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Abstract

Foundation models encompass an extensive knowledge
base and offer remarkable transferability. However, this
knowledge becomes outdated or insufficient over time. The
challenge lies in continuously updating foundation models to
accommodate novel information while retaining their origi-
nal capabilities. Leveraging the fact that foundation models
have initial knowledge on various tasks and domains, we pro-
pose a novel approach that, instead of updating all parame-
ters equally, localizes the updates to a sparse set of parame-
ters relevant to the task being learned. We strike a balance
between efficiency and new task performance, while main-
taining the transferability and generalizability of foundation
models. We extensively evaluate our method on foundational
vision-language models with a diverse spectrum of continual
learning tasks. Our method achieves improvements on the
accuracy of the newly learned tasks up to 7% while preserv-
ing the pretraining knowledge with a negligible decrease of
0.9% on a representative control set accuracy. Code is avail-
able here: https://github.com/wx-zhang/spu

1. Introduction
Recent machine learning models trained on a broad dataset
have shown remarkable success in both natural language pro-
cessing tasks [46] and computer vision tasks [1, 48]. These
models can directly solve a wide range of tasks, such as rec-
ognizing common objects and answering common questions,
thus are dubbed as foundation models [7]. What is captured
by these models covering various domains and tasks can
be referred to as generic knowledge. Despite this, foun-
dation models could still perform poorly on specific tasks.
For instance, Xiang et al. [63] found ChatGPT limited in
embodied tasks, while CLIP [48] is shown struggling in rec-
ognizing fine-grained classes like cars from different brands.
Therefore, it is crucial to integrate newly revealed data with
pre-trained foundation models and expand their knowledge
base. As one common solution, finetuning foundation mod-
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Figure 1. We propose SPU algorithm. We first localize our update
to the first layer of MLP blocks, and then select a sparse set of
parameters specialized to the new task to update.

els on new data would usually result in a good performance
on the new task if done carefully. This will turn the foun-
dation model into a specific model for a specific task, and
would risk losing the existing capabilities of the model or the
generic knowledge it has acquired through long phases of
pre-training. The effect of deteriorating the model’s previous
knowledge upon new learning is a typical phenomenon of
neural networks, referred to as catastrophic forgetting [41].

Continual learning research has been exploring the prob-
lem of accumulating knowledge without forgetting [47] over
the past years and has provided valuable techniques. How-
ever, most existing works consider this process starting from
a randomly initialized model [17, 18]. Recently, with the suc-
cess of large pre-trained models [53, 61], many works have
considered continual learning starting from a pre-trained
model [59, 60]. Nevertheless, the emphasis lies mostly on
the learning and forgetting behavior of the newly acquired
knowledge, in the upcoming task sequence, often side-lining
the pre-trained knowledge. Generic knowledge embedded
in large models provides bases for strong performance in
various domains and quick transfer to different tasks; when
continuously finetuning a large pre-trained model on newly
received tasks with no regard to preserving its pre-existing
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knowledge, we are losing the pre-training benefits and being
left with merely a large model to deal with.

These prompt a crucial question: Can we effectively
and continuously update foundation models while retain-
ing their generic knowledge? An example is accommodating
a generic multi-modal model like CLIP [48] to specific fine-
grained concepts as various types of vehicles while main-
taining its generic recognition capabilities of common world
concepts such as people, animals, and plants.

Towards this goal, we seek to update foundation vision-
language models from a continual learning perspective while
preserving their previously acquired generic knowledge.
Starting from a large model pre-trained on vast sources of
data, it is reasonable to assume that the model has some
kind of basic or related knowledge on the new upcoming
data. Thus, we hypothesize that there is an implicit modular-
ity in the foundation model and design a method to locate
which parameters are most relevant to the new upcoming
data. Formally, we first identify specific model layers to be
updated based on model analysis works [14, 19]. Among
the localized layers, we propose a mechanism to select pa-
rameters that are specialized for the task at hand. We opt
for selecting parameters that small changes to their values
would contribute to a greater improvement in the new task
performance compared to other parameters. By doing so,
we localize and update only a small number of the selected
parameters, while keeping a large portion of the model’s
parameters untouched. In this way, we not only provide an
efficient method to finetune a large pre-trained model on
newly arriving data but also preserve greatly the generaliz-
ability and transferability of the model. Our strategy is to be
executed whenever new data corresponding to a new set of
classes, a new task or domain, is received.

To facilitate a comprehensive analysis of the generic
knowledge deterioration, we focus on the classification tasks
and formulate the knowledge base as the zero-shot classi-
fication ability on a diverse control set containing a wide
range of classes. Our main objective is to demonstrate an im-
provement of a pre-trained model’s performance on datasets
where it initially exhibits suboptimal results, while preserv-
ing its original ability on a control set, without revisiting
it. We evaluate our method on six continual learning tasks
and find that by updating merely 3% of the parameters, our
approach achieves performance on the new tasks superior
to that achieved by methods that fully finetune the model,
with almost no deterioration on the generic knowledge, only
0.97% performance loss on the control set. We further con-
duct comprehensive analyses to assess the impact of each
component on generic knowledge forgetting.

Our contribution can be concluded as 1) We introduce
the evaluation of generic knowledge forgetting in continual
learning, starting from foundation models. 2) To ensure
the preservation of pre-trained knowledge, we propose an

efficient method that localizes the learnable parameters, se-
lects specialized parameters for the new coming data, and
performs sparse updates. 3) Through comprehensive eval-
uations on six datasets, we demonstrate that our algorithm
significantly expands the pre-trained knowledge on new tasks
while still preserving the generic knowledge. Additionally,
we conduct in-depth analyses to understand the impact of
each component on generic knowledge forgetting.

2. Related Work
Foundation Models. pre-training techniques have played a
crucial role in establishing the so-called foundation models,
such as CLIP [48], Flamingo [1], BLIP-2 [33], PaLM-E [16],
and GPT-4 [46]. These models are pre-trained on vast and
diverse datasets, providing them with a broad knowledge
base and exceptional generalization and transferability. Con-
sequently, many of these models can be directly applied to
various tasks in a zero-shot manner. Despite their strong
abilities, evaluating these foundation models remains chal-
lenging [64], given that their strengths lie predominantly in a
diverse domain of generalization. While CLIP [48], an early
vision-language model pre-trained on a large dataset of 400
million images and text samples, namely WebImageText, is
an exception that exhibits impressive performance mainly
on zero-shot classification tasks. This straightforward evalu-
ation format allows us to thoroughly explore the changes in
the model’s knowledge base when implementing updates or
modifications. By studying the impact of these changes on
CLIP, we aim to gain a more in-depth understanding of the
potential of updating the foundation models.

Continual Learning. In the realm of continual learning,
early methods [10, 11, 18, 29] train models from scratch
for each specific sequence. Recent methods leverage the
power of pre-trained models to handle a new sequence of
tasks. Piggyback [40], as a pioneer, learns separate masks
over a frozen pre-trained model for different tasks in the
sequence. It requires storing the masks and access to task
identification to apply the mask during inference, which is a
limiting assumption. Another line of work introduces addi-
tional parameters to acquire new knowledge [51, 57, 59, 60].
Determining which set of newly added parameters to use
during inference remains challenging. Additionally, the
performance of such works is highly dependent on the ca-
pacity and flexibility of the added parameters, where some
works only get a marginal improvement over the pre-trained
model [26]. Our work focuses on modifying the pre-trained
models themselves, and shares some similarities with weight
regularization methods [2, 29] where an importance or rel-
evance score is estimated for the model’s parameters. A
clear distinction is that the parameter importance score is
estimated after learning a given task and used to prevent
changing those important parameters. Differently, our ap-
proach estimates the parameter’s relevance score for a new
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task before starting the learning process. Our selection is
to identify which parameters to update. Finally, the major-
ity of these approaches focus on defying forgetting in the
learned sequence, with no consideration for the forgetting of
pre-trained knowledge. Further, they do not scale to preserv-
ing pre-trained knowledge, as they either require access to
the pre-training dataset [2, 11, 29] or a duplicate storage of
the pre-trained model [4, 34]. In contrast, we consider the
accumulation of knowledge, including the pre-trained and
newly acquired knowledge, without any task identification
and extra storage of model weights.

Finetuning with Knowledge Preservation. It is usually
observed that when finetuning foundation models on new
tasks, the generic knowledge and transferability are severely
deteriorated. Recently, some works [12, 25, 28, 42, 63, 66]
started to tackle the issue of updating large pre-trained mod-
els while preserving their transferability and the generaliz-
ability. Among them, Ilharco et al. [25], Meng et al. [42]
proposes model editing algorithms, where the models are
first analyzed to pick specific layers to edit, and then algebra-
based or meta-learning based methods are applied to the
weight of the local layer. Usually, a local set is utilized to
preserve the background knowledge. While these methods
have shown promise in incorporating specific concepts into
the model, their impact on the generic knowledge remains
uncertain, as discussed by Onoe et al. [45]. Additionally,
most of these techniques are designed for specific models
for small-scale sample-wise edit of concrete mistakes and
updates. Moreover, they are centered around language mod-
els, where the input data has a stronger relationship to the
concept being edited, leaving the vision models, where the
input images can contain various of unrelated visual con-
cepts, relatively unexplored. In contrast, we are interested in
allowing continuous model updates on a set of new coming
data samples, which can be scaled up to a larger number of
concepts and a longer never-ending sequence.

Additionally, Xiang et al. [63] proposed to finetune lan-
guage models for embodied tasks while maintaining their
generalization ability to handle unseen embodied tasks. They
suggested fine-tuning language models with LoRa [24], i.e.,
low rank updates, to ensure compute efficiency, while apply-
ing EWC regularization [29] to reduce forgetting of the pre-
trained knowledge. On the multi-modal models end, Zheng
et al. [66] considered to prevent zero-shot transfer degrada-
tion in the continual learning of CLIP by performing distilla-
tion on the pre-trained model weights. However, it requires
access to a massive dataset to represent the pre-training distri-
bution, which is not a trivial assumption and far from being
computationally efficient. In this work, we aim to update
foundation models, such as CLIP, continually to recognize
additional concepts and preserve their transferability, while
striving for efficiency.

3. Continual Learning From Pretrained Models
In Class Incremental Learning (CIL), we are given a dataset
Dt

train = {xk, yk}Nt
k=1 ⇠ Dt sampled from a task-specific

distribution Dt for each task t 2 {1, . . . , T} sequen-
tially, where Xt

train = {xk}Nt
k=1 is a set of images and

Y t
train = {yk}Nt

k=1 is the set of the corresponding labels with
yk 2 Y t

train. Here Y t
train is the label space of task t. Note

that while we focus on image-based data, our method can be
extended to any modality. We are given a model parameter-
ized by ✓ pre-trained on a vast pre-training dataset Dp ⇠ Dp

sampled from the pre-training distribution, which is inac-
cessible during the CIL procedure. During the learning of
each task, the model parameters ✓ are to be optimized to
minimize a loss function L on the current training set Dt

train.
The loss function depends on the task at hand and the model
deployed. For CLIP model [48] and image text pairs data,
we deploy the same contrastive loss used for CLIP pretrain-
ing. After the learning of each task, we evaluate our model
on both the validation set of the seen distributions of the CIL
sequence D1:t

test, where Dt
test ⇠ Dt, and a small control set

Dcontrol ⇠ Dp sampled from the pre-training distribution.

4. Selective Parameter Update (SPU)
Most existing continual learning methods that start from
randomly initialized models optimize all parameters equally,
as such a starting point has no knowledge of the task being
learned. However, foundation models often have a reason-
able initial performance on novel tasks, indicating some pre-
existing knowledge relevant to these tasks. With the strive for
efficiency and the preservation of the generic knowledge, we
suggest identifying a small set of parameters corresponding
to tasks in hand and only updating them instead of modifying
all the pre-trained model parameters. We now introduce how
to localize the update to specific layers and how to identify a
sparse set of specialized parameters to be optimized.

Localization. The objective of our work is to accumu-
late new knowledge without catastrophically forgetting the
generic knowledge. To achieve this, we introduce a method
that performs local changes restricted to specific layers in the
pre-trained transformer backbones. As shown in Fig. 1, each
layer of a transformer model is a transformer block, and a
transformer block contains a multi-head attention block and
a two-layer MLP block.

Meng et al. [42] adopted casual tracking, widely adopted
by later wroks [22, 42–44], to analyze the contribution of
attention layers and MLP layers to the output prediction. It
performs comparisons by computing the average effects of
restoring activation values at these locations over a corrupted
input. More details of the causal tracking can be found in
Appendix A. We follow the casual tracking analysis and
show, in Fig. 2, that the changes on the first MLP layer, that
we localize the update to, have a larger effect on the model
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Figure 2. Casual tracking results of visual and text tower of CLIP.
Changing MLP layers has a higher effect on the CLIP prediction
results than changing Attention layers.

predictions than changes in attention layers.
Geva et al. [19] further shows that MLP blocks emulate

key-value neural memories, where the first layer of MLP acts
as memory keys, operating as pattern detectors. Each indi-
vidual key corresponds to a specific pattern seen in the input
data. Whereas, the second layer learns the distribution over
the detected patterns. Our work aims to add, update, or re-
fine current knowledge embedded in the model, and with the
analogy to the key-value memories, we opt for refining the
keys (corresponding to pattern detectors) to accommodate
the new information. Empirically, we investigated whether
we need to change the patterns’ distributions represented
by the second MLP layer and attention layer as well, and it
turned out that updating the first layer is sufficient and more
effective, as we shall show in the Sec. 5.3.

With the above in mind, we localize the model updates to
the first layer of the MLP in each transformer block. With
such localization, our candidate parameters to change can be
reduced to only around one third of the total parameters.

Parameter Selection. Pre-trained foundational models
have inherent knowledge, as evidenced by their capacity
to execute diverse tasks without fine-tuning. Moreover, re-
cent investigations [6, 19, 20] have unveiled the correlation
between the concepts and specific neurons’ output in founda-
tion language models. Therefore, we hypothesize that there
exists modularity and specialization among specific neurons
and their corresponding parameters in foundation models.
Updating the most related neurons while keeping other neu-
rons unchanged will not only facilitate the learning of new
tasks but prevent the inference between different concepts in
the new task sequence and between newly learned concepts
and ones learned from pre-training.

Upon these, we propose to identify which parameters in

the first MLP layer are specialized on the task at hand before
training. As shown in Fig. 1, the selection is associated with
a scoring function and we later minimize the new task loss
by only updating those selected parameters.

Formally, we receive the current task dataset Dt represent-
ing a task t in a continual learning sequence and localize the
updates to the first MLP layer ✓l for each transformer block,
where l denotes the localized first layer indexed over trans-
former blocks. We aim to define an element-wise scoring
function S(✓li,j , Dt), for each parameter in a localized layer
✓li,j ; i, j refers to the parameter connecting an input element
i (the i-th output entry of the attention layer) to the neuron
j in the first MLP layer. We propose to select a subset of
parameters ✓lU ✓ ✓l that has the largest scores {S(✓li,j , Dt)},

subject to |✓l
U |

|✓l| = r, where | · | is the parameter size and r
is the selection rate. This set is then expected to combine
the most relevant parameters to the current task, represented
by the dataset Dt. We select parameters regardless of their
corresponding neurons and ablate the effect of selecting the
entire parameters of identified neurons in Appendix F. For
clarity, the presentation of the method is focused on ✓l, and
it can be generalized to a plural of selected layers covering
all transformer blocks.

The idea of updating a sparse set of parameters is also
adopted in related fields. We further comment on the rela-
tions and differences of these works in Appendix D.

Gradient-Based Scoring Function. We aim to iden-
tify which parameters are more relevant to the new task at
hand by this scoring function. We formulate this as find-
ing parameters where small changes to their values could
lead to a greater improvement in the task performance, with
the loss function as a proxy. When achieving this, we only
make small changes to the model and thus can preserve
the generic knowledge while improving the new task per-
formance. Specifically, we can approximate the change in
the loss function L upon small changes � in the parameters’
values with

L(✓l + �;xk)�L(✓l;xk) ⇡
X

i,j

gij(xk)�ij =
@(L(✓l;xk))

@✓lij
�ij ,

(1)
where gij(xk) is the gradient of the loss function regarding
the parameter ✓lij evaluated at the data point xk 2 Dt, and
�ij is the local change in parameter space. The above first-
order approximation suggests that a fixed small changes
made to parameters with the larger gradient magnitude k
gij k in the opposite direction of the gradient would incur
a larger reduction in the loss function, and hence greater
improvements with minor changes.

Following this, we define our scoring function as:

S(✓lij , Dt) = k 1
N 0

t

N0
tX

k=1

gij(xk)k, (2)
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where N 0
t is the number of samples we use to compute the

gradient. N 0
t can be much smaller than the total number of

samples in the dataset, Nt, as shown in the Appendix F.
Sparse update. Upon selecting the relevant parameters

✓U = {✓lU}, we freeze all other model parameters and learn
the current dataset Dt by only optimizing ✓U .

Following the current practice in class incremental learn-
ing methods, [4, 18, 60] we deploy a replay buffer to reduce
the forgetting across the new tasks sequence. We keep a
replay buffer M of a fixed size, and sample batches from it
of the same size as the batch from the current dataset at each
optimization step. We update the replay buffer at the end of
learning of each task by experience replay [11].

Our final objective function at task t can be written as

min
✓U

L(✓;Dt
train) + L(✓;M) (3)

where L(✓;D) is the loss computed on the set D.
Algorithm applicability. Our algorithm involves three

key steps: localizing update layers, selecting relevant param-
eters, and training on the new task with sparse updates. It
is important to note that while we primarily delve into the
localization within the transformer architecture, the concept
of selectively updating certain layers while keeping others
frozen to achieve efficiency and comparable performance is
not confined to this architecture alone. [8, 49]. Should the
need arises to extend our approach to different architectures,
the first step of our methodology can be readily adapted. Fur-
thermore, the processes of parameter selection and sparse
updates remain architecture-agnostic, making them versatile
across various model structures.

5. Experiments
We evaluate our proposed framework on various datasets
compared to different methods and baselines in Sec. 5.2, and
analyze different components of our method and ablate our
design choices in Sec. 5.3. We provide further ablations on
defying generic knowledge loss in the Appendix F.

5.1. Setup
Backbone. We apply SPU to vision-language classifica-
tion tasks, given the relatively robust measurement of the
knowledge base in such tasks. We choose the pre-trained
CLIP-ViT/B-16 [48] as our backbone.
Datasets. We evaluate the performance of our algorithms
on a total of six datasets— four fine-grained datasets (Bird-
snap [5], CUB-200-2011 [55], FGVC-Aircraft [39], Stanford
Cars [31]), one coarse dataset (CIFAR100 [32]), and one
out-of-distribution dataset (GTSRB [52]). These datasets
are chosen primarily based on their initially low zero-shot
performance with CLIP pre-trained models. To form the
continual learning sequences, we split each dataset into 10

subsets with disjoint classes composing 10 tasks. For meth-
ods that leverage a replay buffer, we use a buffer size of
around 4% of the dataset size. Ablation study of buffer size
is shown in Sec. 5.3. For more comprehensive information,
please refer to the Appendix E.
Baselines. We conduct a comprehensive comparison of
our method against various baselines. Firstly, we evaluate
our approach against the best fine-tuning method of CLIP,
FLYP [21]. We further integrate with FLYP classical contin-
ual learning components to evaluate their performance on the
CLIP backbone, including ER [11], weight regularization
method, MAS [2], and functional regularization methods
LwF [34] and PRD [4]. We combine these functional regu-
larization methods with a replay buffer. We further consider
the latest pre-trained model based continual learning tech-
niques. L2P [60], DualPrompt [59], and SLCA [65]. Finally,
we compare to two recent methods that target knowledge
retention of foundation models. ZSCL [66] designed for
CLIP [48] and LoRA-EWC [63] which combines LoRA [24]
and EWC [29] to finetune an LLM, here we adapt it to CLIP.
Results, evaluation with ImageNet pretrained backbones of
these methods, and discussion are in the Supplement.
Evaluation Metrics. We measure the Acc. at the end of
the class-incremental process, as well as the forgetting rate
following prior arts [10, 11]. Additionally, we aim to un-
derstand how the knowledge base shifts as we continually
update the pre-trained models. To achieve this, and simi-
lar to [25], we evaluate a continually trained model M on
a diverse dataset representing generic knowledge, i.e., the
validation set of ImageNet [15], which acts as a control set
(C.). We report the zero-shot classification accuracy on (C.),
and compare it with that from the frozen pre-trained models.

To provide a comprehensive view of model performance
across all ND datasets {Di}ND

i=1, we denoted the model pa-
rameters trained after Di as Mi, and frozen model perfor-
mance on Di as Mfi . We present the increment of Average
Accuracy (Acc. In.) across these datasets as

Acc. In.(M) =
1

ND

NDX

i=1

Acc.(Mi)� Acc.(Mfi ), (4)

the average forgetting rate (Avg. F.)

Avg. F(M) =
1

ND

NDX

i=1

F. (Mi), (5)

and the average drop of control set accuracy (C. Drop).

C. Drop(M) =
1

ND

NDX

i=1

C.(Mf)� C.(Mi), (6)

Implementation Details. We follow [21] to both perform
selection and sparse update on the visual tower and text
tower of the CLIP model, and use contrastive loss as our loss
function. Within our algorithm, we use a selection rate of
10%, which optimally balances learning and forgetting. We
perform an ablation study on the selection rate in Sec. 5.3.
More implementation details is in Appendix E.
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Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

Frozen [48] 24.45 - 63.55 43.20 - 63.55 64.63 - 63.55 68.25 - 63.55 55.13 - 63.55 43.38 - 63.55 0.0 - 0.0

FLYP [21] 18.63 39.93 41.04 44.06 23.43 51.06 51.64 25.65 52.25 46.26 37.78 26.53 45.74 26.62 44.30 21.76 55.48 1.59 -11.82 34.81 27.42
+ MAS [2] 33.69 27.50 61.09 47.42 17.12 60.05 69.43 9.18 61.17 63.88 21.16 49.35 61.72 12.05 57.35 42.04 25.38 42.06 3.19 18.73 8.37
+ ER [11] 41.42 31.48 50.41 56.22 21.63 56.72 69.08 16.42 58.07 82.86 3.41 42.10 64.07 17.72 51.30 96.28 -7.40 17.34 18.48 13.88 17.56
+ ER + LwF [34] 36.08 18.12 63.06 50.23 10.20 62.08 72.56 4.04 62.59 74.32 8.16 55.71 65.11 5.90 62.05 53.56 11.86 57.99 8.80 9.71 2.97
+ ER + PRD [4] 37.11 17.35 63.38 51.34 9.45 62.85 74.08 3.75 62.96 79.66 3.10 59.01 65.92 6.55 62.09 63.00 12.44 61.04 12.01 8.77 1.66

LoRA-EWC [63] 30.36 12.23 62.82 45.91 12.12 62.53 66.11 3.89 61.39 67.35 15.28 55.27 58.72 4.92 61.27 46.14 13.23 61.70 2.59 10.28 2.72
+ ER (r=8) 33.12 12.14 62.99 50.28 8.70 62.74 70.51 0.88 62.49 81.27 -0.70 59.90 62.36 2.99 62.80 89.87 -7.17 61.62 14.73 2.81 1.46
+ ER (r=96) 33.75 11.75 62.91 50.52 8.96 63.00 71.17 0.46 62.39 82.10 -1.59 59.91 62.31 2.81 62.72 90.01 -7.46 61.66 15.14 2.49 1.45

L2P [60] 32.20 21.73 43.43 24.37 36.17 44.63 67.04 11.22 42.53 67.71 18.81 39.61 64.04 6.82 45.51 75.45 2.68 34.05 5.29 16.24 21.92
DualPrompt [59] 26.61 17.20 56.31 36.34 30.23 46.43 63.30 18.67 55.76 61.72 19.87 42.37 64.38 12.94 55.63 69.65 8.43 40.37 3.83 17.89 14.07
SLCA [65] 29.40 11.45 63.49 43.18 9.28 63.33 62.65 4.42 63.29 70.03 0.19 60.23 53.87 7.75 63.31 46.01 0.83 62.76 1.02 5.65 0.81
ZSCL [66] 30.96 15.65 65.53 49.85 13.28 63.13 67.79 8.27 62.90 80.50 1.05 61.90 61.09 7.69 62.78 62.92 13.54 62.92 9.01 9.91 0.36
SparseCL [58] 31.95 19.77 63.31 45.11 16.78 61.50 71.57 5.38 62.82 69.35 15.23 57.39 62.50 9.66 62.43 48.99 24.91 61.03 5.07 15.29 2.14
SPG [30] 39.15 21.42 63.62 49.25 14.88 62.55 73.09 5.94 63.30 69.79 14.99 59.40 65.43 8.18 62.43 54.36 17.73 61.74 8.67 13.86 1.38

SPU - Ours 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94

Table 1. Average Accuracy (Acc.), Forgetting (F.), and control set Accuracy (C.) of our method SPU and baselines on 6 CIL sequences,
demonstrating our superior knowledge accumulation and preservation. We highlight parameter efficiency via parameters size and learnable
parameters rate, and data efficiency via data use.

5.2. Results

We present the comparison between our approach and other
methods in Tab. 1. In the subsequent sections, we delve
into our observations from the dual lenses of learning and
forgetting.

Comparison with other methods. We view accumulat-
ing novel knowledge as prioritized, at the same time also pay
attention to knowledge retention. Regrading the accuracy of
newly learned knowledge (Acc.), we achieve state-of-the-art
results in four out of six datasets, i.e., Aircraft, Cars, CI-
FAR100, and CUB, and comparable results in Birdsnap and
GTSRB, with a notable average margin of 2.86% over the
existing continual learning methods. We analyze how our
scoring function contribute to the achievement in Sec. 5.3.

Regarding the knowledge retention, our approach
achieves control set accuracy drop (C. Drop) of 0.94% which
is the least drop among methods with no external data access,
and is comparable to that of ZSCL, which requires access to
the additional Conceptual Caption [9] dataset for knowledge
retention. This brings efficiency concerns, which we will
elaborate later in Sec. 5.4. Meanwhile, ZSCL preserves the
generic knowledge at the expense of the new tasks increment
average accuracy which is 12% lower than ours.

The superior results in new task accuracy and control set
accuracy demonstrates that SPU can effectively extends the
knowledge base during continual learning.

Among the continual learning methods, FLYP+ER stands
as the only comparable contender in terms of average accu-
racy of new task. This mainly benefits from the balanced
loss terms on buffer data and current task data. However, it
exhibits a significant drawback in forgetting, averaging at
13.88% in the forgetting of the current dataset, and a notable
decrease of 17.56% in average control set accuracy.

Distillation-based methods like FLYP + ER + LwF/PRD
and ZSCL generally perform good at preserving the pre-

trained knowledge, all displaying control set accuracy drop
of less than 3%. However, their flexibility in learning the new
tasks, as indicated by their average accuracy, remains limited,
reflecting a discernible gap of over 8% when compared to
our method. While SLCA achieves the second best results
of 0.81% in preserving the pre-trained knowledge, it almost
cannot improve the new task when compared to SPU .

LoRA based methods exhibit extraordinary performance
in eliminating forgetting. In the forgetting of the new tasks,
LoRA-EWC combined with ER can achieve only 2.49% of
forgetting. LoRA-EWC has only 1% - 3% control set accu-
racy drop depending on the rank choice and buffer choice.
However, this is a larger drop than our marginal 0.94% drop
in control set accuracy. In spite of their knowledge retention
ability being slightly worse than ours, their average incre-
ment accuracy on new tasks is lower than ours, with at least
a margin of 6.2%.

Fine-grained Datasets. The diverse characteristics of
various datasets also lead to distinct behaviors. Across fine-
grained datasets like Aircraft, Cars, and CUB, we achieve
SOTA average accuracy, outperforming the baselines by
around 3%, while demonstrating minimal degradation in
control set accuracy of less than 1%.

Out of Distribution Dataset. We view GSTRB as out
of distribution for CLIP pretraining, as it is the only con-
sidered dataset where the zero shot performance of CLIP is
significantly lower than the performance of a linear classifier
trained on ResNet50 features [48]. Its extremely detailed
class descriptions (such as “blue circle with white forward
arrow mandatory”) make the deep semantic understanding
of images, such as the exact meaning of the signs, less im-
portant. In these experiments, GSTRB proves an outlier for
SOTA CIL methods with significantly low Acc., while our
method proves robust. FLYP+ER achieves an average accu-
racy of 96.28% in GTSRB, but at the expense of a 17.34%
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Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. C. H. Acc. C. H. Acc. F. C. Acc. In. Avg. F. D. Drop

Attention layers 41.34 14.68 64.02 55.22 11.73 62.53 76.35 3.61 63.73 84.00 -0.35 62.49 70.99 4.03 63.39 92.41 -8.23 63.20 20.21 4.24 0.32
First MLP layers 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
Second MLP layers 43.32 14.02 63.24 54.98 12.25 61.17 76.91 3.24 62.77 83.59 -0.42 59.57 70.00 5.40 62.19 93.32 -8.38 61.24 20.51 4.35 1.85
Both MLP layers 44.21 14.78 63.32 55.10 13.46 61.32 77.25 3.79 63.13 84.15 -0.31 60.47 71.23 5.42 62.34 94.18 -7.85 61.65 21.18 4.88 1.51

Table 2. Compared to various choice of selected layers, our choice (in gray background) achieves the best performance in new task accuracy
(Acc.) while has comparable results in control set accuracy (C.)

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. H. Acc. F. H. Acc. F. H. Acc. F. H. Acc. F. H. Acc. F. H. Acc. In. Avg. F. C. Drop

Random 38.34 11.19 63.83 54.74 8.92 63.64 74.62 2.91 63.64 83.84 -2.17 62.88 67.36 3.59 63.77 86.51 -6.06 63.30 17.73 3.06 0.04
SPU 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
piggyback [40] 43.68 14.86 63.66 53.81 13.97 61.91 76.58 3.94 63.45 83.93 -0.70 61.45 70.97 5.00 62.98 93.02 -7.83 62.30 20.49 4.87 0.92
Mask 43.95 14.80 63.58 54.23 13.10 62.23 76.92 3.56 63.43 84.30 -1.07 62.08 71.11 4.78 62.98 92.41 -7.33 62.63 20.65 4.64 0.73

Table 3. Compared to random selection, our superior performance (in gray background) implies the selected weights specialized to the task.
Compared to training-based scoring functions, our training-free function performs better in new task accuracy and control set accuracy.

control set accuracy, equating to around 60% accuracy loss,
indicating a large decay in the generic knowledge after learn-
ing such out of distribution datasets. In contrast, our pro-
posed method achieves competitive accuracy, concurrently
delivering small control set loss of around 1%, signifying
minimal loss of generic knowledge.

Coarse Dataset. In contrast, in the case of the coarser
CIFAR100 dataset, we still achieve an impressive SOTA
learning accuracy of 83.99%, albeit with a marginal trade-off
of approximately 2% in control set accuracy. Even with this
reduction, SPU stands out as significant compared to most
other continual learning techniques that experience losses
of generic knowledge ranging from 4% to 21%. This phe-
nomenon can be attributed to that CIFAR100 encapsulates a
degree of generic knowledge, possibly causing interference
in the information on control sets like ImageNet.

5.3. Ablation Study

In this section, we perform ablation studies on the individual
components comprising our algorithm to validate the ratio-
nale behind our design of these components. Refer to the
Appendix F for more details and full results.
Which layer to update? We compare localizing the update
to the first MLP layer parameters (our choice) to that of the
second MLP layers and both MLP layers together. We also
consider the choice of Attention layers. In the experiment
of Attention layers and second MLP layers, we updated
10% of parameters as what we do in our choice. In the
experiment of updating both MLP layers, we updated 5%
parameters of each layer to match the selection rate. Results
reported in Tab. 2. Updating the Attention layers helps to
migrate the forgetting better, which is consistent with the
LoRA-EWC performance. However, it has obvious worse
performances on the new tasks accuracy in Aircraft, Cars,
CUB, and GTSRB. Updating parameters from the second
layer suffers double the generic knowledge loss compared

to that of the first layer parameters. Updating parameters
in both layers is also worse in both forgetting and control
set accuracy than that of the first layer only. We conclude
that localizing the updates to selected parameters of the first
layer only is sufficient to achieve the best trade-offs.
Do the selected weights represent the task? We validate
whether the selected parameters can represent the task at
hand in Tab. 3 by comparing our scoring function with a ran-
dom selection. The results indicate that with sparse update,
we can preserve the knowledge learned from pre-training.
However, the Avg. In. of the random select baseline, 17.73%,
is worse than the Avg. In. of FLYP+ER, 18.48%. This sug-
gests that with only sparse update we may miss some impor-
tant representations to the new task in the parameter space.
However, with our scoring function, we do not only improve
over random select, but over full finetune (FLYP+ER) in
continual learning by mitigating forgetting. This implies that
our selected parameters are specialized in the current task
concepts, thus changing them will cause the least interfer-
ence with other tasks. In Appendix B, we further visualize
that the selected parameters can well represent the task, and
we will select diffrent parameters for different tasks.

There are also existing methods, e.g. Piggyback [40], that
train a mask for parameter selection. These methods require
an additional phase of training; thus SPU is more compu-
tationally efficient. Furthermore, in Tab. 3, we compare
SPU with Piggyback and a learnable variant of our scoring
function, denoted as Mask. Details of the implementation
is in Appendix C. Comparing with these two methods, our
gradient-based scoring function is better in both new task
learning (Acc.) and in knowledge preservation (C.).
Selection rate. Tab. 4 illustrates the variants of our method
under varying selection rates applied to the first layer of
MLP blocks. Across all selection rates, SPU demonstrates
competitive average accuracy, forgetting, and control set
accuracy when compared with other baselines in Tab. 1.
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Selection Rate Acc. In. Avg. F. C. Drop

0.01 17.70 3.10 1.11
0.10 21.34 4.51 0.94
0.50 21.73 7.76 0.95

Table 4. Ablation on selection rate of SPU. Our approach achieves
the best trade-off when selecting 10% weights.

Even with a 0.5 selection rate, the learnable parameters
comprise only 30% of the total parameters. We note that as
the selection rate increases, there is a marginal enhancement
in learning performance, but accompanied by a compromise
in forgetting. For instance, raising from 0.1 to 0.5 selection
rate, the Average Accuracy improves around 0.5% but the
forgetting also raises around 3%. Therefore, we opt for a
selection rate of 0.1, which gives the best trade-off between
the accumulation of the new knowledge and the preservation
of the pre-trained knowledge.

Buffer Size
/ Total Size

FLYP+ER SPU

ACC. In Avg. F. C. Drop ACC. In Avg. F. C. Drop

1% 8.97 22.27 19.18 16.18 10.28 1.00
2% 13.24 19.35 18.24 18.63 8.14 0.96
4% 18.48 13.88 17.56 21.34 4.51 0.94

Table 5. Ablation on buffer size and comparison to FLYP+ER. Our
approach has lower performance drop and small forgetting when
the buffer size decreases

Buffer size. In Tab. 1, we present the outcomes of SPU
using a buffer size equivalent to 4% of the total dataset size.
Tab. 5 shows our performance over an array of buffer sizes,
ranging from 1% to 4% of the total dataset size, compared
with ER. Evidently, our algorithm excels in preserving pre-
training knowledge across all buffer sizes, all with less than
1% drop in control set accuracy. As we decrease the buffer
size, FLYP+ER encounters substantial influence; our method
with 1% buffer size doubles Avg. Acc. improvement of
FLYP+ER with 1% buffer and suffers 50% less forgetting
with merely 1% control set accuracy loss.

5.4. Efficiency
We consider efficiency from two perspectives, parameter effi-
ciency and data efficiency, as shown in Tab. 6. For parameter
efficiency, we follow [23, 24, 27] to report the full parameter
size and trainable parameter size. While most of the current
methods necessitate a complete parameter update, SPU only
requires an update of a sparse subset of parameters, which
only consists of 2.7% of the total model’s parameters. Be-
sides this, we neither require adding extra parameters to the
model as in LoRA-EWC and L2P, nor storing the frozen
pre-trained model as in ZSCL. Using the pre-trained model
consumes extra GPU memory during the training. Adding
extra model parameters consumes extra GPU memory dur-

Method Full
Parameter

Trainable
Parameter

Extra Data
Source

FLYP 149.5M 149.5M (100%) -
LoRA-EWC (r=96) 154M 5.90M (3.79%) CC12m
ZSCL 299M 149.5M (50%) CC12m
SPU (ours) 149.5M 4.72M (3.15%) -

Table 6. Parameter efficiency and data efficiency of various CL al-
gorithms. Our approach is parameter and data efficient in updating
a small portion of parameters with no added parameters and no
requirement of extra data source.

ing the training, and disk memory when saving the model.
This influence may be ignorable in a limited number of tasks.
However, continual learning expects an ever-going algorithm.
Then the storage problem becomes profound, together with
the added model components (prompt, adapter, and so on)
choosing problem, as in L2P.

For data efficiency, our algorithm does not require extra
data source, making it light to deploy on various applications
without loading huge datasets. LoRA-EWC and ZSCL are
the only two methods achieving similar control set accuracy
to SPU . However, LoRA-EWC takes Conceptional Caption
12M (CC12M) [9] to compute the Fisher information of
pre-trained task, and ZSCL uses CC12M for distillation.

We further perform an ablation study on the number of
samples N 0

t used to approximate the scoring function. Re-
sults show that our method can still have good performance
even when using only one batch of samples for the approx-
imation. This implies that the computation of the scoring
function is also efficient which does not require a full pass of
the data prior to the training, and can be done transparently
with the first received batch. Details are in Appendix G.

6. Discussion

With the rise of advanced foundation models pretrained
on vast datasets, we propose a method that preserves
pre-learned information in continual learning. We base
on the fact that foundation models already have initial
knowledge for the task in hand, and identify specific model
layers and parameters corresponding to this knowledge
for sparse updates. As such, we perform small update
for the model to cope with the new knowledge while
preserving the previously acquired generic knowledge.
We evaluate our method extensively and show superior
performance. However, our current method operates
unidirectional, and future research could explore knowledge
accumulation across diverse domains. Additionally,
expanding our focus from discriminative to generative
tasks would enhance the applicability of our techniques.

24053



References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina
Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. Flamingo: a visual
language model for few-shot learning. In Advances in Neural
Information Processing Systems, 2022. 1, 2

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In European Con-
ference on Computer Vision (ECCV), 2018. 2, 3, 5, 6, 14,
15

[3] Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Self-
less sequential learning. In International Conference on
Learning Representations, 2019. 16

[4] Nader Asadi, MohammadReza Davari, Sudhir Mudur, Rahaf
Aljundi, and Eugene Belilovsky. Prototype-sample relation
distillation: Towards replay-free continual learning. In Inter-
national Conference on Machine Learning, pages 1093–1106.
PMLR, 2023. 3, 5, 6, 15

[5] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L
Alexander, David W Jacobs, and Peter N Belhumeur. Bird-
snap: Large-scale fine-grained visual categorization of birds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2011–2018, 2014. 5, 15

[6] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman,
Leo Gao, Gabriel Goh, Ilya Sutskever, Jan Leike, Jeff Wu,
and William Saunders. Language models can explain neurons
in language models. https://openaipublic.blob.
core.windows.net/neuron-explainer/paper/
index.html, 2023. 4

[7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 1

[8] Massimo Caccia, Pau Rodríguez, Oleksiy Ostapenko, Fabrice
Normandin, Min Lin, Lucas Caccia, Issam Laradji, Irina Rish,
Alexandre Lacoste, David Vazquez, and Laurent Charlin. On-
line fast adaptation and knowledge accumulation (osaka): A
new approach to continual learning. In Proceedings of the
34th International Conference on Neural Information Process-
ing Systems, Red Hook, NY, USA, 2020. Curran Associates
Inc. 5

[9] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12M: Pushing web-scale image-text pre-
training to recognize long-tail visual concepts. In CVPR,
2021. 6, 8, 16

[10] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with
a-gem. In ICLR, 2019. 2, 5

[11] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K. Dokania, Philip H. S.

Torr, and Marc’Aurelio Ranzato. On tiny episodic memories
in continual learning, 2019. 2, 3, 5, 6, 15

[12] Jun Chen, Han Guo, Kai Yi, Boyang Li, and Mohamed El-
hoseiny. Visualgpt: Data-efficient adaptation of pretrained
language models for image captioning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18030–18040, 2022. 3

[13] Peijie Chen, Qi Li, Saad Biaz, Trung Bui, and Anh Nguyen.
gscorecam: What objects is clip looking at? In Proceedings of
the Asian Conference on Computer Vision, pages 1959–1975,
2022. 12

[14] Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant. Ana-
lyzing transformers in embedding space, 2022. 2

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 5

[16] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan
Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An
embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023. 2

[17] Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and
Marcus Rohrbach. Uncertainty-guided continual learning
with bayesian neural networks. In International Conference
on Learning Representations, 2019. 1

[18] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor
Darrell, and Marcus Rohrbach. Adversarial continual learning.
In European Conference on Computer Vision (ECCV), 2020.
1, 2, 5

[19] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy.
Transformer feed-forward layers are key-value memories.
In Empirical Methods in Natural Language Processing
(EMNLP), 2021. 2, 4

[20] Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg.
Transformer feed-forward layers build predictions by promot-
ing concepts in the vocabulary space. In Proceedings of the
2022 Conference on Empirical Methods in Natural Language
Processing, pages 30–45, Abu Dhabi, United Arab Emirates,
2022. Association for Computational Linguistics. 4

[21] Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter,
and Aditi Raghunathan. Finetune like you pretrain: Improved
finetuning of zero-shot vision models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19338–19347, 2023. 5, 6, 15

[22] Thomas Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging with
grace: Lifelong model editing with discrete key-value adap-
tors. arXiv preprint arXiv:2211.11031, 2022. 3

[23] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view of
parameter-efficient transfer learning. In International Confer-
ence on Learning Representations, 2021. 8

[24] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.
3, 5, 8

24054

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html


[25] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman,
Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Edit-
ing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2022. 3, 5

[26] Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed
Elhoseiny. A simple baseline that questions the use of
pretrained-models in continual learning. In NeurIPS 2022
Workshop on Distribution Shifts: Connecting Methods and
Applications, 2022. 2

[27] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual
prompt tuning. In European Conference on Computer Vision,
pages 709–727. Springer, 2022. 8

[28] Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal
Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz
Khan. Self-regulating prompts: Foundational model adap-
tation without forgetting. arXiv preprint arXiv:2307.06948,
2023. 3

[29] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):
3521–3526, 2017. 2, 3, 5, 14

[30] Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke,
Gyuhak Kim, and Bing Liu. Parameter-level soft-masking for
continual learning. In International Conference on Machine
Learning, pages 17492–17505. PMLR, 2023. 6, 14

[31] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d
object representations for fine-grained categorization. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, pages 554–561, 2013. 5, 15

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5, 15

[33] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models, 2023. 2

[34] Zhizhong Li and Derek Hoiem. Learning without forget-
ting. IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947, 2017. 3, 5, 6, 15

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13, pages 740–755. Springer, 2014. 12

[36] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, An-
tonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De
Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin
Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Be-
louadah, Simone Calderara, German I. Parisi, Fabio Cuzzolin,
Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai
Amhad, Adrian Popescu, Christopher Kanan, Joost van de
Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni.
Avalanche: an end-to-end library for continual learning. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2021. 15

[37] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 15

[38] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 15

[39] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical report,
2013. 5, 15

[40] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learning
to mask weights. In Proceedings of the European conference
on computer vision (ECCV), pages 67–82, 2018. 2, 7, 14, 16

[41] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, pages
109–165. Elsevier, 1989. 1

[42] Kevin Meng, David Bau, Alex Andonian, and Yonatan Be-
linkov. Locating and editing factual associations in gpt. Ad-
vances in Neural Information Processing Systems, 35:17359–
17372, 2022. 3, 12

[43] Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan
Belinkov, and David Bau. Mass-editing memory in a trans-
former. In The Eleventh International Conference on Learn-
ing Representations, 2022.

[44] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn,
and Christopher D Manning. Fast model editing at scale. In
International Conference on Learning Representations, 2022.
3

[45] Yasumasa Onoe, Michael JQ Zhang, Shankar Padmanabhan,
Greg Durrett, and Eunsol Choi. Can lms learn new entities
from descriptions? challenges in propagating injected knowl-
edge. arXiv preprint arXiv:2305.01651, 2023. 3

[46] OpenAI. Gpt-4 technical report, 2023. 1, 2
[47] German I Parisi, Ronald Kemker, Jose L Part, Christopher

Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural networks, 113:54–71,
2019. 1

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1, 2, 3, 5, 6, 15

[49] Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango,
David Bau, Antonio Torralba, and Aleksander Madry. Editing
a classifier by rewriting its prediction rules. In Advances in
Neural Information Processing Systems, 2021. 5

[50] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karat-
zoglou. Overcoming catastrophic forgetting with hard atten-
tion to the task. In International conference on machine
learning, pages 4548–4557. PMLR, 2018. 14

[51] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola
Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar
Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Contin-
ual decomposed attention-based prompting for rehearsal-free
continual learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11909–11919, 2023. 2

24055



[52] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Chris-
tian Igel. Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition. Neural networks, 32:
323–332, 2012. 5, 15

[53] Andreas Steiner, Alexander Kolesnikov, , Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your vit? data, augmentation, and regularization in vision
transformers. arXiv preprint arXiv:2106.10270, 2021. 1

[54] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon
Qian, Daniel Nevo, Yaron Singer, and Stuart Shieber. Investi-
gating gender bias in language models using causal mediation
analysis. Advances in neural information processing systems,
33:12388–12401, 2020. 12

[55] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset.
2011. 5, 15

[56] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian
Zhang, Sirui Ding, Piotr Mardziel, and Xia Hu. Score-cam:
Score-weighted visual explanations for convolutional neural
networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pages
24–25, 2020. 12

[57] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts
learning with pre-trained transformers: An occam’s razor
for domain incremental learning. In Conference on Neural
Information Processing Systems (NeurIPS), 2022. 2

[58] Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei
Niu, Tong Jian, Bin Ren, Stratis Ioannidis, Yanzhi Wang,
and Jennifer Dy. Sparcl: Sparse continual learning on the
edge. Advances in Neural Information Processing Systems,
35:20366–20380, 2022. 6, 14

[59] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun,
Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, et al. Dualprompt: Complementary
prompting for rehearsal-free continual learning. European
Conference on Computer Vision, 2022. 1, 2, 5, 6, 15

[60] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jen-
nifer Dy, and Tomas Pfister. Learning to prompt for continual
learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
139–149, 2022. 1, 2, 5, 6, 15

[61] Ross Wightman. Pytorch image models. https:
//github.com/huggingface/pytorch-image-
models, 2019. 1

[62] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Anirud-
dha Kembhavi, Mohammad Rastegari, Jason Yosinski, and
Ali Farhadi. Supermasks in superposition. Advances in Neu-
ral Information Processing Systems, 33:15173–15184, 2020.
14

[63] Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang,
Zichao Yang, and Zhiting Hu. Language models meet world
models: Embodied experiences enhance language models.
arXiv preprint arXiv:2305.10626, 2023. 1, 3, 5, 6, 16

[64] Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo
Liu, Meng Lei, Fanqing Meng, Siyuan Huang, Yu Qiao,
and Ping Luo. Lvlm-ehub: A comprehensive evaluation

benchmark for large vision-language models. arXiv preprint
arXiv:2306.09265, 2023. 2

[65] Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen,
and Yunchao Wei. Slca: Slow learner with classifier alignment
for continual learning on a pre-trained model. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 19148–19158, 2023. 5, 6, 15

[66] Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xi-
angyu Yue, and Yang You. Preventing zero-shot transfer
degradation in continual learning of vision-language models.
In ICCV, 2023. 3, 5, 6

24056

https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

	. Introduction
	. Related Work
	. Continual Learning From Pretrained Models
	. Selective Parameter Update (SPU)
	. Experiments
	. Setup
	. Results
	. Ablation Study
	. Efficiency

	. Discussion
	. Casual Tracking for Localization
	. Visualization for Parameter Selection
	. Learnable Scoring Function
	. Relations to other sparse update works
	. Implementation Details
	. Dataset
	.  Hyper-parameters
	. Baseline Details 

	. More Details in Ablation Study
	. More Details in Efficiency

