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Abstract

Recent progress in Vision-Language (VL) foundation
models has revealed the great advantages of cross-modality
learning. However, due to a large gap between vision and
text, they might not be able to sufficiently utilize the benefits
of cross-modality information. In the field of human ac-
tion recognition, the additional pose modality may bridge
the gap between vision and text to improve the effective-
ness of cross-modality learning. In this paper, we propose a
novel framework, called Pose-enhanced Vision-Language
(PeVL) model, to adapt the VL model with pose modality
to learn effective knowledge of fine-grained human actions.
Our PeVL model includes two novel components: an Un-
symmetrical Cross-Modality Refinement (UCMR) block and
a Semantic-Guided Multi-level Contrastive (SGMC) mod-
ule. The UCMR block includes Pose-guided Visual Refine-
ment (P2V-R) and Visual-enriched Pose Refinement (V2P-
R) for effective cross-modality learning. The SGMC module
includes Multi-level Contrastive Associations of vision-text
and pose-text at both action and sub-action levels, and a
Semantic-Guided Loss, enabling effective contrastive learn-
ing with text. Built upon a pre-trained VL foundation model,
our model integrates trainable adapters and can be trained
end-to-end. Our novel PeVL design over VL foundation
model yields remarkable performance gains on four fine-
grained human action recognition datasets, achieving a new
SOTA with a significantly small number of FLOPs for low-
cost re-training.1
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Figure 1. The top row shows the architecture comparison between
(a) VL model and (b) our proposed PeVL, where the blocks with
red texts in PeVL are the novel modules. The bottom row shows
the effectiveness of PeVL cross-modality joint learning, where the
images in the 3rd row shows much better spatial attentions on bod-
ies and temporal attentions on sequential sub-actions learned by
PeVL compared to existing VL model results.

1. Introduction
Understanding human actions through video is a complex
and multifaceted challenge. Human beings perform the
task by exploiting multiple intelligent capabilities, such as
visual perception, body structure and motion recognition,
and concept-level semantic descriptions (text). The ma-
jority of previous works focus on video modality utiliz-
ing convolutional networks or transformers. Recently, hu-
man action recognition has undergone substantial evolu-
tion due to the advent of Vision Language (VL) founda-
tion models [21, 27, 41]. VL models have shown great
advantages in cross-modality learning, aligning image and
text features through shared embedding spaces derived from
vast paired image-text datasets. The raw vision modality
presents low-level detailed visual features, while the text
provides high-level coarse semantic descriptions. While

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

18857



prior efforts [6, 50, 54, 59] have fine-tuned VL models to
improve video recognition, their efficacy in associating the
vast disparity between visual and textual modalities remains
a limitation. The additional pose modality (skeleton or joint
points), which provides a latent semantic representation of
the body structure and joint movement, might be helpful to
bridge the gap.

Inspired by this motivation, in this paper, we propose a
novel framework, named Pose-enhanced Vision-Language
(PeVL) model, designed to achieve effective cross-modality
learning among vision-pose-language (VPL) modalities
with low-cost re-training. The overview of our architec-
ture is illustrated in Figure 1. It contains two distinc-
tively designed modules over the pre-trained VL founda-
tion model. One module is the Unsymmetrical Cross-
Modality Refinement (UCMR) block for visual-pose joint
learning. It consists of two joint sub-blocks for: (i) pose-
guided visual refinement which employs pose representa-
tion to guide the attention of visual learning, and (ii) vision-
enriched pose refinement which introduces additional vi-
sual tokens to enhance the representation of pose tokens.
Another module is the Semantic-Guided Multi-level Con-
trastive (SGMC) module to establish cross-modal associa-
tions at both coarse-grained (action) and fine-grained (sub-
action) levels. The contrastive learning is then guided by
the adaptive discrepancies between text and video represen-
tations. The effectiveness of spatial attention adaption on
body and temporal attention alignment on sub-actions can
be observed in the example images in Figure 1(c).

We conduct thorough evaluations on four benchmark
datasets of fine-grained human action recognition. Our re-
sults demonstrate that PeVL is effective in bridging the
gap between vision and language modalities, outperform-
ing existing methods in achieving new SOTA. Our contri-
butions are summarized as follows: (i) we present Pose-
enhanced Vision-Language (PeVL), a novel framework that
adapts VL foundation model with additional pose modality
for fine-grained human action recognition. (ii) we propose
UCMR block to achieve effective cross-modality learning
between concise pose structural configurations and rich vi-
sual features. (iii) we introduce SGMC module for effec-
tive association between vision-text and pose-text for both
action level generality and sub-action level alignment. (iv)
extensive experimental results on fine-grained human ac-
tion recognition benchmarks demonstrating improved per-
formance over base models and outperforming SOTA.

2. Related Work
Action recognition Accurate representation of spatial and
temporal information is pivotal for effectively recognizing
actions in videos. Previous approaches to video action
recognition involved a fusion of 2D or 3D convolutional
layers and sequential models to capture spatial and temporal

relationships [5, 16, 53]. More recently, researchers have in-
troduced vision transformer-based architectures [1, 35, 57],
which excel at modeling extensive spatio-temporal depen-
dencies and have notably surpassed traditional convolu-
tional counterparts. Another line of work [7, 13] exploits
human pose as an additional modality for joint learning with
video. PoseConv3D [13] extracts pose heatmaps and em-
ploys 3D CNN for joint video-pose learning, while ViLP
[7] firstly integrates video, pose and text encoding utilizing
2D pose heatmaps and coarse-grained category names for
joint embedding learning. Different from existing methods,
we directly use the 2D body joint coordinates as pose input
for learning structural temporal dynamics in fine-grained
actions. We utilize video labels and text prompts that de-
scribes the atomic actions and action category to supervise
feature alignment with video and pose modalities.

Adaption of Vision-language (VL) Models The emer-
gence of VL models marked a significant turning point in
the field, notably demonstrated by pioneering works such as
CLIP [41] and ALIGN [21]. These groundbreaking mod-
els showcased the potential of large-scale pre-training on
extensive datasets with abundant image-text pairs sourced
from the web. To refine image-text alignment, these models
adopt contrastive learning objectives. Previous techniques
[8, 28, 47] often relied on object detectors to extract re-
gion features prior to pre-training, and later subsequent ef-
forts introduced cross-attention layers and self-supervised
learning objectives, encompassing tasks such as image-text
matching [21, 24, 27, 58]. Recent progress, exemplified by
works like ActionCLIP [51] and XCLIP [37], has embraced
a multi-modal paradigm by extending the CLIP framework
to encompass video comprehension. These innovative de-
velopments have revolved around adapting large-scale VL
models for video understanding [6, 22, 42, 54]. This paper
explores extending existing VL models by introducing an
additional pose modality and multi-level supervised learn-
ing with text representation to enhance the understanding of
fine-grained actions.

3. Our Method
The architecture of the proposed PeVL model is illustrated
in Figure 2. It consists of three components: (1) three sepa-
rated unimodal encoders with adapters for encoding video,
pose and text inputs; (2) an Unsymmetric Cross-Modality
Refinement (UCMR) Block for effective video-pose cross-
modality learning; (3) a Semantic-Guided Multi-level Con-
trastive (SGMC) Module for both action and sub-action lev-
els text-guided VPL joint learning. The technical details of
the modules are described in Section 3.1 to Section 3.4.

3.1. Unimodal Encoders with Adapters

PeVL takes the raw video clip, the 2D pose body joints,
and the texts as inputs. We use the CLIP image encoder
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Figure 2. PeVL Framework Architecture. Our proposed framework consists of three components: (1) three unimodal encoders with
adapters on VL foundation model for feature input; (2) a Unsymmetric Cross-Modality Refinement Block (UCMR Block) for video-pose
cross-modality learning; (3) a Semantic Guided Multi-level Contrastive Module (SGMC Module) for text-supervised vision-text and pose-
text contrastive learning.

for video and pose inputs and the CLIP text encoder for
text inputs, with trainable adapters that have a bottleneck
structure [59]. Our network benefits from large-scale pre-
trained VL models, initializing with few new parameters
for a strong starting point. We use “prompting” to adapt
the video label sentence to the image-text pre-trained VL
model. Text t is transformed into prompted textual input
t′ by appending prompts (e.g., “label, a video of action”).
An optional coarse-grained action type prompt enriches text
representations with prior knowledge. As an example, for
the FineGym action in Figure 2, we add “gymnastic” to
prompt, which will be “Leg separation 180 degree on the
diagonal to the floor, take off two feet, land on one foot, a
video of gymnastic action”, which is text input in PeVL. We
pass prompted text tokens through text encoder for words
modeling to yield text representation zt.

3.2. UCMR Block

Video and pose are unsymmetrical modalities containing
rich low-level visual features and concise latent semantic

representation of body structure respectively. To achieve
effective cross-modality learning on video and pose, we
design an Unsymmetric Cross-Modality Refinement Block
with two distinct sub-blocks. The first one, named Pose-
adapted Vision Refinement (P2V-R), exploits the pose struc-
ture to guide the learning of video representation, reinforc-
ing its attention on body joint regions in the image. In con-
trast, the second one, named Video-enriched Pose Refine-
ment (V2P-R), employs the related visual information from
the video to enrich the pose representation, facilitating the
learning of appearance-aware pose representation.

3.2.1 Pose-adapted Vision Attention (P2V)

The raw image has rich visual information. Hence, the
learning algorithm simply on an image might not be able
to effectively focus its attention on body parts. We con-
struct a Weighted Mask Module (Figure 3(a)) for each video
frame to guide the learning attention to the regions around
pose joints. From a 2D pose detector, we obtain a set of
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J ∈ RT×Np×2 that denotes the (x, y) coordinates of the
Np body joints, for T number of pose frames. We then de-
fine a weighted pose mask m ∈ RH×W for each frame with
spatial resolution H ×W , obtained by a normalised sum of
weights of all body joints from the last layer of Pose En-
coder at the (x, y)th pixel. We denote m = 0 if there is
no body joint present at the (x, y)th pixel. M = {mi|i ∈
{1, ..., Tv}} is a collection of weighted pose masks for all
Tv frames, where Tv < T . To align with ViT inputs, M
is decomposed into Nv disjoint patches, which corresponds
to the patch size in video embedding zv . Thus, each m in
M indicates the weights of video patches that contain body
joints within a frame. Essentially, P2V functions as local
attention that modulates the video token representation con-
taining weighted pose, as shown in Figure 3(a). P2V learns
attention weights αP2V for a video token as:

αP2V =
exp(QvKv

⊺ ⊙M)∑Nv

j=1 exp(QvKv
⊺
j ⊙M) + I

, (1)

where indicator I = 1 if M = 0 else I = 0, to solve
the issue of zero denominator. Both Qv ∈ RNv×d and
Kv ∈ RNv×d are linear projected video tokens. Using M,
the spatial attention in P2V allows interaction among tokens
containing weighted body joints in a single frame. The P2V
is a plug-in module that can be inserted into the ViT archi-
tecture to induce learning of pose-guided representations.
When inserted into a ViT, P2V will process tokens from the
video encoder and return a set of video tokens enhanced
with pose-adapted attention, namely refined video embed-
dings zRv .

3.2.2 Video-enriched Pose Representation (V2P)

Pose is represented by the spatial coordinates of joint points,
where the visual context information of the human body
has been lost. In V2P, we introduce visual tokens to en-
rich the pose tokens with related visual context informa-
tion. It is designed by adopting multi-modal fusion meth-
ods [3, 12, 19, 55]. The pose tensor is first downsampled to
a reduced number of frames (Tv) to match the indexing and
temporal dimension of the video modality. We concatenate
one additional token to the pose embedding to represent the
background. Then, we group all pixels that belong to the
corresponding pose tokens, including body joint tokens and
a background token. V2P learns attention weights αV2P for
a pose token as:

αV2P =
exp(QpKv

⊺)∑Nv

j=1 exp(QpKv
⊺
j )

, (2)

where Qp ∈ R(Np+1)×d is the linear projected pose tokens.
The outputs of V2P can be perceived as refined pose em-
bedding zR

′

p based on video information. Afterwards, we

Figure 3. (a) The image illustrates the weighted mask module in
UCMR block for exploiting pose to guide the vision attention; (b)
The illustration of Multi-level Contrastive Associations employed
in SGMC block, which contains action-level video-text and pose-
text contrasts (left) and sub-action-level pose-text contrast.

combine zR
′

p with the rest of the pose frames that have not
been indexed, to form a combined pose representation zRp
of T frames.

3.2.3 Refinement Supervision

The cross-modality learning described above may also in-
troduce errors and distracting information. In P2V, the er-
rors in pose estimation caused by unusual body poses and
self-occlusions may lead to wrong visual attention. In V2P,
the rich visual information may introduce distractions in
pose representation. Therefore, in each sub-block, we pro-
pose to align features before and after their respective re-
finement to balance the inter-modal and intra-modal con-
trastive learning. As shown in Figure 2, we optimize the
distances between video features and refined video features
(i.e., zv and zRv ), and pose features and refined pose fea-
tures (i.e., zp and zRp ). We establish symmetric similari-
ties based on cosine distances, by employing the normalized
temperature-scaled cross-entropy (NT-Xent) loss:

L(z, zR) = −
B∑
i=1

log
exp(sim(zi, z

R
i )/τ)∑B

j=1 exp(sim(zi, zRj )/τ)
, (3)

where B is batch size, sim(a, b) = a · b⊺/(∥a∥∥b∥) is
similarity score, and τ is a learnable temperature parame-
ter. Finally, we combine the refinement losses from both
video and pose modalities to form the contrastive loss for
the UCMR Block, LR = L(zv, zRv ) + L(zp, zRp ).

3.3. SGMC Module

In this paper, besides exploiting an additional pose modal-
ity, we also aim to exploit the detailed text content to su-
pervise learning among VPL modalities and alignment at
both global action and fine-grained sub-action levels. Di-
rectly applying existing contrastive learning [32, 38, 50]
to all pairs of global and local features from all modal-
ities would result in a combinatorial computation explo-
sion. We propose a novel effective strategy named Semantic
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Guided Multi-level Contrastive (SGMC) module to achieve
our goal. The SGMC module consists of two parts, of which
the first is Multi-level Contrastive Associations among VL
and PL similarities on both action and sub-action levels, and
the second is a Semantic Content Guided Loss to conduct
elastic contrast learning based on the discrepancy among
text content of different fine-grained human actions.

3.3.1 Multi-level Contrastive Association

On the detailed text description of fine-grained action, the
encoded text representation zt consists of action-level sen-
tence representation S ∈ Rd and sub-action-level word rep-
resentation W ∈ RNt×d, where Nt is the number of words.
The pose-adapted vision representation is learned on the
whole video with a low frame rate for computational effi-
ciency. Given the video embedding zRv , we obtain clip-level
video representation V ∈ Rd. The contrastive association
between the video V and sentence S is computed at the ac-
tion level, denoted as SV S = sim(V, S).

Pose contains concise latent semantic representation
from a high frame rate, and the text contains concept-level
semantic representation of fine-grained actions. The con-
trastive associations between these two modalities are com-
puted on both action and sub-action levels. Given the pose
embedding zRp , we obtain clip-level pose representation
P ∈ Rd, and frame-level pose representation F ∈ RT×d.
The similarity between pose representation P and sentence
S on the action level is computed as SPS = sim(P, S).
On the sub-action level, we compute the contrastive asso-
ciation matrix between frame-level pose representations F
and word-level text representations W , which is denoted as
ŜFW = FW ⊺. Subsequently, we carry out attention opera-
tions on the matrix twice [38], to obtain the sub-action level
pose-text contrastive association, SFW .The overall com-
bined similarity (S) among VPL modalities is defined as:

S(xi, yj) = S((vp)i, tj) = (SV S + SPS + SFW )/3. (4)

3.3.2 Semantic Content Guided Loss

Label text in fine-grained action datasets provides a detailed
description of sub-actions, where two action classes may
have the same sub-actions. Intuitively, a label text with
a larger discrepancy from the ground-truth label text will
yield a larger discrepancy from the corresponding video.
Hence, simply treating a label text or action category name
as either a positive or negative sample may not be accurate
in learning fine-grained action context. We propose a novel
Semantic Content Guided Loss which employs strength co-
efficients {si}Bi=1 to adjust the pushing strength on negative
samples according to the discrepancy magnitude among la-
bel texts. The strength coefficient si is produced by com-
puting the cosine similarity between the sampled text (de-

noted by ts) and the ground truth text (denoted by tg):
si = norm(1− sim(ts, tg)), where sim denotes similarity
value and norm denotes normalization operation such that∑B

i=1 si = 1. Then, the video&pose-to-text (vp2t) and
text-to-video&pose (t2vp) similarity scores can be formu-
lated by adjusting the pushing force of negative pairs with
the strength coefficients {si}Bi=1, as below:

pvp2ti =
eS((vp)i,ti))/τ

eS((vp)i,ti)/τ + (B − 1)
∑B

j=1
j ̸=i

si · eS((vp)i,tj)/τ
,

pt2vpi =
eS((vp)i,ti)τ

eS((vp)i,ti)/τ + (B − 1)
∑B

j=1
j ̸=i

si · eS(ti,(vp)j)/τ
.

(5)
Let qvp2t and qt2vp represent the ground-truth similarity

scores. We balance the negative term with B − 1 to avoid it
being too small compared with the vanilla contrastive loss.
The presence of multiple videos belonging to one label in a
batch makes the conventional view of learning as a 1-in-N
classification problem using cross-entropy loss inappropri-
ate. To address this issue, we adopt the Kullback–Leibler
(KL) divergence as our semantic-guided loss for the train-
ing set D as:

Lt =
1

2
E(vp,t)∼D[KL(pvp2t, qvp2t) + KL(pt2vp, qt2vp)]. (6)

3.4. Objective Function

To leverage the information in the three modalities (video,
pose and text), we train the model with the objective func-
tion as Ltotal = Lt + λRLR, where λR is a hyper-
parameter. During testing, when provided with a raw video
input x and a text y selected from a predefined label set Y ,
we formulate the task as estimating conditional probabil-
ity P (S(x, y)|θ), where θ denotes the model parameters.
Subsequently, the testing procedure is akin to a matching
procedure, where the classification result is determined by
identifying the label with the highest probability score as:

ŷ = argmax
y∈Y

P (S(x, y)|θ). (7)

4. Experiments
We conducted extensive evaluations on four representative
datasets for fine-grained human action recognition. The de-
tails of the experiments are presented below.

4.1. Implementation Details

Preparation: The localization of human body joints can be
achieved by exploiting pose estimation methods [4, 15, 46].
Therefore, we leverage an off-the-shelf pose estimation
model HRNet [46] to localize the human body joints in a
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video if the dataset does not provide pose data. Our text
encoder gt follows that of CLIP [41] which is a 12-layer,
512-wide Transformer with 8 heads. We use ViT (ViT-B/16
or ViT-L/14) pre-trained by CLIP for video encoder gv and
pose encoder gp, which share weights on frozen layers. The
video input spatial resolution is 224 × 224 in all the ex-
periments. The hyper-parameter λR is set empirically to
0.1. The “Frames” column in all tables indicates the num-
ber of sampled frames used for video and pose inputs, re-
spectively.

Training & Testing: We employ AdamW optimizer
with a base learning rate of 8×10−6 in training. Models are
trained with 50 epochs, and the weight decay is 5×10−2 on
Tesla V100 32G GPU server. The learning rate is warmed
up for the first 3 epochs and decayed to zero according to a
cosine schedule for the remaining training epochs. In test-
ing, we take the test video as input, and feed all the label
texts to the model. We follow [59] by adopting multi-view
inference with three spatial crops and one temporal clip for
the best performance model. The final prediction is de-
rived from the average similarity scores computed across all
views, and identifying the highest score label using Equa-
tion (7).

Datasets: We use four representative fine-grained ac-
tion recognition benchmark datasets: Diving48 [29], Fine-
Gym [45], HAA500 [9], and Toyota-Smarthome [10]. Div-
ing48 encompasses 15.9K training videos and 2K validation
videos, focusing on 48 diving actions. FineGym consists of
two tasks: Gym99 with 20k training and 8.5k evaluation
videos for 99 actions, and Gym288 with 23k training and
9.6k evaluation videos for 288 actions. HAA500 comprises
10k video clips for 500 distinct human-centric actions, dis-
tributed across training (8k), validation (500), and testing
(1.5k) sets. Toyota-Smarthome encompasses 16.1k video
clips featuring 18 subjects, 7 camera viewpoints, and 31 ac-
tion classes within real-world scenarios, and it offers 2D
skeletal representations via 13 body joints. We train our
models using the standard splits and follow the established
evaluation procedure. We apply standard classification ac-
curacy as the performance metric. Our methods are eval-
uated across all mentioned datasets, with ablation studies
conducted on Diving48.

4.2. Comparison with State-of-the-art Methods

We compare our proposed PeVL method with SOTA mod-
els on four fine-grained action recognition benchmarks. Ta-
bles 1, 2, and 3 show that our method consistently surpasses
the SOTA methods. On the Diving48 dataset (see Table 1),
our PeVL achieves 91.9% and 92.5% using backbones ViT-
B/16 and ViT-L/14 respectively, outperforming AIM [59]
with the same backbones by 3.0% and 1.9%, respectively,
using lower video frame rate than AIM. When compared to
ORViT [20] which leverages an object tracking model, our

Table 1. Comparison to SOTA on Diving48.

Method Tunable
Param (M) Frames Top-1

TQN [61] - all 81.8
VideoSwin-B [36] 88 - 81.9
BEVT [52] 88 - 86.7
SIFAR-B-14 [14] 87 - 87.3
GC-TDN [18] 27.4 16 87.6
ORViT TimeSformer[20] 160 32 88.0
AIM ViT-B/16 [59] 11 32x3 88.9
AIM ViT-L/14 [59] 38 32x3 90.6
PeVL ViT-B/16 42 16+48 91.9
PeVL ViT-L/14 109 16+48 92.5

Table 2. Comparison to SOTA on Gym99 and Gym288.

Method Gym99 Gym288
Top-1 Mean Top-1 Mean

TSN [49] 86.0 76.4 79.9 37.6
TRNms [63] 87.8 80.2 82.0 43.3
TSM [31] 88.4 81.2 83.1 46.5
MTN [25] 91.8 88.5 - -
TQN [62] 93.8 90.6 89.6 61.9
SlowOnly [17] 93.9 90.6 86.8 51.2
3D VE [26] 94.0 90.5 - -
VT CE [26] 94.6 91.4 90.1 62.6
PoseConv3D [13] 93.2 - - -
RGBPose-Conv3D [13] 95.6 - - -
PeVL ViT-B/16 96.5 91.6 90.5 63.9
PeVL ViT-L/14 97.0 91.8 91.8 64.0

Table 3. Performance to SOTA on HAA500 (left) and Toyota-
Smarthome (right).

Method Top-1 Method Mean
TSN [48] 55.3 AssembleNet++ [44] 63.6
CLIP [41] 63.3 MotionFormer [40] 65.8
EVL [33] 76.4 TimeSformer [2] 68.4
P2S + EVL [30] 79.8 Video Swin [34] 69.8
Semi-supervised [39] 80.7 MMNet [60] 70.1
DC-TBAC-CSN [56] 83.7 VPN++ [11] 71.0

PAAT [43] 72.5
PeVL ViT-B/16 84.3 PeVL ViT-B/16 73.3
PeVL ViT-L/14 84.7 PeVL ViT-L/14 73.8

PeVL ViT-L/14 outperforms it by 4.5% with 51M less tun-
able parameters. This demonstrates the effectiveness of in-
corporating pose representation for cross-modality learning
on fine-grained human actions. On the Gym99 and Gym288
datasets (see Table 2), our method outperforms all previous
methods even when compared with RGBPose-Conv3D [13]
which also takes video and pose as inputs. This suggests
that our model is more effective in learning human action
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Table 4. Effectiveness of proposed components. Notations v,t,
and p represent video, text, and pose modalities used.

Methods Modality Top-1 Top-5
Baseline v, t 60.2 79.0

+ Pose

v, p, t

80.3 93.5
+ Adapters 87.3 97.8
+ UCMR Block 90.6 99.3
+ SGMC Module (Ours) 91.9 99.6

Table 5. P2V and V2P in UCMR Block.

Methods Top-1 Top-5
PeVL 91.9 99.6

w/o UCMR Block 88.9 98.9
w/o P2V 91.1 99.3
w/o V2P 90.4 99.2

w/o Refinement Supervision 91.0 99.0

representation for fine-grained actions. It’s worth noting
that, in HAA500 and Toyota-Smarthome datasets, the scene
background might provide spurious cues for the action class
than that in Diving48 and FineGym datasets. Our PeVL can
still achieve better performances compared with existing
SOTA methods, as shown in Table 3. These results suggest
that our method with additional pose and textual semantics
can learn more effective action representations and robust
to distracting visual cues. We also investigate the benefits
of our model on a coarse-grained human action recognition
dataset, K400 [23], detailed in supplementary materials.

4.3. Ablation Studies

We perform extensive ablation studies on our model and
discuss the intriguing properties observed through the em-
pirical results. Models in this section employ ViT-B/16 as
the backbone, utilize 16-frame video input for the video en-
coder and 48-frame pose input for the pose encoder, and
experiment on Diving48 unless specified otherwise.

4.3.1 Effectiveness of Proposed Main Components

In Table 4, we show the effectiveness of our proposed com-
ponents by gradually adding them to the baseline model.
We adopt the frozen CLIP model with a trainable projec-
tion layer as the baseline, forming video and text encoders
with a 16-frame video input. Next, we add a frozen pose
encoder consisting of temporal and spatial attention with a
48-frame pose input. Video and pose embeddings from en-
coders are concatenated. Next, we add trainable adapters
mentioned in Section 3.1. Subsequently, we add UCMR
Block and SGMC Module, respectively. It is worth noting
that UCMR Block and SGMC Module can improve simple
three-modality design from 87.3% to 91.9%.

Table 6. Different contrastive learning methods.

Similarity Top-1
SPS SV S SFW

✓ 91.0
✓ 90.9

✓ 90.9
✓ ✓ 91.4

✓ ✓ 91.3
✓ ✓ 91.4
✓ ✓ ✓ 91.9

4.3.2 Effectiveness of components in UCMR Block

To investigate the effectiveness of components in Unsym-
metric Cross-Modality Refinement Block, we examine the
following versions of our model: (1) w/o UCMR Block:
we remove UCMR Block entirely; (2) with UCMR Block
but we remove the three components inside separately: w/o
P2V; w/o V2P; and w/o Refinement Supervision. As shown
in Table 5, after removing UCMR Block, we observe a per-
formance decrease from 91.9% to 88.9%. We further in-
vestigate the impact of cross-modality learning in UCMR
Block. If we only remove P2V, we observe the perfor-
mance drops by 0.8%. Removing V2P where the video to-
kens are used in enriching pose features, causes a decreased
performance by 1.5%. This demonstrates both P2V and
V2P help in capturing strong spatio-temporal interaction
between pose temporal dynamics and video spatial repre-
sentation of human actions. Furthermore, removing Refine-
ment Supervision causes a performance drop by 0.9%. This
shows that Refinement Supervision enhances the robustness
of cross-modality learning with P2V and V2P.

4.3.3 Effectiveness of components in SGMC Module

To comprehensively evaluate the impact of various con-
trastive learning strategies, we conduct an ablation study
comparing different configurations of Multi-level Con-
trastive Association, as outlined in Table 6. Notably, as
the number of contrastive association functions increases,
there is a consistent trend of improved accuracy. The high-
est Top-1 accuracy is obtained when PeVL incorporates all
proposed contrastive associations, which underscores their
synergistic effect on enhancing recognition performance.
Therefore, we conclude that multi-level contrastive learn-
ing and multi-modal contrastive learning complement each
other for boosted performance. Furthermore, we replace
Semantic Content Guided Loss with vanilla contrastive loss
by replacing strength coefficients with 1 in Equation 5, and
we notice a performance drop from 91.9% to 91.4%. This
shows Semantic Content Guided Loss can utilise varying
discrepancies with different texts to adjust the pushing force
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Table 7. Effectiveness of VPL modalities. All encoders are
equipped with trainable adapters.

Method Frames GFLOPs Tunable
Param (M) Top-1

V encoder 16 275 7 62.9
P encoder 48 108 11 82.6

V+P encoders 16+48 393 22 86.2
V+T encoders 16 364 13 65.1
P+T encoders 48 197 17 83.8

V+P+T encoders 16+48 482 28 87.3
PeVL 16+48 510 32 91.9

Table 8. Effectiveness of the adapter: “T ” means having trainable
adapters, otherwise, “F ” means the encoder parameters are frozen.

Methods Top-1 Top-5
Video Pose Text
F F F 84.9 96.6
T F F 85.5 96.9
F T F 86.4 97.4
F F T 86.2 97.2
T T F 87.8 98.0
T T T 91.9 99.6

between the video and text, for optimal contrastive learning.

4.3.4 Effectiveness of Input Encoders

Effectiveness of VPL modalities: We investigate the ef-
fectiveness of multi-modalities in PeVL. The outcomes are
presented in Table 7. Except for PeVL, video and pose
modalities in rest methods are simply concatenated, and
vanilla contrastive learning is adopted for text modality. Ex-
periment results show that more modalities contribute to
better Top-1 accuracy. Compared with Method “V+P+T”,
our PeVL achieves 91.9% Top-1 accuracy, an improve-
ment of 4.6%. This demonstrates that our proposed frame-
work helps learn more discriminative fine-grained represen-
tations. It’s worth noting that, our PeVL outperforms SOTA
method AIM [59] (91.9% v.s. 88.9%) with fewer GFLOPs
(510 v.s. 809) using the same backbone architecture (ViT-
B/16). This demonstrates that our cautious design on the in-
tegration of different frames of video and pose can achieve
better performance more cost-effectively.

Effectiveness of Adapters: We demonstrate the effec-
tiveness of trainable adapters by separately removing them
from the video encoder, pose encoder and text encoder. The
results are presented in Table 8. When all encoders remain
frozen and only the UCMR Block is trained, the Top-1 accu-
racy is 84.9%. Performance gains with more adapters added
into encoders. When all the encoders are adapted with train-
able parameters, we obtain performance improvement by
7%. Conversely, the absence of adapters in any encoder

Table 9. Ablation of the pose input forms

Input Form GFLOPs Tunable
Param (M) Top-1 Top-5

Heatmaps 311 11 80.1 96.0
Coordinates 108 11 82.6 96.7

leads to a negative impact on accuracy. This emphasizes
the indispensability of adapters for the precise fine-tuning
of downstream datasets with low-cost learning, a conclu-
sion in alignment with our perceptual intuition.

4.3.5 Effectiveness of Body Joint Coordinates

In this section, we study the effect of using different pose
input forms for our pose encoder. Specifically, we com-
pare pose heatmap and body joint coordinates using only
the pose encoder (e.g., “P encoder” in Table 7). We ob-
tain heatmaps following [13], with a spatial resolution of
112x112, and extracted 48 input frames for both input
forms. Table 9 shows that using body joint coordinates
achieves 2.5% better accuracy and fewer GFLOPs than
heatmaps, offering a simpler and more efficient represen-
tation for pose. The better performance of coordinates over
heatmaps can be attributed to the inherent characteristics of
each representation: (i) body joint representation provides
a latent semantic structure of the human body and move-
ment, facilitating the capturing of relationships between
body parts. Whereas for heatmaps, the structural informa-
tion has to be learnt implicitly from image patches; (ii) 2D
pose coordinates provide explicit spatial information about
the positions of body joints, while heatmaps may introduce
noise due to “patchifying”.

5. Conclusion
This paper introduces a novel perspective on action recog-
nition by reframing it as a multimodal learning problem in-
volving video-pose-text cross-modality learning with multi-
level contrastive learning over the VL foundation model.
We designed a multimodal architecture to exploit the ap-
pearance information of video, structural and dynamic in-
formation of pose, and semantic concepts of language.
Furthermore, we formulated a new paradigm to directly
adapt powerful large-scale pre-trained VL foundation mod-
els, substantially lowering re-training expenses. Our imple-
mentation, PeVL, is built upon CLIP, and exhibits superior
performance on the fine-grained action recognition task.
For future work, we plan to exploit LLM to provide more
meaningful text prompts at both action and sub-action lev-
els to better guide the joint learning of VPL modalities. We
would also extend our PeVL model to hand action recog-
nition tasks with hand pose (skeleton or joints) modality in
future.
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