
higher resolution. hGCA’s hierarchical generation achieves
efficiency in both space and time complexity for the large-
scale under-constrained problem, disentangling geometry
completion and upsampling into separate steps.

Generative process. We utilize a continuous version of
GCA, named cGCA [47], as our generative model for con-
ditional up-sampling into an implicit representation. cGCA
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extends GCA to generate continuous surface, using an aug-
mented state x of each cell c, adding a local implicit latent
feature zc, i.e. x = {(c, oc, zc)|c ∈ Z3, oc ∈ {0, 1}, zc ∈
RK}, where K is the dimension of the latent feature. The
local implicit latent features zc are in the latent space of a
pre-trained auto-encoder, as in [47]. The encoder gξ encodes
coordinate-distance input pairs to x and the decoder fω(x)
decodes any point in R3 into an unsigned distance to surface.
We additionally double the voxel resolution (i.e., 10cm3)
from our low resolution completion (20cm3 voxels). While
one could theoretically obtain continuous surface even with
implicit latent vectors in low-resolution voxels, we observe
improved shape fidelity when using finer resolution voxels.

As in GCA, a state xt+1 is sampled at each transition step
xt+1 ∼ pϕ(x

t+1|xt, x0), where x0 is the initial state. We
set coordinates in the sparse tensor x0 to be the union of
the input LiDAR scans and our low resolution completion
sT1 , all provided in a finer voxel resolution. For cells c that
belong to the input point cloud, we set their latent feature zc
using the pretrained encoder gξ. We set the initial features
zc to zeros for cells c in x0 that come solely from sT1 . After
recursively sampling T2 steps from pϕ, the final state xT2 is
decoded into a distance function using the pretrained decoder
fω , yielding an output mesh. Further details regarding cGCA
are in [47].

Training. The training for upsampling is similar to that of
GCA, derived for a continuous case. Specifically, the training
operates in the augmented state x, mapped using the encoder
gξ from coordinate-distance pairs. For the initial state x0, we
use the ground truth low-resolution voxels sgt instead of the
generated output from the first stage sT1 . This enforces the
upsampler to solely learn to upsample, and the two stages
are trained independently and therefore efficiently. If we use
the outputs sT1 , the stochasticity may lead to inconsistent
supervision and training instability. We refer the readers to
the Appendix for further details.

4. Experiments

We evaluate hGCA on street scene generation given Li-
DAR scans captured from AVs. We assume registered
sequential scans i.e. relative poses between captures are
known. We train and evaluate on synthetic street scenes from
CARLA [13] and Turbosquid 2 against state-of-the-art meth-
ods in Sec. 4.1 for scene extrapolation quality, using ground
truth geometry. We use synthetic LiDAR scans to train,
matching the LiDAR scan pattern from Waymo-Open [34].
In Sec. 4.2, we test generalization abilities of hGCA on real
LiDAR scans from Waymo-Open [34] and on novel objects,
unseen in training. Lastly, in Sec. 4.3, we investigate the
planner module. We provide further analysis in Appendix.

Datasets. 1) Karton City is a synthetic city comprised

2Clickable link to asset on turbosquid.com

of 20 city blocks, obtained from the Turbosquid 3D asset
marketplace2. We split 20 blocks into train/val/test splits and
re-combine 4 blocks in each split randomly per scene. We
simulate parked cars by placing car assets from ShapeNet [6].
2) CARLA [13] is an open source driving simulator with di-
verse environments. We use 5/1/1 towns as train/val/test split
with randomly placed static vehicles. We simulate random
ego-vehicle trajectories on synthetic data for training and
evaluation, detailed in the Appendix. 3) Waymo-open [34]
is a real-world AV dataset with registered LiDAR scans,
used here to demonstrate sim-to-real generalization qualita-
tively. We discuss issues with quantitatively evaluating 3D
generative models on real data in Sec. 4.2 and the Appendix.

Evaluation Metrics. We evaluate our generated scenes
using three metrics to capture various aspects of scene ex-
trapolation. 1) High LiDAR ReSim evaluates geometry
fidelity, focusing on regions visible from the street. It mea-
sures the chamfer distance (CD) between two LiDAR scans
from poses distant from the center, one from the ground truth
(GT) mesh, and the other from the completed scene. For this
metric, we add high elevation angles to the LiDAR sensor
to evaluate generation beyond maximum input height. The
metric (deliberately) avoids evaluating on inconsistent geom-
etry in interior walls of buildings in GT, which are invisible
to LiDAR from the street (green boxes in Fig. 5). Following
evaluation in semantic scene completion [2], we compute
2) IoU at 20cm3 voxel resolution, for all voxels visible to
the high elevation LiDAR (to measure beyond input height)
from all novel sampled poses on the ego-vehicle trajectory,
also used in LiDAR ReSim. In contrast to the point-wise
High LiDAR ReSim metric, IoU evaluates rough occupancy
of large scene context, independently of the 3D representa-
tion used in generated geometry. Additionally, we propose
3) Street CD to include evaluation on geometry completely
occluded from the ego-trajectory, such as the sidewalk side
of parked cars. On Karton City dataset, where the scene is
a simple crossroad junction, we compute Chamfer distance
between the generated geometry against GT, only on the ob-
jects on the main street. Due to the simplicity and abundance
of flat ground in Karton City, we remove it from evaluation
by simple height thresholding. For generative models, we
generate k = 3 generations and measure minimum and av-
erage metrics to account for stochasticity, and also measure
Total Mutual Difference (TMD) [39] to capture generation
diversity.

Baselines. We compare hGCA with state-of-the-art AV
semantic scene completion methods (JS3CNet [42], SCP-
Net [40]), indoor scene completion methods (SG-NN [11],
ConvOcc [33]), and generative models based on GCA
(GCA [46], cGCA [47]), training all models from scratch.
We adapt semantic scene completion methods to our setting
by changing the semantic class output to binary occupancy.
We refer to Appendix for more details on datasets, evaluation
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5 scans 10 scans

CARLA Karton City CARLA Karton City

Method
Represe
-ntation

High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD
min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

ConvOcc implicit 15.52 - 13.40 10.35 - 25.64 17.13 - 14.62 - 13.74 9.25 - 26.54 15.13 -
SCPNet 20cm3 5.77 - 49.82 4.82 - 68.53 3.64 - 5.47 - 52.49 4.28 - 72.48 3.14 -

JS3CNet 20cm3 6.58 - 51.02 5.28 - 63.76 3.92 - 6.29 - 53.39 5.02 - 65.68 3.26 -
10cm3 6.64 - 43.46 3.86 - 70.28 2.30 - 4.99 - 46.76 3.46 - 73.11 1.92 -

SG-NN 10cm3 5.06 - 50.76 4.06 - 70.18 2.61 - 4.53 - 54.29 3.42 - 73.58 2.04 -

GCA 20cm3 5.58 5.83 1.45 50.91 3.95 4.03 0.61 74.95 2.87 3.34 1.16 5.30 5.54 1.36 54.40 3.79 3.85 0.45 78.04 2.52 2.73 0.77
10cm3 5.66 6.17 2.25 44.26 3.93 4.10 1.16 68.23 3.38 4.16 2.28 5.13 5.52 1.96 48.26 3.28 3.40 0.83 72.38 2.58 3.11 1.45

cGCA implicit 7.04 7.59 3.19 35.43 4.29 4.42 1.23 59.79 2.49 3.36 2.00 6.84 7.43 2.97 36.17 4.00 4.09 0.91 63.56 1.65 2.02 0.92

hGCA 10cm3 4.60 4.72 0.80 53.84 3.20 3.25 0.51 75.97 2.09 2.27 0.64 4.38 4.48 0.78 56.85 2.97 3.01 0.41 79.63 1.79 1.89 0.54
implicit 4.53 4.65 0.92 52.17 3.20 3.25 0.56 70.45 1.85 2.02 0.51 4.30 4.40 0.88 54.68 2.95 2.99 0.45 73.38 1.55 1.65 0.42

input 6.33 - 34.43 6.83 - 38.32 5.63 - 5.46 - 40.42 5.45 - 47.71 4.99 -

Table 1. Quantitative results on CARLA and Karton City with 5 and 10 scans given as input. All results except IoU are multiplied by 10 in
meter scale. LiDAR Resim and Street CD evaluates the fidelity of completion and TMD measures the diversity of generation. High LiDAR
Resim uses high elevation LiDAR to evaluate the extrapolation. IoU is computed with ground truth geometry.

metrics and baselies.
Implementation details. For our coarse stage, we use

20cm3 voxel size, T1 = 30 transition steps with radius r = 1.
In the upsampling model, we use 10cm3 size, T2 = 15
transition steps with radius r = 2. We set BEV loss weight
β = 0.1 for all experiments, with planner parameters hr =
hmax/3, wr = wmax/3, zr = 4 unless stated otherwise. We
train and infer (unless specified) on scenes in a volume of
38.4 × 38.4 × 8 meters with height ranging from [−1, 7]
meters in a ego vehicle frame, randomly selected from one
of the poses the input scans. At 20cm3 voxel resolution, this
corresponds to hmax = 192, wmax = 192 and zmax = 40.
All experiments were performed on a single 24GB RTX 3090
GPU. We obtain and reuse the pre-trained latent autoencoder
gξ and fω for local-implicits used in cGCA [47], trained on
indoor scenes from 3DFront [14], which generalizes well
to our data. We simulate synthetic LiDAR with simple ray-
casting and add noise to LiDAR scan coordinates and relative
poses, which improves sim-to-real generalization. We report
results without LiDAR noise in the Appendix.

4.1. Synthetic Scene Completion

Scene extrapolation results on synthetic scenes are reported
in Tab. 1. We accumulate 5 or 10 LiDAR scans from random
poses as input. We train all models on combined CARLA
and Karton City data for added diversity, but evaluate sep-
arately. Output representation for baselines are voxels or
continuous surfaces when available. hGCA outperforms all
baselines by a margin in reconstruction metrics while gener-
ating diverse outputs. For hGCA, we report scores of 10cm3

voxel occupancy and implicit representation, both obtained
after upsampling. We notice that IoUs are slightly higher
with our 10cm3 voxels, resulting from our unsigned distance
fields sometimes not generating clear zero-level iso-surfaces,
creating thick meshes for thin structures after thresholding,
similar to [47]. We find that the planner trades off diver-
sity for quality and global consistency, discussed further in
Sec. 4.3. We show qualitative results in Fig. 5, and many
more in the Appendix. Deterministic completion models
(ConvOcc [33], SCPNet [40], JS3CNet [42], SG-NN [11])
tend to conservatively generate geometry beyond the input,
such as bus stops or cars in Fig. 5. These approaches lack
multi-modality and we hypothesize that it limits generation

to high-confidence geometry near sparse inputs by tending
to model a mean distribution. In contrast, hGCA generates
well completed geometry with high fidelity.

4.2. Generalization across Domains

Generalization to real LiDAR scans. We find that hGCA
generalizes well from sim-to-real, successfully completing
cars and trees from Waymo-open LiDAR scans, using 5 accu-
mulated scans as input, visualized in Fig. 6, Fig. 7, and more
in the Appendix. Fig. 7 shows that deterministic baselines
again exhibit conservative behavior, whereas naive-GCA suf-
fers from inconsistency, in one case generating a tree from
a house. Both GCA and hGCA complete occluded cars in
the parking lot or even inside of a garage (Fig. 7), where
the latter has never been seen in the synthetic training data.
We hypothesize that this generalization stems from the local-
ity of GCA and the two-stage approach where the coarser
GCA is more robust to real-world noise. Overall, hGCA
can generate convincing completions, exhibiting geometric
quality inferior, yet closer, to the synthetic data it was trained
on compared to baselines, taking a step towards simulation-
ready environment creation using AV LiDAR as a content
scanner. Evaluating a 3D generative model on real AV data
is challenging. The best source of ground truth geometry
available to us is using all accumulated scans as in seman-
tic scene completion, also shown in Fig. 7, which is highly
incomplete and has limited height range. For example, in
the left of Fig. 7, hGCA generates more complete geometry,
but is worser on LiDAR Resim or IoU scores compared to
baselines (SCPNet: 3.94/63.93, SG-NN: 2.97/58.67, hGCA:
3.58/63.46), using held-out real scans in the scene for Li-
DAR ReSim and IoU against accumulated scans. We discuss
difficulties of evaluation on real-world datasets further in the
Appendix.

Out-of-distribution inputs. A fair concern with training
on synthetic content is the limited diversity of assets the gen-
erative model is trained on, which could be reflected in the
outputs. We show anecdotal evidence of novel asset comple-
tion in Fig. 8. On the right, we show geometry completion
from sythetic LiDAR of a three-wheeler vehicle asset taken
from Objaverse-XL [12]3. We verify that no three-wheelers
exist in our training data. hGCA generates a convincing

3Clickable link to asset on sketchfab.com
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Figure 5. Visualizations on CARLA (first 2 columns) and Karton City (last 2 columns) from 5 scans. hGCA generates high-resoluton
geometry beyond field of view (bus stops, trees, roofs) and occlusions (cars) compared to existing baselines. Deterministic baselines tend to
conservatively complete high-confidence regions near the input. Green boxes demonstrate inconsistency of building interiors in GT data.

Figure 6. Completion given accumulation of 5 LiDAR scans (yellow spheres) on real-world Waymo-open dataset. hGCA can extrapolate
beyond input field of view (walls) and occlusion (cars). Walls in pink boxes are cut off for ease of visualization.
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Figure 7. Visualizations on real-world Waymo-open dataset. hGCA
exhibits great sim-to-real performance compared to existing method
with high fidelity (pink box) and can generate more complete shapes
than accumulated scans (green box).

Figure 8. (a), (b): Completion on LiDAR scan from Waymo-open.
(c), (d): Completion on synthetic LiDAR of a three-wheeler asset
from sketchfab 3 hGCA can realistically complete from tree trunks
or three-wheeler cars unseen in training, taking geometric cues
from the input (yellow spheres).

three-wheeler, respecting the input, better than determin-
istic baselines, which we visualize in Appendix. We also
show how hGCA can complete this asset with some lower
density input scans in Appendix. The left of Fig. 8, shows
LiDAR scans from Waymo-open of complex, unique tree
trunks. hGCA, trained only on single trunk trees, is able to
generate realistic trees that preserve the observed structure.
These results require further rigorous validation, but show
promise towards environment creation with diverse assets
from geometric cues taken from real LiDAR scans.

CARLA Karton City

Voxel
Size zr

LiDAR ReSim IoU LiDAR ReSim IoUmin. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

20cm3

✗ 5.58 5.83 1.45 50.91 3.95 4.03 0.61 74.95

27 5.44 5.57 0.94 49.37 3.92 3.97 0.41 76.34
16 5.37 5.54 0.91 51.67 3.96 4.00 0.41 76.2
4 5.28 5.40 0.77 53.81 3.97 4.03 0.44 75.86
2 5.32 5.46 0.86 52.49 3.99 4.05 0.47 75.49

10cm3 ✗ 5.66 6.17 2.25 44.26 3.93 4.10 1.16 68.23

4 4.58 4.74 0.93 51.40 3.44 3.52 0.67 72.12

Table 2. Ablation study on effects of Planner from 5 input scans. ✗

in zr refers to vanilla GCA without Planner module.

4.3. Ablation Studies on Planner

The planner module aims to induce global consistency in
hGCA. Table 2 shows quantatively that it trades of diversity
for completion performance compared to vanilla GCA We
test different resolutions of planner occupancy prediction
in height, indicated by zr. We found that zr = 4 is a good
balance between providing global context without hurting
generation performance on CARLA, which has a more di-
verse validation set. We can infer that predicting occupancy
in finer vertical resolution (large zr) may be beyond the
capacity of our simple planner module and hinders joint op-
timization of the local GCA loss with the global planner loss.
We observed that the planner does not boost the performance
of the upsampling module, indicating that local upsampling
does not benefit from coarse global context.

5. Conclusion
We proposed hierarchical Generative Cellular Automata
(hGCA), a spatially scalable generative model that gener-
ates 3D scenes beyond occlusions and input field of view
from several LiDAR scans. Our model generates scenes in
a two-stage hierarchical coarse-to-fine manner, where the
first stage generates coarse geometry by providing global
consistency to GCA with a light-weight planner module.
The second stage synthesizes finer details by applying cGCA
conditioned on the coarse geometry. On synthetic scenes,
hGCA generates plausible scenes with higher fidelity and
completness compared to prior state-of-the-art works. hGCA
demonstrates strong sim-to-real generalization, capable of
extrapolating LiDAR scans on real-world Waymo dataset.
While hGCA takes a step towards content creation from Li-
DAR scans, several desiderata remain. Improving fidelity of
geometry and generating textures, materials etc. is needed
for usability of the completed geometry. For example, in
Fig. 7 right column, hGCA generates inconsistent roofs. The
current generative process of hGCA is slow, disabling use of
the model in real-time, which we leave to future work.
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