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Abstract

While current methods have shown promising progress
on estimating 3D human motion from monocular videos,
their motion estimates are often physically unrealistic be-
cause they mainly consider kinematics. In this paper, we in-
troduce Physics-aware Pretrained Transformer (PhysPT),
which improves kinematics-based motion estimates and in-
fers motion forces. PhysPT exploits a Transformer encoder-
decoder backbone to effectively learn human dynamics in a
self-supervised manner. Moreover, it incorporates physics
principles governing human motion. Specifically, we build a
physics-based body representation and contact force model.
We leverage them to impose novel physics-inspired train-
ing losses (i.e., force loss, contact loss, and Euler-Lagrange
loss), enabling PhysPT to capture physical properties of
the human body and the forces it experiences. Experiments
demonstrate that, once trained, PhysPT can be directly ap-
plied to kinematics-based estimates to significantly enhance
their physical plausibility and generate favourable motion
forces. Furthermore, we show that these physically mean-
ingful quantities translate into improved accuracy of an im-
portant downstream task: human action recognition.

1. Introduction
Monocular 3D human motion estimation is essential for ap-
plications like human-computer interaction [8, 74], motion
analysis [14], and robotics [17]. This task is inherently chal-
lenging due to the absence of depth information and the in-
tricate interplay of forces and human body movements.

Recent advances in deep learning, along with progress
in 3D human modeling [47, 85], have substantially im-
proved the reconstruction of 3D humans from a single im-
age [28, 33, 38, 76, 105]. With video inputs, current re-
search aims to enhance model performance by exploiting
temporal information. Some authors devise temporal mod-
els that extract meaningful features from videos to improve
performance [6, 10, 11, 13, 23, 36, 55, 64, 69, 73, 80, 98,

100]. Other authors learn motion priors that capture nat-
ural 3D body movement patterns. Integrating the learned
priors into model training can promote smooth motion es-
timates [31, 48, 61, 66]. While these approaches enhance
reconstruction to some extent, they often produce unrealis-
tic estimates characterized by noticeable physical artifacts
such as motion jittering and foot skating.

To address this limitation, a promising strategy is to
leverage physical principles governing body movements. In
this approach, the human body is treated as an articulated
rigid body, and human dynamics are described through the
Euler-Lagrange equations. These equations link body mass,
inertia, and physical forces (including joint actuations and
contact forces) to body motion through ordinary differen-
tial equations. Some researchers [19, 20, 40, 60, 67, 84, 88]
formulate optimization frameworks that jointly estimate un-
known physical parameters and refine kinematics-based es-
timates by aligning them with the physics equations. Alter-
natively, others [24, 39, 49, 68, 93] employ learning-based
frameworks. They sidestep the cumbersome manual param-
eter tuning inherent in optimization-based methods by train-
ing neural networks to predict the parameters.

Yet, a key challenge remains: physics information, in-
cluding physical properties of human bodies and motion
forces, is absent in current 3D motion capture datasets [51].
To incorporate physics, existing methods generally rely on
physics engines [15, 75]. This entails creating proxy bodies
with geometric primitives to capture body properties, im-
porting these proxies into a physics engine, and then lever-
aging the physics engine to compute the necessary physical
parameters and simulate body motion. The problem with
this approach arises from the difficulty of efficiently com-
puting gradients from physics engine outputs [19], thereby
limiting their seamless integration with deep learning mod-
els. Moreover, existing physics-based models are primarily
trained with 3D annotated videos, which are challenging to
acquire in practice. Consequently, the trained models may
not generalize well to unseen scenarios.

In this paper, we propose a novel framework for learn-
ing human dynamics that circumvents the need for 3D an-
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notated videos and effectively integrates physics with ad-
vanced deep models. Specifically, drawing inspiration from
recent success of pre-trained Transformers [77] in temporal
modeling, we propose leveraging a Transformer encoder-
decoder architecture and training in a self-supervised man-
ner by reconstructing input human motion. When incorpo-
rating physics, we bypass unrealistic body proxies by di-
rectly computing body physical properties from the widely
adopted 3D body model, SMPL [47]. We also introduce a
contact model to effectively model the contact forces. We
utilize these models to derive motion forces from train-
ing sequences and impose novel physics-inspired train-
ing losses, including force loss, contact loss, and Euler-
Lagrange loss. We train the Transformer model only using
existing motion capture data. Once trained, our physics-
aware pretrained Transformer (PhysPT) can be applied on
top of any kinematics-based reconstruction model to pro-
duce enhanced motion and force estimates from monocular
videos. In summary, our main contributions include:
• We introduce PhysPT, a Transformer encoder-decoder

model trained through self-supervised learning with in-
corporation of physics. Once trained, PhysPT can be
combined with any kinematic-based model to estimate
human dynamics without additional model fine-tuning.

• We present a novel framework for incorporating physics.
This includes a physics-based body representation and a
contact force model, and, subsequently, the imposition of
a set of novel physics-inspired losses for model training.

• We demonstrate through experiments that PhysPT signif-
icantly enhances the physical plausibility of motion esti-
mates and infers favourable motion forces. Furthermore,
we demonstrate that the enhanced motion and force esti-
mates translate into accuracy improvements in an impor-
tant downstream task: human action recognition.

2. Related Work
Kinematics-based Human Motion Estimation. Methods
modeling body kinematics estimate body geometry config-
uration solely. Among these approaches, one line of work
involves optimization-based pipelines that iteratively fit a
prior body model to 2D observations to reconstruct a 3D
human [1, 4, 22, 78, 83, 89, 111]. Others embrace deep
learning models to directly predict 3D human bodies. Given
a single input image, existing methods have proposed dif-
ferent model architectures with various intermediate and
output representations to improve the reconstruction accu-
racy [18, 32, 34, 38, 41, 43, 50, 53, 63, 81, 91, 104].

Given input of a monocular video, current kinematics-
based methods aim to fully harness temporal information
to obtain improved results. Various temporal models are
developed based on Temporal Convolutional Networks [29,
36, 55, 99, 100], Graph Convolutional Networks [6, 10, 11,
80, 98], Recurrent Neural Networks [13, 23, 31, 48, 72, 92],

Transformer [21, 42, 58, 59, 64, 73, 108, 112], or those ex-
plicitly capturing and exploiting attention [44, 71, 79, 82].
Another common approach to encouraging realistic tempo-
ral predictions is to incorporate smoothness constraints or
motion priors during training [31, 48, 61, 94, 101]. These
kinematics-based methods, however, often produce notice-
able physical artifacts due to their failure to realistically
capture the complexity of human motion.
Physics-based Human Motion Estimation. Physics-based
approaches explicitly leverage physics principles, particu-
larly the Euler-Lagrange equations, to capture human dy-
namics. Prior works have adopted optimization frame-
works to jointly estimate motion forces and refine ini-
tial kinematics-based motion estimates by minimizing the
residuals introduced by the Euler-Lagrange equations [40,
60, 84]. Directly estimating the exerted forces is challeng-
ing; therefore, others employ a character control method-
ology. In this paradigm, kinematics-based estimates act as
reference motions, and the forces needed to emulate these
motions in a physics engine are predicted by estimating
the parameters of a controller [19, 37, 67, 88, 90, 110].
However, these optimization-based methods often require
careful tuning of the control parameters. Some approaches
instead leverage neural networks to estimate the parame-
ters, where the models are trained through fully supervised
learning [68] or reinforcement learning [24, 26, 49, 93]. In
these approaches, incorporating the physics engine along-
side learning models falls short of achieving an effective
end-to-end integration of physics. Li et al. [39] enhance
the learning process by analytically computing some of the
physical parameters coupled with the usage of 3D super-
visions. While the produced results are promising, exist-
ing learning-based methods rely on 3D annotated videos
for training and often exhibit poor generalization. In con-
trast, our model adopts self-supervised learning, trained
solely using existing 3D motion data without images. Ad-
ditionally, we introduce a novel framework that seamlessly
bridges the gap between body kinematics and physics with-
out relying on physics engines, facilitating the effective in-
tegration of physics with advanced deep learning models.
Full Human Dynamics Estimation. Fully capturing hu-
man dynamics requires determining both body movements
and the forces exerted by individuals [3, 12, 62, 65]. Pre-
vailing methods for estimating human dynamics primarily
focus on inferring forces from 3D motion capture data [5,
95–97]. These estimated forces are used to facilitate tasks
such as human action recognition [52] or human motion
prediction [45, 106, 107]. Our approach can address a more
challenging task: the estimation of full human dynamics
from a monocular video. We do so without utilizing any
ground truth force labels. To our knowledge, we are the first
to demonstrate that forces inferred from monocular videos
can improve human action recognition.
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Figure 1. Method Overview. The proposed framework consists of a kinematics-based motion estimation model (orange) and a physics-
aware pre-trained Transformer (green) for estimating human dynamics from a monocular video. Inset (a) illustrates joint actuation of right
pelvis and contact forces at each foot. (b) illustrates reconstructed body motion and inferred forces with lighter colors representing greater
joint actuation magnitudes (e.g. upper body joints when the figure is standing, and leg joints when it is walking).

3. Proposed Method
Fig. 1 shows an overview of our method. Given T video
frames {Xt}Tt=1, a kinematics-based model is employed
to generate initial motion estimates {q̂t}Tt=1, followed by
the proposed PhysPT to estimate refined motion {qt}Tt=1

and infer forces {�t, ⌧ t}Tt=1. In Sec. 3.1, we introduce the
physics equations for modeling human dynamics and de-
scribe how we generate the kinematics-based estimates. In
Sec. 3.2, we delve into the key components of PhysPT.

3.1. Preliminary

Euler-Lagrange Equations. As a complex physical sys-
tem composed of multiple interacting body parts, the hu-
man body is often modeled using rigid body dynamics. In
this context, the Euler-Lagrange equations provide a con-
cise mathematical description of human dynamics within a
generalized coordinate system.

The generalized coordinates are defined by variables that
fully specify the system’s state. Based on the successful ge-
ometry body model SMPL [47], we represent a 3D human
body in terms of a mesh model using body pose ✓ 2 R23⇥3

and body shape parameters � 2 R10. The pose parameters
characterize the rotations of 23 body joints, while the shape
parameters control the variations in body attributes, e.g.
girth. Given that the body shape remains constant within
a video, the 3D body trajectory in the world frame can be
fully specified by the pose ✓ plus body translation T 2 R3

and rotation R 2 R3 via a generalized coordinate q:

q = {T,R,✓}. (1)

Denoting the velocity and the acceleration in the gener-
alized coordinates as q̇ and q̈, respectively, the body dy-

namics governed by the Euler-Lagrange equations are:

M
�
q; m, I

�
q̈+C

�
q, q̇; m, I

�
+ g

�
q; m

�
= JT

C�+ ⌧ , (2)

where M
�
q; m, I

�
is the generalized inertia matrix deter-

mined by the position q, the body mass m, and the in-
ertia I. C

�
q, q̇; m, I

�
represents the Coriolis and cen-

trifugal forces. g
�
q; m

�
indicates the gravitational forces.

� 2 R3nc denotes the contact forces, where nc is the num-
ber of points of contact. JC 2 R3nc⇥75 is the contact Jaco-
bian matrix that describes the mapping between the contact
points’ Cartesian velocity, vC 2 R3nc , and the generalized
velocity, q̇, according to the equation vC = JC q̇. Addi-
tionally, ⌧ 2 R75 represents joint actuations, as exemplified
in Fig. 1-a for right pelvis joint.
Kinematics-based Motion Estimation Model. We first
employ an established method to obtain per-frame 3D body
pose and shape {✓̂t, �̂t}Tt=1 from the video input. It places
no restrictions on which method is used; for our experi-
ments we use recent publicly-available models. The pose
and shape estimated by those traditional 3D human recon-
struction models only capture body movements in the body
frame, lacking a global motion trajectory to fully specify the
generalized positions defined in Eq. 1. As in [94], we train
a global trajectory predictor to provide per-frame global
translation and rotation {T̂t, R̂t}Tt=1 based on the local
body movements. The global trajectory predictor is trained
independently and produces the global estimates without
additional model fine-tuning. Further details of the model
architecture and training are in Supp. A. Finally, by combin-
ing the estimated global trajectory with the local body pose,
we obtain the initial generalized position estimates {q̂t}Tt=1,
which are input to PhysPT for further refinement. Mean-
while, we consider the final shape estimate � = 1

T

PT
t=1 �̂t

since the subject’s shape remains unchanged over time.
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3.2. Physics-aware Pretrained Transformer
The initial kinematics-based motion estimates maintain rea-
sonable per-frame reconstruction accuracy. The Physics-
aware Pretrained Transformer introduced in this section
further enhances the motion estimates and infers motion
forces. In the following, we first introduce the Transformer
encoder-decoder backbone of PhysPT in Sec. 3.2.1. To in-
corporate physics into the model, we build a physics-based
body representation (Sec. 3.2.2) and a contact force model
(Sec. 3.2.3), which enable the formulation of physics-
inspired training losses (Sec. 3.2.4).

3.2.1 Transformer Encoder-Decoder Backbone

Differing from existing works that primarily utilize a Trans-
former encoder to learn representations, we exploit a Trans-
former encoder-decoder architecture [77]. As illustrated
in Fig. 1 (green region), the model first extracts embed-
ding Einput 2 RT⇥nf from the kinematics-based estimates
{q̂t}Tt=1 using a linear layer. This Einput, combined with
a time positional encoding, is then fed into the Transformer
encoder to generate a latent embedding Elatent 2 RT⇥nl .
Here, nf and nl are embedding dimensions. Subsequently,
the decoder generates refined estimates {qt}Tt=1 via autore-
gressive prediction. Specifically, at time frame m + 1,
the previous m estimates are projected into embeddings
Eoutput 2 Rm⇥nf , to which a positional encoding is
added. Together with Elatent, this is input to the Trans-
former decoder to produce the motion prediction.

Leveraging the Transformer encoder-decoder backbone
can effectively capture temporal information in a self-
supervised manner by reconstructing the input. Specifically,
denoting an input sequence from existing 3D motion cap-
ture data as {q̄t}Tt=1, we compute a mean squared error on
the generalized positions and 3D joint positions, leading to
the added reconstruction loss Lrecon:

Lrecon =
TX

t=1

�qLq,t + �JLJ,t,

Lq,t = kqt � q̄tk22,
LJ,t = kJt � J̄tk22,

(3)

where the 3D joint positions Jt 2 RnJ⇥3 are computed
from the generalized positions and the body shape parame-
ters using forward kinematics and nJ is the number of body
joints. �q and �J are training loss weights. To enhance
model robustness, we introduce random Gaussian noise into
the input during training while the model is still tasked with
reconstructing the clean input. Up to this point, the Trans-
former model is trained to effectively learn the geometry
information from motion data, but it is agnostic to physics
and insufficient to faithfully capture human dynamics.

Body Part: Forearm
 - !:   989 cm3

 - ": 1.20 kg
 - #: [0.0008,  0.0000, 
       -0.0003,  0.0064,
       -0.0000,  0.0064] Body Part: Thigh

 - !: 7150 cm3

 - ": 7.28 kg
 - #: [0.0802, -0.0050, 
       -0.0006,  0.0302,
       -0.0058,  0.0790]

Body Part: Thigh
 - !: 9386 cm3

 - ": 8.87 kg
 - #: [0.0950, -0.0106, 
       -0.0008,  0.0546,
       -0.0122,  0.0896]

Body Shape (a) Body Shape (b)

Figure 2. Phys-SMPL. Besides 3D positions, Phys-SMPL models
the volume (V ), mass (m), and inertia (I) of every body parts.
Lighter colors represent larger body weight distributions.

3.2.2 Physics-based Body Representation

To empower the model to capture physics, we need to first
model the physical properties of human bodies. For this
purpose, we introduce a physics-based body representation,
Phys-SMPL. As shown in Fig. 2, Phys-SMPL incorporates
the mass m(�) 2 R24 and inertia I(�) 2 R24⇥3⇥3 of 24
body parts in additional to SMPL’s geometry information.
Specifically, we first close the meshes of each body part.
This allows us to compute the volume of a body part as the
sum of the tetrahedrons formed by its centroid and mesh
faces. Based on the average mass density of the human
body [56], we calculate the mass and, subsequently, the in-
ertia of different body parts. Note that these physical body
properties are computed directly from SMPL’s geometry in-
formation specified by the shape parameters �, without the
need for creating unrealistic body proxies. Expanding on
Phys-SMPL, we analytically calculate the physical terms
in the Euler-Lagrange equations (Eq. 2). The analytical
computation of physical parameters is fully differentiable,
enabling the seamless integration of physics with learning
models during the training process. Further details of Phys-
SMPL and the analytical calculation are in Supp. B.

3.2.3 Continuous Contact Force Model

To capture human dynamics, the motion forces must be
modeled as well. For the joint actuations and contact forces,
modeling the contact forces can be particularly challeng-
ing. The contact status often needs to be determined before-
hand — and this is in itself difficult to do accurately. The
discrete contact status also introduces a non-differentiable
process in estimating the forces. To address this issue, we
draw inspiration from the continuous contact model pro-
posed by [5] for estimating ground reaction forces from 3D
motion, which entails introducing a spring-mass system as
illustrated in Fig. 3. Specifically, the ground contact force
experienced by a point p at time t is modeled as:

�p,t = sp,t(�kh,tbh,t � kn,tbn,t � ctvC,t). (4)

2308



Ground 
Plane

Contact point !
!",$

!%,$
"&,$

#$

Figure 3. Continuous Contact Force Model. The contact forces
received by a point p at time frame t are determined by its veloc-
ity and distance to the ground through a spring-mass system built
along the horizontal (kh,t) and normal (kn,t) directions.

where kh,t and kn,t denote the stiffness of the spring-
mass in the horizontal and normal directions, respectively,
while ct represents the damping factor. The scalar sp,t =
2�(�60dt)�(�60kvC,tk) regulates the force magnitude,
where �(·) represents the Sigmoid function, dt denotes the
point’s distance to the ground, and kvC,tk is its veloc-
ity. Additionally, bh,t = [dt,x � 0.5; dt,y � 0.5; 0] and
bn,t = [0; 0; dt � 2] is the distance to the reference point in
the horizontal and normal direction, respectively. Here, dt,x
and dt,y are projections of dt onto the x and y axes using the
normal of the contact point. The units are in meters. For the
sake of computational efficiency (and as further discussed
in Supp. C), we apply the contact model to a subset of ver-
tices within each body part. The contact model captures the
essentials of natural contact behavior, where points closest
to the ground and most stable experience larger forces. Uti-
lizing the contact model also avoids the problems presented
in estimating the discrete contact status.

3.2.4 Physics-inspired Training Losses

Building upon the physics-based body representation and
force model, we can effectively integrate physics with the
model by utilizing several physics-inspired training losses.

To formulate these losses, the first step involves deriving
valuable motion force information from training sequences.
Given a 3D trajectory {q̄t}Tt=1 from training data, we utilize
the finite difference to obtain the velocity and acceleration
{ ˙̄qt, ¨̄qt}Tt=1. We then formulate the following optimization
problem to recover the motion forces at time frame t as:

arg min
xt,⌧ t

kM̄t ¨̄qt + C̄t + ḡt � J̄T
C,tĀtxt � ⌧ tk22

s.t. 0 < xt < x̄max. (stiffness and damping constraints)
(5)

The objective is a least squared error introduced by the
Euler-Lagrange equations in Eq. 2. (Variables for each
physical term are omitted for simplicity.) The optimiza-
tion variables consist of joint actuations ⌧ t and the spring-
mass model parameters xt. Specifically, the contact force
model in Eq. 4 is written in a vector representation as �p,t =
Ap,txp,t, where Ap,t = sp,t[�bh,t,�bn,t,�vC,t] include
the position-related parameters, and xp,t = [kh,t; kn,t; ct]

involve the unknown stiffness and damping parameters.
Concatenating the contact forces of all modeled points, we
have �t = Atxt. Additionally, the linear inequality con-
straints on xt are specified considering the maximal contact
forces that can be experienced when a human is standing
normally. The formulated optimization problem is a stan-
dard Quadratic Programming problem for which the global
minimum is found by utilizing CVXOPT [16]. The final
solution yields forces that comply with the constraints set
by the spring-mass model and optimally satisfy the Euler-
Lagrange equations. Utilizing the inferred forces enables
effective incorporation of physics into the model by impos-
ing the following physics-inspired losses.
Force Loss. We first employ the derived motion forces to
guide the model to produce realistic motion forces and ex-
tract meaningful latent representations for predicting phys-
ically plausible motion. Specifically, we introduce a linear
layer to project the latent representation Elatent to motion
forces {�t, ⌧ t}Tt=1 based on the contact force model. Given
the derived forces ⌧̄ t and �̄t, we train the model by mini-
mizing the mean absolute error as:

Lforce =
TX

t=1

�⌧k⌧ t � ⌧̄ tk1 + ��k�t � �̄tk1. (6)

Contact Loss. Moreover, we apply constraints to the ver-
tices experiencing contact forces, obtaining realistic contact
behavior through the following contact loss:

Lcontact =
TX

t=1

1

nCt

X

ni2Ct

�vkvni,tk1 + �z|zni,t|, (7)

where Ct denotes the set of vertices that exhibit contact
forces (calculated via Eq. 5), and nCt is the set size. vni,t

and zni,t represent the velocity and vertical distance to the
ground of the nth

i vertex, respectively. Minimizing Eq. 7 en-
courages those vertices that experience large contact forces
to have smaller velocity and be closer to the ground.
Euler-Lagrange Loss. Furthermore, we incorporate a loss
derived from the Euler-Lagrange equations to ensure the re-
constructed motion adheres to the physics equations:

Leuler =
PT

t=1 kMtq̈t +Ct + gt � JT
C,t�̄t � ⌧̄ tk1. (8)

It is worth noting that all terms in the loss function are an-
alytically computed and fully differentiable with respect to
the model outputs thanks to the physics-based body model.
Total Model Training Loss. Combining all the physics-
inspired losses with the reconstruction loss, we obtain the
total training loss function:

L = Lrecon + Lforce + Lcontact + Leuler. (9)

We utilize Eq. 9 to train the Transformer encoder-decoder
backbone solely using motion capture data. Once the model
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is trained, it is directly added on top of the kinematics-based
model to obtain improved motion estimates and infer mo-
tion forces, without the need of model fine-tuning.

4. Experiment
Datasets. During training, we use AMASS [51], a collec-
tion of motion capture datasets featuring a diverse range of
subjects and actions. For evaluation, we utilize the test set
of Human3.6M [25] and 3DOH [102]. Human3.6M en-
compasses common activities such as walking and sitting
down. In contrast to certain physics-based methods that
focus solely on sequences involving interactions with the
ground, we adhere to the standard protocol and evaluate our
method on all actions. 3DOH includes sequences of human-
object interactions, such as opening a box — representing a
challenging testing setting with significant occlusions. Fur-
thermore, we utilize PennAction [103] to demonstrate that
our approach helps improve human action recognition. Pen-
nAction comprises over 2K online videos of 15 sports ac-
tions, such as baseball pitching and bowling.
Evaluation Metrics. We evaluate 3D reconstruction error
(Rec. Error) and physical plausibility (Phys. Plausibility).
Rec. Error includes the Mean Per-Joint Position Error (MJE
in mm) and MJE after the Procrustes Alignment (P-MJE
in mm). Phys. Plausibility involves metrics introduced by
prior methods [31, 67, 93], including: (1) the average dif-
ference between the predicted and the ground truth accel-
eration (acceleration error ACCL in mm/frame2); (2) the
difference between the predicted and the ground truth joint
velocity magnitude (velocity error VEL in mm/frame); (3)
the average displacement between two adjacent frames of
those in-contact vertices (foot sliding FS in mm); (4) the
average distance to the ground of those mesh vertices be-
low the ground (ground penetration GP in mm).
Implementation. The Transformer backbone consists of
standard encoder and decoder layers, with 6 layers, 8 atten-
tion heads, and 1024 embedding dimensions. The model’s
input sequence length is 16, aligning with most existing
methods. For efficient Transformer training [77], we ini-
tially use the ground truth to extract the output embeddings
for 20 epochs, followed by an additional 5 epochs using
the prediction. We employ the Adam optimizer [30] with
a weight decay of 10�4. The initial learning rate is 10�5

and decreases to 0.8 after every 5 epochs. The hyperparam-
eters are empirically set as: �q = 2e3, �J = 1e5, �⌧ = 5,
�� = 1, �v = 100, and �z = 200.

4.1. Comparison with State-of-the-Arts (SOTAs)
Improvements to Kinematics-based Methods. As seen in
Tab. 1, PhysPT, significantly improves the physical plausi-
bility of kinematics-based motion estimates. Whether they
take images or video frames as input, the kinematics-based
methods often struggle with physical plausibility. For ex-

Method
Physics
Engine

Video
Label

Rec. Error Phys. Plausibility

MJE P-MJE ACCL VEL FS GP

HybriK† [38] - - 55.4 33.6 - - - -
*CLIFF [41] - - 52.2 36.8 15.4 6.8 8.3 9.3

VIBE [31] - - 61.3 43.1 15.2 25.5 15.1 12.6
*PoseBert [2] - - 54.9 37.5 5.0 4.0 10.0 12.8
GLoT [64] - - 67.0 46.3 3.6 - - -
PMCE [92] - - 53.5 37.7 3.1 - - -

PhysCap [67] Yes - 97.4 65.1 - 7.2 - -
NeurPhys [68] Yes Yes 76.5 58.2 - 4.5 - -
Xie et al. [84] Yes - 68.1 - - 4.0 - -
SimPoE [93] Yes Yes 56.7 41.6 6.7 - 3.4 1.6
NeurMoCon [24] Yes Yes 72.5 54.6 - 3.8 - -
TrajOpt [20] Yes - 84 56 - - - -
DiffPhy [19] Yes - 81.7 55.6 - - - -
D&D† [39] No Yes 52.5 35.5 6.1 - 5.8 1.5
Huang et al. [26] Yes Yes 55.4 41.3 - 3.5 - -

PhysPT (Ours) No No 52.7 36.7 2.5 3.4 2.6 1.5
#83.8 #50.0 #68.7 #83.9

Table 1. Evaluation on Human3.6M. Methods in the top block
use image inputs, those in the middle use video inputs, and those
in the bottom are physics-based. Current physics-based methods
require 3D annotated videos (“Video Label”) for training or adopt
a optimization-based framework. Methods marked by † are evalu-
ated on 3D joints computed from fitted body models [46] instead
of the one provided in the original datasets. For those marked “*”,
the results are from their officially released models. All other re-
sults are taken from the respective papers. Evaluation of PoseBert
and PhysPT is based on CLIFF. The green numbers represent per-
centages of the relative improvement of our approach over CLIFF.
For all metrics, smaller values are preferred.

ample, CLIFF retains competitive per-frame reconstruction
accuracy but provides poor performance on all the physical
plausibility evaluation metrics. Applying PhysPT to CLIFF
significantly enhances its physics plausibility. Notably, the
acceleration error (ACCL) and foot skating (FS) are reduced
by 83.8% and 68.7% respectively. Like PhysPT, PoseBert
leverages a Transformer-encoder pre-trained on 3D motion
capture data, but it does not consider physics. PoseBert
reduces ACCL and VEL somewhat, but unlike PhysPT it
fails to decrease the foot skating and ground penetration er-
ror. In Supp. D, we demonstrate that PhysPT also improves
other kinematics-based models besides CLIFF (SPIN [33]
and IPMAN [76]) and the improvements are consistently
more significant than PoseBert.
Advantages over Physics-based Methods. PhysPT sur-
passes existing physics-based methods without relying on
physics engines or 3D annotated videos for training. As
illustrated in Tab. 1, existing physics-based methods gen-
erally exhibit improved physical plausibility compared
to kinematics-based methods. They typically employ a
physics engine separate from their learning models to com-
pute physical parameters and simulate body motion. They
require 3D annotations paired with input videos for train-
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Method
Rec. Error Phys. Plausibility

MJE P-MJE ACCL VEL FS GP

*CLIFF [41] 53.0 34.4 26.0 12.0 10.8 12.6

VIBE [31] 98.1 61.8 - 26.5 - -
*PoseBert [2] 54.8 34.1 6.6 6.9 14.0 10.4

NeurPhys [68] 107.8 93.3 - 12.2 - -
NeurMoCon [24] 93.4 86.7 - 9.2 - -
Huang et al. [26] 79.3 72.8 - 8.9 - -

PhysPT (Ours) 53.0 33.3 4.6 6.5 4.7 0.1
#82.3 #45.8 #56.5 #99.2

Table 2. Evaluation on 3DOH. Evaluation of PoseBert and
PhysPT is based on CLIFF. The green numbers represent percent-
ages of the relative improvement of our approach over CLIFF.

ing or are confined to optimization-based approaches. In
contrast, our approach avoids the need for 3D annotated
videos by exploiting an innovative self-supervised learn-
ing framework. We bridge the gap between body kinemat-
ics and physics through a physics-based body representa-
tion and contact force model, allowing the seamless inte-
gration of physics with deep models. Comparing the per-
formance, our model achieves competitive reconstruction
accuracy with more significant advancements in physical
plausibility (Tab. 1). For instance, although all other meth-
ods utilize training data from Human3.6M, our approach
yields an acceleration error that is 2.4 times less than that of
its nearest competitor D&D (2.5 vs. 6.1 mm/frame2), and
foot skating that is 76% of second-best SimPoE’s (2.6mm
vs. 3.4mm). In Supp. E, we demonstrate that our approach
produces improved global motion recovery as well.

Robustness under Occlusion. Our approach is robust
to occlusion, as demonstrated through the evaluation on
3DOH (Tab. 2). Despite the significant occlusions and com-
plex human-object interaction motions included in 3DOH,
applying PhysPT to CLIFF produces consistent improve-
ment on motion estimates. The final model performance
outperforms existing physics-based methods. For exam-
ple, our approach achieves a velocity error of 6.5 mm/frame
(Tab. 2, VEL), 45.8% less than CLIFF’s 12.0, and 27.0%
less than the 8.9 attained by SOTA Huang et al.. Further-
more, on 3DOH, our approach surpasses existing physics-
based methods in reconstruction accuracy by a large mar-
gin. Specifically, our approach achieves P-MJE of 33.5,
54.0% less than Huang et al.’s 72.8. Existing physics-based
methods do not utilize 3DOH for training, and their per-
formance degrades on new testing sequences. In contrast,
our approach maintains better generalization ability and ef-
fectively leverages the favourable per-frame 3D body recon-
struction of kinematics-based estimates to generate accurate
and physical plausible motion.

Training Losses Rec. Error Phys. Plausibility

Lrecon Lforce Lcontact Leuler MJE P-MJE ACCL VEL FS GP

- - - - 52.2 36.8 15.4 6.8 8.3 9.3

X 52.7 36.7 2.5 3.5 7.1 6.9
X X 52.7 36.7 2.5 3.4 6.5 5.6
X X X 53.0 36.8 2.5 3.4 4.1 1.7

X X X X 52.7 36.7 2.5 3.4 2.6 1.5

Table 3. Ablation on the Training Losses. The evaluation is on
Human3.6M. The first row denotes the kinematics-based model

Frame !!, !", !# Kinematics-based Model PhysPT

Figure 4. Qualitative Evaluation on Utilizing PhysPT. The body
color of each figure represents the reconstruction at different time
frames (lighter colors indicate later time frames). Ground penetra-
tion and motion jittering exhibited in the reconstructed motion are
marked by red circle and rectangle, respectively.

4.2. Ablation Study

Effectiveness of PhysPT. We first study the effective-
ness of the Transformer encoder-decoder backbone and the
physics-inspired training losses. According to the evalu-
ation results detailed in Tab. 3, when trained exclusively
with the reconstruction loss (Eq. 3), the model maintains
the reconstruction accuracy while reducing the accelera-
tion and velocity errors of the kinematics-based estimates
(Tab. 3-row2 over row1). The reduction is more signifi-
cant than that observed in PoseBert (Tab. 1), demonstrat-
ing the advantages of leveraging the Transformer encoder-
decoder rather than using the encoder solely. However, the
foot skating and ground penetration errors are reduced to
a much lesser extent. Reducing them significantly requires
further imposing the physics-inspired losses. Specifically,
when force labels are used for training, the foot skating er-
ror drops from 7.1mm to 6.5mm and the ground penetra-
tion error drops from 6.9mm to 5.6mm. Imposing the con-
tact loss (Eq. 7) further reduces the errors but sacrifices the
reconstruction accuracy (Tab. 3-row3). To obtain the best
model, PhysPT, we leverage all the physics-inspired losses
for training. In Fig. 4, we showcase that utilizing PhysPT
effectively reduces the motion jitter and foot penetration ex-
hibited by kinematics-based estimates. For example, the
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Figure 5. Qualitative Evaluation with Force Estimation Visu-
alization. The testing image frames are from Human3.6M (left),
3DOH (middle), and PennAction (right).

kinematics-based model can produce excessive motion jit-
ter of the lower body even when only the upper body moves
(Fig. 4-row1) or be affected by occlusion in the input video
frame (Fig. 4-row2). By contrast, PhysPT resolves these
issues by integrating physics with the Transformer.
Motion Reconstruction with Force Estimation. Our ap-
proach can generate accurate 3D motion and infer forces, as
illustrated qualitatively in Fig. 5. The inferred forces offer
valuable insights into body dynamic behavior. For instance,
in the left column of Fig. 5, significant contact forces and
joint actuations are evident on the left foot when the subject
walks forward with the left foot (top) or on the left leg and
when the body leans forward to the left (middle). The es-
timated forces also capture the contact behavior of various
body parts, such as the knee (bottom). Moreover, our ap-
proach effectively handles occlusion (Fig. 5, 3DOH) and is
applicable to in-the-wild videos (Fig. 5, PennAction).

4.3. Improvements to Human Action Recognition
In the preceding sections, we illustrate that PhysPT gener-
ates more physically-realistic motion and produces reason-
able force estimates. The improved motion and additional
force estimates can successfully improve downstream tasks
such as human action recognition. We demonstrate this
through the evaluation of human action recognition on Pen-
nAction. Specifically, we employ a recent skeleton-based
recognition model proposed by [9]. We utilize the mo-
tion and forces generated by our approach as model input
and evaluate the corresponding recognition accuracy. We
summarize the evaluation results with comparison to recent
skeleton-based recognition models in Tab. 4. In this com-
parison, we exclude the physics-based recognition model
discussed in the related work ([52]) as it relies on 3D motion

Method
HDM
[109]

UNIK
[87]

Ours
Jkin Jphys F Jphys+F

Top-1 Acc. (") 93.4 94.0 96.0 96.8 94.4 98.0

Table 4. Human Action Recognition. The evaluation is on Penn-
Action. We report the Top-1 accuracy in percentage. Jkin and
Jphys stands for the 3D body joint positions estimated by the
kinematics-based model and PhysPT, respectively. F indicates the
motion forces output by PhysPT.

capture data and is not adept at handling in-the-wild videos.
Conventional methods primarily rely on 2D body pose as
model input. In contrast, our approach excels by leveraging
3D body pose information. Particularly, as shown in Tab. 4,
utilizing the motion generated by PhysPT yields better per-
formance compared to using kinematics-based estimates
(96.8% over 96.0% in accuracy). Note that, using estimated
forces alone, the accuracy is superior to that of existing
methods (94.4% over UNIK’s 94.0%), further demonstrat-
ing the effectiveness of our approach in estimating human
dynamics. Finally, the combination of motion and force es-
timates leads to a significant performance boost, achieving
the best recognition accuracy of 98.0%. In Supp. G, we pro-
vide action-wise evaluation, illustrating that utilizing forces
enhances performance, particularly in cases where relying
solely on 3D joint positions falls short, such as when differ-
ent actions have similar body movement patterns.

5. Conclusion
In summary, we describe PhysPT (Physics-aware Pretrained
Transformer), which generates more physically plausible
motion estimates than previous methods and infers motion
forces. PhysPT exploits a Transformer encoder-decoder
backbone trained through self-supervised learning and it in-
tegrates physics principles. Specifically, we craft a physics-
based body representation and a continuous contact force
model. We introduce novel physics-inspired training losses.
Leveraging them for model training enables PhysPT to ef-
fectively capture physical properties of the human body
and the forces it experiences. Through extensive experi-
ments, we demonstrate the direct applicability of PhysPT to
kinematics-based estimates results in the reconstruction of
more physically-realistic motion and the inference of mo-
tion forces from monocular videos. Notably, for the first
time, we demonstrate that these more accurate estimates of
motion and force translate to improvements in an important
downstream task: human action recognition.
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