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Abstract

The prohibitive cost of annotations for fully supervised 3D
indoor object detection limits its practicality. In this work,
we propose Random Prompt Assisted Weakly-supervised
3D Object Detection, termed as Prompt3D, a weakly-
supervised approach that leverages position-level labels to
overcome this challenge. Explicitly, our method focuses on
enhancing labeling using synthetic scenes crafted from 3D
shapes generated via random prompts. First, a Synthetic
Scene Generation (SSG) module is introduced to assemble
synthetic scenes with a curated collection of 3D shapes,
created via random prompts for each category. These
scenes are enriched with automatically generated point-
level annotations, providing a robust supervisory frame-
work for training the detection algorithm. To enhance
the transfer of knowledge from virtual to real datasets, we
then introduce a Prototypical Proposal Feature Alignment
(PPFA) module. This module effectively alleviates the do-
main gap by directly minimizing the distance between fea-
ture prototypes of the same class proposals across two do-
mains. Compared with sota BR, our method improves by
5.4% and 8.7% on mAP with VoteNet and GroupFree3D
serving as detectors respectively, demonstrating the effec-
tiveness of our proposed method. Code is available at:
https://github.com/huishengye/prompt3d.

1. Introduction
3D object detection, crucial for scene understanding, in-
volves identifying and classifying objects within sensory
data like images and point clouds. Advances in 3D sensing
and deep learning have fueled interest in detecting 3D ob-
jects from unstructured point clouds. State-of-the-art algo-
rithms [26, 33, 35, 36, 48, 51] treat the task of 3D object de-
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Figure 1. Illustration of the pipeline of the proposed Prompt3D.
Our method first converts random textual prompts into 3D shapes
using Shap-E [13]. These shapes are then matched with real scenes
using a coarse layout inferred from position-level annotations. The
resulting synthetic scenes, with pixel labels, enhance the training
of the detection head through domain adaptation.

tection as a supervised learning problem. However, strong
supervision using detailed annotations such as point-level
labels or 3D bounding boxes is resource-intensive, hinder-
ing the growth of 3D detection applications.

To address this limitation, recent studies [24, 37, 43]
explored model training with weak annotations. This has
led to the development of two primary methods: using
scene-level class tags [43] and employing detailed position-
level labels [23, 24, 54], such as object centroids and class
tags. Position-level weak supervision, especially for out-
door detection [47], offers better time-accuracy balance and
has gained prominence. Some weakly supervised meth-
ods [20, 30] in outdoor scenarios have achieved results on
par with fully supervised techniques. However, adapting
position-level weak supervision to complex indoor scenes is
still challenging, with few precedents. To enhance weak la-
beling in indoor settings, recent advancements [39, 54] use
virtual scenes with freely available annotations from stan-
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dard 3D shape datasets like ModelNet40 [53]. Neverthe-
less, the constrained scope of standard 3D shape datasets
leads to synthetic scenes that feature only a limited num-
ber of object types in indoor environments, and these types
are often represented with limited coverage. This limitation
in both scale and diversity weakens the effectiveness of the
weakly supervised approach.

Recently, the ascendancy of 3D generative models has
provided an avant-garde avenue for the creation of diverse
3D shapes, unlocking new potentials in exploiting cate-
gory information to its fullest extent. In light of this pro-
gression, our work introduces a novel weakly-supervised
approach for 3D indoor object detection named Random
Prompt Assisted Weakly Supervised 3D Object Detection
(Prompt3D). In our work, the use of position-level labels,
including the center and class tag of each object, serves
as efficient supervision for annotation purposes. Unlike
existing weakly-supervised methods that depend on pre-
defined 3D shapes, our approach utilizes a plethora of 3D
shapes generated by 3D text-driven generative models to
provide additional supervision signals. The description of
the scheme is shown in Fig. 1.

Firstly, our Synthetic Scene Generation (SSG) module
is designed to create virtual scenes using textual prompts.
We start by building a diverse library of prompt-based 3D
shapes. To ensure broad coverage of object diversity, we
prepare a comprehensive set of prompts for each category.
By employing the advanced 3D generative model Shap-
E [13], we convert textual prompts into corresponding 3D
geometries. Our method leverages textual diversity and
scalability, creating a 3D shape repository that surpasses
current datasets in breadth and diversity. These shapes, inte-
grated with position-level annotations, form the foundation
for constructing novel and realistic synthetic scenes. The
initial layout of virtual scenes is formed by systematically
selecting the most compatible 3D shapes from our gener-
ated library to replace objects in real-world scenes. Our
shape library’s diversity expands the range of options for
selecting lifelike shapes, which in turn enhances the diver-
sity and realism of virtual scenes.

Furthermore, to reduce the disparity between synthetic
and real scenes, we introduce the Prototypical Proposal Fea-
ture Alignment (PPFA) module. Specifically, our objective
is to minimize the distance between prototypical features of
the same class proposals in both real and synthetic scenes.
This alignment strategy aims to harmonize the feature dis-
tributions of the two scenes. In contrast to prior work [54]
utilizing adversarial feature alignment (AFA) to bridge the
gap by aligning overall features in an adversarial manner,
which can introduce scene-level bias and instability, our
PPFA module focuses on transforming detailed knowledge
into class-specific features. The proposed transfer method
enhances the robustness and accuracy of knowledge transfer

from virtual to real scenarios, thereby fully leveraging the
powerful supervisory signals generated by synthetic scenes.

Guided by two essential modules, Prompt3D boosts
weakly supervised object detection by incorporating super-
visory information from virtual scenes created with text-
generated shapes. Experiments on ScanNet affirm our ap-
proach’s superiority. Compared to weakly supervised meth-
ods using standard shape repositories, leveraging prompt-
based synthetic scenes notably improves detector discrimi-
native abilities in weakly supervised settings. Specifically,
when utilizing VoteNet as the detector in the weakly su-
pervised setting, the performance difference from the fully
supervised setting is trimmed to just 7.7% mAP@0.25. It is
worth noting that when GroupFree3D is used as the detec-
tor, this gap further shrinks to only 3%.

To summarize, our main contributions are:
• We devise a novel approach for 3D indoor object de-

tection under weak supervision, generating synthesized
scenes derived from random textual prompts correspond-
ing to various categories to enrich the supervisory signal.

• Our introduced transfer module is grounded in prototype
learning, markedly boosting the generalization ability of
detectors and effectively leveraging the supervisory infor-
mation from the virtual scene.

• Experiments on the popular indoor dataset ScanNet val-
idate the effectiveness of the proposed approach. Com-
pared with sota BR, Prompt3D improves by 5.4% and
8.7% on mAP with VoteNet and GroupFree3D serving as
detectors respectively. Our method achieves comparable
detection performance with the fully-supervised setting.

2. Related Work
2.1. 3D Object Detection

3D object detection aims to identify and localize objects
within their encompassing amodal 3D bounding boxes.
Contemporary deep learning-based 3D object detection
frameworks [6, 11, 33, 36, 40–42, 55, 59] presuppose com-
prehensive supervision and hinge on the premise of precise
3D annotations within datasets. In Qi et al. [33], 3D ob-
ject detection from RGB-D data is performed in both indoor
and outdoor scenes. MonoGRNet [35] is proposed for the
amodal 3D object localization from a monocular RGB im-
age. TLNet [36] triangulates the objects with stereo images.

Recently, weakly supervised 3D object detection has
gained popularity as labeling precise 3D boxes is extremely
laborious. As explored in [3, 7, 10, 14, 18, 45, 49, 50], it is
assumed that the instance-level bounding box annotations
are not provided by the training set, and the supervision
can come from weak annotations. Explicitly, it encompass
scene-level [43] and position-level methods [23, 24, 54].
The former annotates objects with only class tags, whereas
the latter provides annotations for both the object’s center
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Figure 2. The framework of the proposed Prompt3D method. 1) The Synthetic Scene Generation (SSG) module uses weak annotations
to select and assemble 3D shapes from a prompt-based generated repository, then recreating a new scene mirroring the original layout. 2)
The Prototypical Proposal Feature Alignment (PPFA) module enhances object detection by aligning prototype box proposal features
between synthetic and real scenes, effectively bridging the domain gap without relying on annotations.

and its class. While scene-level methods offer a reduction
in manual annotation efforts, their efficacy is typically com-
promised by the absence of precise positional data, a limi-
tation not faced by their position-level counterparts.

2.2. 3D generative models

The field of 3D generation [12, 27, 28, 31] seeks to create
3D assets from various modalities like text and images. The
developments in 3D generation have reduced costs for ex-
panding 3D datasets, resulting in larger and more realistic
virtual datasets, essential for applications such as 3D detec-
tion. The achievements in neural volume rendering [1, 17,
25] have increased interest in rendering-aware 3D synthe-
sis [4, 5, 46] that learns directly from images. The success
of text-to-image models [38] has also sparked innovation in
text-to-3D synthesis techniques [12, 27, 31, 44]. Technolo-
gies like CLIP-forge [44] employ normalizing flow models
to create shape embeddings directly from text. DreamFu-
sion [31] has shown impressive text-to-3D capabilities us-
ing a pre-trained text-image model. Magic3d [19] has led to
more efficient mesh representations, streamlining the pro-
cess further. The innovative Shap-E [13], which is trained
on extensive 3D datasets, stands out for its ability to quickly
and efficiently generate 3D structures from textual prompts.
In our research, we utilize Shap-E to generate 3D objects
from textual prompts, improving 3D detection by extract-
ing more information from weakly supervised data.

2.3. Domain Adaptation

Domain adaptation involves transferring knowledge from
one domain (the source domain) to another (the target
domain), which is especially valuable when the training
dataset is limited. Domain adaptation is commonly used
in 2D visual tasks such as classification [52, 60] and se-
mantic segmentation [2, 16, 56–58]. Typical methods in-

clude image-level bias correction, distribution-aware align-
ment, and centroid-aware alignment. Aligning distribution
centroids has proven effective in reducing the domain gap.
In more developments, domain adaptation has extended to
3D visual tasks, particularly in scenarios involving interac-
tions across domains. For example, approaches like BR [54]
and Randomrooms [39] have introduced global alignment
modules to improve feature discriminability in 3D detec-
tion models operating in synthetic environments. In con-
trast, our approach focuses on aligning anchor distributions
at the proposal level, presenting a tailored solution for 3D
domain adaptation challenges.

3. Approach
3.1. Overview

The architecture of our weakly supervised object detection
method is depicted in Fig. 2. Central to our approach is
the compensation for information loss associated with weak
supervision via the use of synthetic scenes, from which full
annotations are automatically derived. These synthetic en-
vironments are crafted to approximate the real-world layout
and are constituted using a 3D shape repository generated
by the text-driven 3D generative model.

To be specific, the proposed method in our paper consists
of two key stages: 1) Synthetic Scene Generation (SSG).
During this phase, we meticulously curate a synthetic scene
under the guidance of the weak supervision of real scenes.
2) Prototypical Proposal Feature Alignment (PPFA). The
PPFA module is crafted to ameliorate the divergence be-
tween synthetic scenes and actual environments.

3.2. Synthetic Scene Generation

In the SSG module, we create synthetic scenes with 3D
shapes under weak supervision. This process enables the
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automatic generation of ground truth point annotations in
synthetic scenes. The generated scenes can offer strong su-
pervision. They fully harness the information within the
limited annotations of real scenes, thereby enhancing the
detection performance. Explicitly, the construction of syn-
thetic scenes can be divided into two steps: prompt-to-mesh
translation and 3D shape assembly.

Prompt-to-mesh translation. Considering the specific
categories of objects present in real scenes, such as ‘sofa’
and ‘table’, we can easily generate corresponding descrip-
tive text prompts for each category. We have compiled
an extensive collection of prompt sets for each category,
guaranteeing a thorough representation of the diverse range
of objects within each category. These prompts are trans-
lated into 3D forms via the Prompt-to-Mesh (P2M) mod-
ule. Here, we do not introduce a novel 3D shape generation
modality but rather employ a mature 3D generative model
Shap-E to process textual prompts into 3D meshes. For ar-
chitecture details, please refer to Jun and Nichol [13]. Ben-
efiting from the diversity of prompts, a vast and varied 3D
shape library is successfully synthesized. The text’s inher-
ent diversity and expandability circumvent the constraints
typically associated with finite 3D shape datasets. For in-
stance, while ModelNet40 [53] includes only 109 variations
in the “door” category, we can expand this category to any
desired quantity in our own 3D shape library by increasing
the number of prompts, as depicted in Fig. 5.

3D shape assembly. After generating the 3D shape
repository, we construct a virtual scene to replicate the lay-
out of a real scene using position-level ground truth labels.
This process involves four steps:

1) Segmentation of the real scene. To achieve a rea-
sonable and realistic layout, we first use a normal-based
graph cut method [9] to segment the mesh version of the
real scene. This segmentation breaks down the point cloud
in the real scene into geometric plane components. Each
segmented set of points represents a seg.

2) Initial generation of the virtual scene. We form the
initial layout of virtual scenes by selecting the most match-
ing 3D shapes to replace objects in real-world scenes. In
detail, to approximate the shape of an object, we ana-
lyze the shapes of all components within a certain distance
from the object’s center point. This helps us find simi-
lar shapes to replace them. We obtain weak labeling in-
formation from real scenes for each object in the form of
[(x, y, z), semantic id]. We also calculate the 3D average
size (dxavg, dyavg, dzavg) for objects of each category, and
radiusavg = (dxavg + dyavg)/2. Points within a sphere
of radius α · radiusavg around the object’s center point
are collected from the scene point cloud. We increment
the sphere’s radius gradually until a sufficient number of
points are gathered. With these points, we then determine
the seg they belong to. We calculate the center and the

Real scenes Scene segmentation Initial composition

Collision constraintsFull annotation

𝒔𝒔𝟏𝟏

Gravity constraints

𝒔𝒔𝟑𝟑 (a)

𝒔𝒔𝟑𝟑 (b)𝒔𝒔𝟒𝟒

𝒔𝒔𝟐𝟐

Figure 3. Illustration of the 3D Shape Assembly Process in SSG.
s1: Scene Segmentation, where the structure of the real scene is
identified; s2: Preliminary Composition, showcasing the initial
arrangement of 3D shapes; s3 (a) and s3 (b): Fine-tuning with
gravity and collision constraints to closely mimic real-world scene
layouts; s4: Computing Bounding Boxes for each instance.

minimum-maximum values in three coordinate dimensions
for each seg. Segments with excessively large spans in the
z-dimension or that are too far from the object’s center in the
xy-plane are removed. Next, we collect all relevant point
clouds based on all segs of an object. We project the points
onto the xy-plane and find the Minimum Enclosing Rect-
angle (MER), represented as (l, s, θ), where l, s, θ denote
the length, width, and the rotation angle of the rectangle,
respectively. We search for the 3D shape in our 3D library
that is closest in terms of the ls ratio.

3) Adjustment of the virtual scene layout. To achieve the
final scene layout, we apply gravity constraints and collision
constraints based on location information and support rela-
tionships between objects. Compared to the point-version
shapes, our mesh-version shapes enable more efficient and
accurate adjustment of object positions.

4) Generation of ground-truth bounding box. Due to
the explicit knowledge of the generated 3D shapes, the full
annotation of the synthetic scenes can be easily generated.
First, individual instance objects within the point cloud data
are identified by analyzing the instance labels, with each
label corresponding to a different object. Following iden-
tification, all points comprising an instance object’s point
cloud are extracted. For each object’s point cloud, an axis-
aligned bounding box is calculated. Each bounding box is
assigned a semantic label indicating the object’s category,
such as “chair” or “table”.

The process of 3D shape assembly is visually presented
in Fig. 3. See more details in the supplementary.

3.3. Prototypical Proposal Feature Alignment

To facilitate weakly supervised object detection, our ap-
proach introduces the Prototypical Proposal Feature Align-
ment (PPFA) module, designed to leverage the robust su-
pervision of synthetic scenes. By exploiting the structural
consistency between synthetic and actual scenes, the PPFA
module minimizes the domain distribution distance within
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the feature space of prototype proposals. This enables the
detection model to acquire discriminative capabilities from
merely box-level annotations in real-world datasets.

Formally, denote the synthetic scene composed of m
sampled 3D shapes by Ps={os1, os2, . . . , osm}. Similarly,
the real scene composed of n objects is denoted as
Pr={or1, or2, . . . , orn}. Both Ps and Pr are forwarded to
the proposal feature extractor F to generate per-proposal
features of two scenes Is = F (Ps) ∈ RN×d and Ir =
F (Pr) ∈ RN×d. N is the predicted proposal number and d
is denoted by the feature dimension.

For the synthetic scene, the prototype of the cth class for
the objects can be calculated as :

µ′c
s =

1

|Λc|
∑

i∈{1,2,··· ,N}

I(Ms,i = c)Is,i, (1)

where Is,i ∈ Rd is the ith proposal feature and I is an in-
dicator function. |Λc| denotes the number of all the proposal
features belonging to the cth class. Ms,i represents the cat-
egory of the ith proposal in the synthetic scene. In reality,
we regard the category of 3D object closest to the predicted
box center coordinate as the class label of the proposal.

Similarly, denote the class label of the ith proposal by
Mr,i, prototype of the cth class for the real scene can be
defined as:

µ′c
r =

1

|Λc|
∑

i∈{1,2,··· ,N}

I(Mr,i = c)Ir,i, (2)

In addition, in order to avoid introducing invalid proposal
features, we introduce a foreground proposal mask to filter
out features that are more likely to belong to foreground
proposals to participate in feature alignment. Specifically,
to delineate the likelihood of each predicted object center
being a valid detection, the mask mi of the ith proposal is
defined as:

mi = I(min
j

d(vi, cj) < τ) (3)

where d(vi, cj) is the Euclidean distance between the
predicted object center vi and the ground truth center cj .
Besides, τ is a predefined proximity threshold. In our work,
τ is set to 0.3.

Therefore, the masked prototype of the cth class µ′c
mr for

the real scene can be defined as:

µ′c
mr =

1

|Λc|
∑

i∈{1,2,··· ,N}

miI(Mr,i = c)Ir,i, (4)

Similarly, for the target domain, the mask prototype of
the synthetic scene µ′c

ms is also operated in the same way.
To align the feature distribution across domains, we min-

imize the L1 distance between each prototype of the same

class of the synthetic and real scenes. The prototypical do-
main adaptation objective can be defined as:

LD =

C∑
c=1

∥µ′c
mr − µ′c

ms∥1 . (5)

In implementation, such calculation is increasingly com-
putationally intensive as the training batches accumulate.
To alleviate the issues, we estimate the prototypes with an
online estimation algorithm following the same strategy as
in [15, 21]. Specifically, the updated prototype of the syn-
thetic scene after the tth training iteration is calculated as:

µc
(s,t) =

pc(s,t−1)µ
c
m,(s,t−1) + qc(s,t)µ

′c
m,(s,t)

pc(s,t−1) + qc(s,t)
, (6)

where pc(s,t−1) denotes the total number of the masked
proposals belonging to cth category during previous t − 1
iterations and qc(s,t) represents the number of the masked
proposals belonging to kth category in the current training
batch.

Naturally, the updated prototype of the synthetic scene at
the tth mini-batch can be written as:

µc
(r,t) =

pc(r,t−1)µ
c
m,(r,t−1) + qc(r,t)µ

′c
m,(r,t)

pc(r,t−1) + qc(r,t)
, (7)

where pc(r,t−1) represents the number of the masked pro-
posal belonging to cth category accumulated in history and
qc(s,t) is the proposal number of cth category during the cur-
rent iteration.

According to Eq. 6 and 7, calculating the updated pro-
totype only requires features of the current batch and the
prototype of the last step, thus avoiding the heavy computa-
tional and memory overhead.

Therefore, the final migration loss can be written as:

LD =

C∑
c=1

∥µc
r − µc

s∥1 . (8)

3.4. Training Objective

Our object detection framework is trained using both syn-
thetic and real-world scenes, each with its own supervisory
nuances. The loss function for synthetic scenes, LS , incor-
porates objectness, bounding box, and semantic classifica-
tion losses, paralleling fully-supervised methods [34].

For real scenes with box-level annotations, the adapted
loss function LR retains objectness and semantic classifi-
cation components but simplifies bounding box regression
due to incomplete geometric annotations.

Additionally, a domain adaptation loss LDA, introduced
through the PPFA module, augments the training process
to improve feature discriminability across domains. This
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Detector Setting Method batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. ward. mAP@0.25

VoteNet

full sup. FSB 66.8 86.2 24.4 55.6 0.0 88.3 0.0 48.5 62.8 45.8 24.1 0.1 47.2 5.2 62.1 73.2 13.4 88.7 35.1 62.6 94.6 7.8 45.1

weak sup.

WSB 21.9 46.9 0.3 2.3 0.0 53.7 0.0 0.9 32.1 1.0 6.6 0.1 0.2 0.1 1.8 53.6 0.1 57.0 4.6 6.4 19.7 0.0 14.1
WSBP 38.5 83.1 16.7 33.2 0.1 75.5 0 9.0 53.2 14.7 22.1 0.0 26.2 8.5 64.9 82.1 14.1 82.5 37.3 41.6 86.1 4.0 36.1
BRP 50.8 70.4 10.7 29.1 0.0 65.6 0.0 14.6 53.9 9.8 8.5 0.3 34.5 4.2 34.9 68.9 5.7 70.9 22.5 35.3 88.2 9.2 31.3
BRM 57.1 80.4 14.3 31.7 0.0 77.4 0.0 13.2 49.7 11.3 14.8 1.0 43.5 6.0 56.5 65.0 10.6 80.2 26.9 44.2 91.4 6.5 35.5
Ours 59.7 83.7 35.9 40.5 0.1 74.8 0.0 9.1 60.1 21.7 19.7 0.0 34.5 5.4 58.2 59.5 17.2 84.0 22.4 39.4 95.4 2.5 37.4

GroupFree3D

full sup. FSB 86.2 87.5 16.3 49.6 0.6 92.5 0.0 70.9 78.5 53.5 56.0 6.4 68.2 11.5 81.5 88.5 15.2 88.2 45.6 65.0 99.7 31.2 54.2

weak sup.

WSB 75.0 75.7 4.3 17.2 0.0 81.4 0.0 3.5 34.0 4.7 3.2 2.1 46.6 3.3 45.8 52.8 8.3 71.0 15.7 18.1 90.8 0.7 29.7
WSBP 75.0 91.3 21.1 26.9 7.9 82.9 1.2 5.3 56.0 6.8 45.4 26.9 56.3 31.3 58.4 60.7 4.0 86.8 39.1 33.5 92.4 3.0 41.5
BRP 72.3 73.5 45.8 27.7 0.0 77.2 8.2 30.8 35.0 17.8 51.7 0.3 64.2 25.0 63.5 66.6 23.8 86.7 33.9 37.6 98.3 5.2 43.0
BRM 85.3 90.9 8.8 34.3 1.9 80.0 7.7 24.7 58.0 20.8 45.4 31.3 64.4 25.8 67.5 76.7 27.3 91.4 43.3 46.7 94.8 8.3 47.1
Ours 76.2 96.1 5.8 40.5 0.0 83.5 7.7 50.2 55.4 29.2 52.4 0.0 57.5 42.7 80.2 82.9 21.8 92.3 63.5 45.5 100.0 42.3 51.2

Table 1. 3D object detection results on ScanNet validation set, evaluated using mAP@0.25. Experiments were conducted with VoteNet
and GroupFree3D detectors. Following Xu et al. [54], we use 22 categories to assess performance on ScanNet. Best scores in bold.

combined loss framework effectively supports learning in
scenarios with limited annotation detail.

The overall loss function is defined as:

Ltotal = LR + λSLS + λDLD, (9)

where λS and λD are trade-off parameters that weigh the
importance of the corresponding loss terms.

4. Experiments

In this section, we perform experiments to validate the ef-
fectiveness of the proposed weakly supervised detection
method. Firstly, we outline the experimental details. Then
we provide examples of the generated synthetic scenes and
present the detection results of our method. Finally, we con-
duct an analysis of our method via ablation studies.

4.1. Experimental Setup

Datasets. We conducted a series of experiments utilizing
the ScanNet dataset [8]. The meticulously annotated in-
door scene dataset includes 1201 training and 312 valida-
tion scenes but lacks manually labeled bounding boxes, ne-
cessitating the computation of axis-aligned bounding boxes.
We meticulously evaluated these bounding box predictions
on the validation set. Our model training was based solely
on supervision from the object’s center coordinates and cat-
egory data. Following the framework of the weakly super-
vised method [54], we assessed our method’s detection per-
formance on 22 indoor object categories.
Implementation details. In our study, we utilize
VoteNet [34] with a PointNet++ backbone [32] and
GroupFree3D [22] as foundational object detectors, imple-
mented using PyTorch. For VoteNet, the box proposal fea-
tures I with d = 128 are derived from MLP1 layer outputs
in the proposal module, setting proposal count (N) to 256.
During the training phase, we set λD = 0.1 and λS = 0.05.
For GroupFree3D which has several decoders and each one
outputs a stage of proposal features, we choose features of
the last stage as the box proposal features I and d = 288.
During the training phase, we set λD = 10 and λS = 0.5.

Details on ablation experiments regarding loss weights are
provided in the supplementary material.

In the Synthetic Scene Generation stage, We first gen-
erated a prompt set around 22 types of indoor objects.
The prompt set is randomly generated using the large lan-
guage model ChatGPT [29]. To get the 3D shape reposi-
tory, the latest 3D generator Shap-E [13] is used to transfer
the prompts to the 3D meshes. Furthermore, we have per-
formed several rounds of scene enhancement in our virtual
dataset. Initially, we simulated real-world scenes to create
a foundational virtual dataset, and then randomly inserted
indoor objects to increase complexity. Each enhancement
round augmented a fixed set of 233 scenes, with a total of 8
rounds conducted.

4.2. Results and Analysis

Compared methods. To evaluate the performance of
our weakly-supervised object detection method, we con-
duct comparisons across different settings and with other
weakly-supervised approaches. We chose VoteNet [34] and
GroupFree3D [22] as baseline detectors.

The weakly-supervised settings include: (i) WSB:
Weakly Supervised Baseline which is the baseline detec-
tor trained on ScanNet with position-level annotations. (ii)
WSBP: Weakly Supervised Baseline pre-trained on the syn-
thetic scenes based on ModelNet40. We also give the re-
sult of the fully-supervised setting FSB, which is the Fully
Supervised Baseline which is the baseline detector trained
with strong annotations. Besides, the weakly supervised
networks compared are BRP and BRM , which are trained
using the point cloud version and mesh version of BR re-
spectively. They use virtual scenes generated by Model-
Net40 as additional supervision.
Weakly-supervised object detection. The quantitative ex-
perimental results can be seen in Tab. 1.

On ScanNet, we evaluate detection performance across
22 classes, including bathtub, bed, bench, and chair, etc.,
using mAP@0.25 as the evaluation metric. The results for
mAP@0.5 can be found in the supplementary material.

On both baseline object detectors, our method effec-
tively shortens their performance differences in weakly
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(a) WSB (b) BR (c) Ours (d) Ground Truth

Figure 4. Visualization of detection results, with zoomed-in details on the right for clarity. Comparing (a) WSB, (b) BR, (c) Our Prompt3D,
and (d) ground truth labels on the ScanNet validation dataset.

ba
tht

.
be

d
be

nch bsf
.

bo
t.

cha
ir cup cur

t.
de

sk do
or

dre
s.

key
b.

lam
p

lap
t.
mon

it. n.s
.

pla
nt sof

a
sto

ol
tab

le toi
l.

ward
.0

200

400

600

800

1000

1200

Sh
ap

e 
Nu

m
.

Our Shapes
ModelNet40

ba
tht

.
be

d
be

nch bsf
.

bo
t.

cha
ir cup cur

t.
de

sk do
or

dre
s.

key
b.

lam
p

lap
t.
mon

it. n.s
.

pla
nt sof

a
sto

ol
tab

le toi
l.

ward
.0

2000

4000

6000

8000

10000

Ob
je

ct
 N

um
.

Our Scenes
Real Scenes
BR's Scenes

(a)a) Shape Number Comparison of Two 3D Library
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Figure 5. Scene Synthesis Details. Aligning with [54], we chose
22 categories for data generation. 1) Our 3D library surpasses
ModelNet40 [53] in shape count and boasts scalability through
extra prompts, thus offering superior scene variety. 2) Compared
to ScanNet (real scene) [8] and BR [54], our virtual scenes feature
a greater quantity and diversity of objects.

supervised settings and fully supervised settings. When
using VoteNet as the detector, the performance dispar-
ity with fully supervised settings is trimmed to just 7.7%
mAP@0.25. Compared with WSB, our method has more
than 23.0% improvement. Compared with the previous sota
BR [54], our method still gets nearly 2% improvement. In
most categories, our method performs the best among all
the weakly supervised methods.

When using GroupFree3D as the detector, the perfor-
mance difference with the fully supervised setting is further
reduced to only 3% mAP@0.25, reaching 51.2%. Com-
pared with WSB, our method has more than 23.0% im-
provement. Our method obtains up to 4.1% improve-
ment over BR. In most categories, our method performs
best compared to other WSB settings, and in some cate-
gories (door, laptop, stool, toilet) it even far outperforms
the FSB setting. This further validates the effectiveness

(a) Real (b) BR’s (c) Ours

Figure 6. Synthetic scenes visualization: (a) Real scene; (b) The
scene generated by BR via ModelNet40; (c) Our virtual scene con-
structed using a set of 3D shapes that are generated from prompts.

of our weakly supervised method. The migration effect is
markedly better with GroupFree3D as the detector com-
pared to using VoteNet. This superiority is attributed to
GroupFree3D’s attention mechanism, which renders box
features of the same category during migration more reli-
able than those obtained with VoteNet.

Furthermore, both the detectors pretrained with our syn-
thetic scenes improve the ability to learn discriminative fea-
tures under the weakly supervised setting. This could be at-
tributed to the fact that our synthesized scenarios based on
textual prompts have introduced diversity, thereby promot-
ing the learning of network parameters during pre-training.

4.3. Visualization

Qualitative detection results. In Fig. 4, we visualize
the detection results of WSB, BR, and our method, with
GroupFree3D as the detector. Despite the complexity of
certain cases that WSB and BR fail to localize correctly, our
method consistently achieves successful detection. These
results highlight the benefits of label enhancement through
virtual scenes created with prompts.
Virtual scene evaluation. We construct synthetic scenes
by generating 3D shapes from textual prompts. As shown
in Fig. 5, our approach has the ability to generate a greater
variety of 3D shapes per class, surpassing existing real or
virtual datasets in terms of shape quantity. This achieve-
ment is facilitated by the cost-effective method of generat-
ing diverse 3D shapes from abundant prompts.

Fig. 6 showcases that our synthesized scenes offer a
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more realistic visual appearance compared to BR’s scenes
created with ModelNet40. Additionally, our scenes include
more training objects than both real scenes and those of BR,
as quantitatively compared in Fig. 5.

4.4. Ablation Study

Network setting. Our ablation studies evaluate the impact
of each module on the network, confirming the effectiveness
of our two proposed modules, as presented in Tab. 2.

(i) SSG module. We explore the Synthetic Scene Gener-
ation module (SSG) from two angles: 3D shape repository
selection and virtual scene assembly.

Firstly, we scrutinize the 3D shape repository. Our com-
parison of settings 1 and 3, or 2 and 4 in Tab. 2, reveals
that our prompt-based 3D shape repository greatly enhances
weakly-supervised performance of the detector compared to
ModelNet40, thanks to its textual diversity.

Secondly, we analyze the methodology of constructing
virtual scenes. The former method BR [54] bases the initial
layout of virtual scenes on horizontal segments with signif-
icant area and height and primarily uses point cloud ver-
sions of 3D shapes for construction, which may miss finer
details. In contrast, our approach starts the scene layout
around the centroids of real scene objects, facilitating the
use of 3D mesh shapes that better resemble real objects.
Moreover, we opt for assembling using the mesh versions
of shapes, resulting in virtual scenes with a more realistic
appearance. When comparing similar settings (1 and 2, or
3 and 4) within the same 3D shape repository, our assembly
method outperforms BR in improving the performance of
weakly-supervised networks.

(ii) Domain adaptation. After establishing an effective
virtual scene generation technique, we then focus on op-
timally transferring the knowledge from virtual scenes to
real-world scenarios.

Common transfer methods, like Adversarial Feature
Alignment (AFA), align features adversarially, with a dis-
criminator predicting feature domains to produce indistin-
guishable features. Conversely, our method aligns fea-
ture prototypes of the same category proposals to transfer
knowledge from virtual scenes to real datasets. As shown
in settings 4 and 5 in Tab. 2, our transfer algorithm, when
using a constant virtual dataset, enhances object detec-
tion model transferability more effectively than AFA. PPFA
leverages similarities between virtual and real scenes and
utilizes category-specific features, leading to more robust
and accurate real-world object detection.
Feature selection for PPFA. To enhance the effective trans-
fer of valuable knowledge from synthetic to real scenes, our
PPFA module is designed to align the distribution of bound-
ing box proposal features. However, determining which box
proposal features to use as the alignment features is chal-
lenging without thorough ablation studies. To this end, we

Setting
SSG DA

mAP@0.253D Shape Scene Assembly AFA PPFA
ModelNet40 Ours BR Ours

1 " " " 30.6

2 " " " 35.0

3 " " " 31.1

4 " " " 37.4

5 " " " 35.5

Table 2. Ablation study focusing on network settings, using
VoteNet as the detector.

Layer Seed Feature Vote Feature Aggregate Vote Feature

best map@0.25 33.2 35.3 37.4

Table 3. Selection of features for migration on VoteNet.

Layer 0 head 1 head 2 head 3 head 4 head 5 head

best map@0.25 44.3 47.4 48.7 48.3 49.4 51.2

Table 4. Selection of features for migration on GroupFree3D.

conduct a feature-level ablation study on two different ob-
ject detection networks. The corresponding results are dis-
played in Tab. 3 and Tab. 4.

For VoteNet, the features aligned within the bounding
boxes are chosen from the indirect features generated by
VoteNet. There are three options: seed features, voting fea-
tures, and aggregated voting features, corresponding to the
outputs of the backbone module, voting module, and pro-
posal module, respectively. Under the same experimental
setup, the network aligning the distribution of aggregated
voting features achieves the best detection performance.
Hence, we select aggregated voting features as the align-
ment proposal features.

In the case of GroupFree3D, which possesses six de-
coder stages, each stage outputs a kond of proposal fea-
ture. To distinguish, we sequentially name the six detection
heads as: 0 head, 1 head, 2 head, 3 head, 4 head, and
5 head. As illustrated in Tab. 4, under identical experimen-
tal settings, aligning features from the final stage 5 head
yields the best weakly-supervised performance. Therefore,
we choose the features generated by 5 head as our bound-
ing box proposal features.

5. Conclusion
In this paper, we propose a novel weakly-supervised object
detection approach, named Random Prompt Assisted
Weakly-Supervised 3D Object Detection (Prompt3D). To
mitigate the impact of weak labeling on network training,
we propose an SSG module, which generates synthesized
scenes with the 3D shapes generated by Shap-E using
random prompts, offering strong supervision with a domain
gap from real scenes. To bridge this gap, the PPFA module
is designed to transfer knowledge via aligning prototypical
features across the synthesized scenes and real scenes.
Extensive experiments on the widely used indoor dataset
ScanNet validate the effectiveness of the proposed method.
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