
Residual Learning in Diffusion Models

Junyu Zhang1 Daochang Liu2 Eunbyung Park3 Shichao Zhang4 Chang Xu2*

1Central South University, 2The University of Sydney
3Sungkyunkwan University, 4Guangxi Normal University

zhangjunyu@csu.edu.cn, {daochang.liu, c.xu}@sydney.edu.au,
epark@skku.ac.kr, zhangsc@gxnu.edu.cn

Abstract

Diffusion models (DMs) have achieved remarkable gen-
erative performance, particularly with the introduction of
stochastic differential equations (SDEs). Nevertheless, a
gap emerges in the model sampling trajectory constructed
by reverse-SDE due to the accumulation of score estimation
and discretization errors. This gap results in a residual in
the generated images, adversely impacting the image qual-
ity. To remedy this, we propose a novel residual learning
framework built upon a correction function. The optimized
function enables to improve image quality via rectifying the
sampling trajectory effectively. Importantly, our framework
exhibits transferable residual correction ability, i.e., a cor-
rection function optimized for one pre-trained DM can also
enhance the sampling trajectory constructed by other dif-
ferent DMs on the same dataset. Experimental results on
four widely-used datasets demonstrate the effectiveness and
transferable capability of our framework.

1. Introduction
Diffusion models (DMs) [24, 64], a recent family of gener-
ative models, are revolutionizing the field of image genera-
tion [13, 16, 54, 56], and also finding rapid applications in
other domains such as video generation [20, 48], 3D gener-
ation [61, 76], text-to-image generation [51, 57, 58], inverse
problems [11, 41, 68], and image segmentation [3, 40].
Especially since the emergence of the seminal work [69],
DMs are generalized through the lens of stochastic differen-
tial equations (SDEs), achieving start-of-the-art image qual-
ity [30, 54] and good mode coverage [32, 34, 45, 67].

DMs consist of two processes, i.e., forward diffusion and
reverse sampling [62, 65, 72]. In the diffusion process, a
forward SDE is employed to perturb the data distribution
via a well-designed noise schedule [28, 69]. Since the noise
scale gradually reaches its maximum value, the target data

*Corresponding author

�� ��−1 �� �3 �2 �1 �0… …

True Sampling

Model Sampling

Corrective Sampling (Ours) Residual

…

…

…

…

Figure 1. Residual Learning in Diffusion Models. A gap arises
between true sampling and model sampling due to score estima-
tion and discretization errors. Our residual learning framework
employs a parameterized correction function to learn the residual
and correct the model sampling towards true sampling process.

distribution reverts to a prior distribution. Sample genera-
tion can be achieved by reversing this process [29, 46, 78].
Crucially, the reverse process satisfies a reverse-time SDE
or a probability flow (PF) ordinary differential equation
(ODE) [69]. This can be derived from the forward SDE by
considering the score of the marginal probability densities
as a function of time [1, 47]. We can therefore approximate
the reverse-time S/ODE by training a time-dependent neural
network to estimate the score [26, 64, 66].

In light of SDE frameworks, DMs tend to be based as di-
rectly as possible on a rigorous theoretical footing [28, 47],
which serves as a solid evident that a gap between the true
and modeling distributions constructed by the model sam-
pling trajectory cannot be avoided [29, 30, 32, 78], as shown
in Figure 1. Though the approximated reverse-time S/ODE
enables to generate images, the modeling distribution con-
structed by them cannot completely match the true distribu-
tion [30, 45]. Because the model sampling trajectory gradu-
ally deviates from the true sampling trajectory, leading to an
increasingly widening gap. Hence, the gap leads to a resid-
ual error in generated images that reduces image fidelity.

The primary reason is that two errors gradually accumu-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7289

late throughout the model sampling process [7, 32], which
are score estimation error [19, 32] and discretization er-
ror [29, 78]. The former one comes from the estimation
of the expectation of the score at each noise scale [2, 15]. In
practice, it is intractable to solve the exact solution of score
since we can not access all the samples, and the solution is
approximated instead via the law of large numbers [24, 64],
leading to a score estimation error. As for the latter, the
error source is in that we cannot directly solve the approx-
imated reverse-time S/ODE due to the high dimensionality
of the data [26]. Instead, the reverse-time S/ODE needs to
be discretized as a sampling trajectory that consists of fi-
nite time steps. An approximate solution can be obtained
by using numerical solvers to iteratively solve the integral
between two adjacent time steps [28, 56]. However, the dis-
crete sampling strategy brings discretization error in each
time step and accumulates all the error during sampling,
especially when using a small number of steps with large
integral interval in the fast sampling field [46, 78, 79].

Motivated by these observations, we propose a novel
residual learning framework that employs a correction func-
tion to rectify the model sampling trajectory, thereby re-
ducing the sampling gap. Our core idea is to optimize
a parameterized correction function to guide the sampling
trajectory to the true data distribution, as shown in Fig-
ure 1. Specifically, we disassemble the generative process
into two phases which combines an approximated reverse-
time S/ODE [69] with our optimized correction function.
In the first phase, the approximated reverse-time S/ODE is
used to generate samples from prior distribution to an in-
termediate time step in the sampling trajectory that has not
deviated from the true data distribution too far. In the subse-
quent phase, our optimized correction function guides those
samples towards the true data distribution more closely.

In this manner, our residual learning framework en-
hances the generative performance of pre-trained DMs
without the need to fine-tune or train them from scratch.
Additionally, our correction function, trained for a certain
DM, can improve arbitrary sampling trajectories of different
DMs on the same dataset, showcasing a significant transfer-
able capability. Once the dataset is specified, the matched
score becomes the sole variable in DMs-based image gener-
ation, exhibiting slight variations due to the capacity differ-
ences among different DMs. Consequently, the sampling
trajectories modeled by different DMs are similar, given
that the prior and true distributions are fixed, resulting in
similar sampling error patterns. In this context, our pro-
posed residual learning captures this shared error pattern
and possesses transferable correction capability.

Our contributions can be summarized as follows. 1) We
analyse the gap between true distribution and modeling dis-
tribution due to the score estimation and discretization er-
rors. 2) We propose a novel residual learning framework

employing a correction function to rectify the sampling tra-
jectory, as a plug-and-play improvement on pre-trained dif-
fusion models. 3) We verify the effectiveness of our frame-
work on various benchmark datasets and demonstrate its
transferable capability across different DMs.

2. Related Works
Diffusion Models Diffusion probabilistic models [13, 24,
34, 50] and score-based models [64, 69] are families of the
generative models that generate samples from a prior dis-
tribution by using reverse-S/ODE integrators [27, 28], and
a certain parameterization reveals an equivalence between
them [47]. Compared to previous generative models, such
as VAEs [35], flow-based models [14], and GANs [4, 17],
DMs generate samples with start-of-the-art image quality
and comparable likelihood [32, 45, 67]. One line of works
resolve the slow sampling of diffusion models and achieve
significant acceleration in the generation process, such as
DDIM [63], PNDM [42], DPM-solver [46], DEIS [78],
and SciRE-Solver [39]. However, they exacerbate the dis-
cretization error due to the larger integral interval, resulting
in a reduction in image quality.

Sampling Gap Recently, some methods make great ef-
forts to reduce sampling gap via using high order numeri-
cal solvers [39, 78, 79, 81]. Stable diffusion [56] matches
the score in latent space [72], which naturally reduce the
discretization error by solving the integral in lower dimen-
sion. DMCMC [29] utilizes MCMC to obtain a good ini-
tialization points close to the modeling distribution. Be-
sides, [6, 30] propose to adjust the matched score via a ro-
bust discriminator. Contrary to the usual treatment, certain
works [33, 49, 59, 70] mitigate the sampling gap in small
time steps of model sampling by distilling knowledge from
larger sampling steps. Orthogonal to them, we introduce a
residual learning framework to narrow the sampling gap by
using an optimized correction function to rectify the sam-
pling process of pre-trained DMs.

Transfer Learning Large-scale models acquire valuable
feature representations that demonstrate effective transfer-
ability [5, 8, 55] to unseen tasks, datasets, and domains [25,
38, 71, 77]. In generative modeling, recent works propose
transferring the weights of pre-trained models from a source
domain (e.g., faces) to a new domain (e.g., portraits of one
person) [18, 36, 52, 53]. Different from them, we transfer
the knowledge of the residual to rectify the sampling trajec-
tory of arbitrary diffusion model on the same data set.

3. Preliminary
3.1. Sampling Gap Analysis

DMs [24, 64] are a class of generative models, synthesizing
images by gradually denoising random points sampled from
prior distribution. Specifically, for a given D-dimensional

7290

data x0 ∼ pdata(x0) sampled from the real distribution, one
can utilize a forward SDE to perturb them

dx = Ftxdt+Gtdω, (1)

where Ft ∈ RD×D denotes the linear drift coefficient,
Gt ∈ RD×D denotes the diffusion coefficient, ω is a stan-
dard Wiener process and t ∼ U [0, 1]. Under some mild
assumptions [69], the forward SDE in Eq. (1) is associated
with a reverse-time diffusion process

dx =
[
Ftx−GtG

T
t ∇ log pt(x)

]
dt+Gtdω, (2)

where ω denotes a standard Wiener process in the reverse-
time direction, and ∇ log pt(x) is the gradient of the log
probability density with respect to the perturbed data at time
step t, a.k.a. score [26, 74]. In theory, with a known prior
distribution π, such as the normal distribution, one can gen-
erate samples via solving Eq. (2) [1].

Discretization Error However, it is intractable to di-
rectly solve the integral in Eq. (2). Alternatively, it is split
into T discretization steps [t1 = 0, · · · , tt, · · · , tN = T]
with T − 1 intervals, and sum each interval between time
step t+ 1 to t equals to the integral from time step T to 0

xt = xt+1 +
1

2

∫ t

t+1

[
GτG

T
τ ∇ log pτ (x)

]
dτ +Gtzt, (3)

where zt ∼ N (0, ID). In practice, one can utilize a numer-
ical solver [28, 39, 46, 78] to solve each integral interval

xt = xt+1 +
∆t

2
Gt+1G

T
t+1∇ log pt+1(x) +Gtzt. (4)

Here, ∆t is the integral interval between time step t + 1 to
t. Obviously, using Eq. (4) to solve each integral instead of
Eq. (3) will cause the discretization error, and will accumu-
late them to a large error.

Score Estimation Error On the other hand, ∇ log pt(x)
is inaccessible due to the high dimensionality of data,
which leads to the analytical intractability of the proba-
bility density function [26]. To remedy this, prior works
[64, 66, 74] design the loss function JSM to match the score
∇ log pt(x), wherein a time-dependent network sθ(xt, t) is
employed to approximate it

JSM (θ;ω) =

1

2

∫ 1

0

Ex0,xt

[
ω(t) ∥∇ log p0t(xt|x0)− sθ(xt, t)∥22

]
dt.

Here, ∇ log p0t(xt|x0) has a closed form expression as
p0t(xt|x0) is a simple Gaussian distribution obtained from a
given SDE [69], and ω(t) denotes a time-dependent weight-
ing function used for stable training.

In practice, JSM (θ;ω) is optimized using empirical
samples via Monte Carlo methods [26, 64, 65], thus leading
to the score estimation error. Because the exact solution of
∇ log p0t(xt|x0) requires each sample of the corresponding
distribution p0t(xt|x0), which is impossible. In addition,
previous models [28, 32, 45, 67, 70] have the trade-off be-
tween model likelihood [45, 67] and image quality [30, 54]
via setting the smallest time step ϵ

1

2

∫ 1

ϵ

Ex0,xt

[
ω(t) ∥∇ log p0t(xt|x0)− sθ(xt, t)∥22

]
dt.

(5)
Here, score beneath ϵ will not be estimated, further aggra-
vating the score estimation error when using the unmatched
score for sampling.

Sampling Gap Once the score network sθ(xt, t) ≈
∇ log pt(x) is matched for almost all x ∈ RD and t ∼
U [ϵ, 1], it can be used to generate new samples by solving
Eq. (4) with ∇ log pt+1(x) replaced by sθ(xt+1, t+ 1)

xt = xt+1 +
∆t

2
Gt+1G

T
t+1sθ(xt+1, t+ 1) +Gtzt. (6)

However, score estimation and discretization errors man-
ifest simultaneously and gradually accumulate throughout
the model sampling trajectory, leading to a sampling gap
between the true distribution and the model distribution.

3.2. Residual Definition

Building upon the previous analysis, the sampling gap in-
troduces a residual in the generated images, resulting in a
reduction in image quality. Below we provide a definition
of this residual. For any given forward SDE, its correspond-
ing deterministic sampling process can be formulated as

dx

dt
= Ftx− 1

2
GtG

T
t ∇ log pt(x), (7)

which is the probability flow (PF) ordinary differential
equation (ODE) [69, 70]. Concretely, arbitrary xt in the
PF ODE trajectory can revert to x0 ∼ pdata(x0) via Eq.
(7). However, we can not obtain x0 via directly solving
this PF ODE, and instead, we generate xODE

0 via using
sθ(x

ODE
t+1 , t + 1) to replace ∇ log pt+1(x) and using the it-

erative rule below

xODE
t = xODE

t+1 +
∆t

2
Gt+1G

T
t+1sθ(x

ODE
t+1 , t+ 1). (8)

For a given xT , xODE
0 can not completely match x0 because

of the following residual

Ω = x0 − xODE
0 . (9)

4. Residual Learning Framework
We put forward a novel residual learning framework, via
employing a parameterized correction function to rectify

7291

the sampling trajectory modeled by a pre-trained DM
sθ∗(xt, t), as shown in Figure 2. Moreover, we intuitively
and theoretically analyze the transferable correction capa-
bility of our framework. Concretely, a correction function
optimized for a given pre-trained DM can correct arbitrary
sampling trajectory of different DMs trained on the same
data. Below we introduce the residual learning and correc-
tive sampling of our framework, provide an analysis on its
transferable capability, plus a discussion on the optimiza-
tion and the efficient correction.

4.1. Overview

In practice, it is challenging to collect the residual pair(
x0, x

ODE
0

)
. While we define the residual in Eq. (9), it is

intractable obtaining Ω by finding a true sample x0 paired
with a given generated sample xODE

0 via directly solving
Eq. (7). However, conversely, it is possible to simulate the
generated sample xODE

0 with a given true image x0 from
the training dataset. Heuristically, we can first obtain xt by
adding noise to the true image x0 and reverse it to xODE

0

with Eq. (8). Under such a perspective, we are able to con-
struct the residual pair

(
x0, x

ODE
0

)
for a simulation of the

residual. Thereupon, we design a two-stage residual learn-
ing framework to learn the residual as in Algorithm 1.

Residual Learning In the first stage, we utilize a given
forward SDE to perturb the data x0 and obtain xt which re-
side on the true sampling trajectory {xt}t∈[0,T]. For brevity,
we use VE SDE [69] to describe our framework

xt = x0 +
√
σ2(t)− σ2(0)zt, (10)

where σ(t) is a designed noise schedule [24, 28, 69], and
zt is sampled from the Gaussian distribution. Based on pre-
vious analysis, the perturbed xt can reverse to xODE

0 when
replacing ∇ log p(xt, t) with an optimized score function
sθ∗(xODE

t , t) and using the iterative rule to solve Eq. (8).
In this context, we successfully simulate the residual via
constructing the residual pair

(
x0, x

ODE
0

)
.

In the second stage, to learn the residual, we define the
correction function as

f : (xODE
i , i) 7→ x0, (11)

where i ∈ (ϵ, t), t is defined in Eq. (10). To avoid un-
matched score in [0, ϵ] mentioned in Eq. (5), we use xODE

i

instead of xODE
0 to construct the residual pair. On the other

hand, in practice, it is also difficult to indeed reverse to
xODE
0 . We thus utilize xODE

i to learn the residual. To define
i, we first discretize the time horizon [ϵ, T] into N − 1 sub-
intervals, with boundaries n1 = ϵ < n2 < · · · < nt−1 <
nt < · · · < nN = T , where i belongs to [n2, · · · , nt−1].

Corrective Sampling For an optimized correction func-
tion fϕ∗(·, ·) trained on a given dataset, we can combine
it with reverse-time S/ODE approximated by sθ∗(xt, t) of

Algorithm 1: Residual Learning
def residual_learning(net, sigma, x_0, t_steps

):
"""
net is the pre-trained DM
sigma is the noise schedule
x_0 are a batch of training images
t_steps is ODE reverse schedule
e.g. [n_2, ... n_t-1]
"""

#add noise via VE SDE
t = randint(0, N)
noise = sqrt(sigama(t)**2 - sigama(0)**2)
x_t = x_0 + noise

#the last step of ODE reverse
i = random.choice(t_steps)

#use PF ODE to reverse samples
for j in range(t, i - 1, -1):
x_t = ODE_solver(net, x_t, t_steps[j])

#the last x_t is x_i
#residual prediction using the correction

function
f_x_i = c_function(x_t)

#loss backpropogation
loss = d(f_x_i, x_0)
loss.backward()

Algorithm 2: Corrective Sampling
def corrective_sampling(net, c_function,

epsilon, x_t, t_steps):
"""
net is the pre-trained DM
c_function is a correction function
epsilon is the smallest step in Eq.(3)
x_t sampled from prior distribution
t_steps is sampling time schedule
e.g. [80, ... , 0.58, ... , 0.002]
"""

#adaptive correction strategy
c = max(0.01, epsilon)

for t in t_steps:
#use reverse O/SDE to generate samples
x_t = O/SDE_solver(net, x_t, t)

#use our correction function to correct
if t <= c:

x_t = c_function(x_t)
break

return x_t

arbitrary DM trained on the same dataset. Concretely, we
first sample a batch of images xT from the prior distribu-
tion and use a corresponding reverse-time S/ODE to reverse

7292

forward SDE

ODE trajectories

correction function fθ(xi
SDE, i)reverse-time O/SDE

��(�����, �)

reverse-time ODE

Residual Learning

��∗(�����, �)

Data
Corrective Sampling

Prior Modeling

Figure 2. The overall structure of our Residual Learning Framework. For residual learning, we first diffuse x0 to xt with a forward SDE and
utilize a corresponding reverse-time ODE to reverse it back to xSDE

i , and train a parameterized correction function for mapping xSDE
i to

x0. For sampling, a reverse-time S/ODE iterative diffuse xT to xSDE
i and an optimized correction function maps xSDE

i to x0 accordingly.

them to xSDE
i∗ or xODE

i∗ . For brevity, we utilize the notation
xSDE
i∗ here. Subsequently, we utilize the optimized correc-

tion function to guide xSDE
i∗ toward x0, where i∗ represents

the time step to apply fϕ∗(·, ·), which is a hyper-parameter
detailed in Algorithm 2.

For the choice of the hyper-parameter i∗, we design an
adaptive strategy to best make the capability of our frame-
work. As mentioned earlier, samples near a small ϵ are
scarce, which leads to imprecise score matching [32]. Ow-
ing to the properties of our framework, a large i∗ will not in-
fluence the performance of our correction function. Hence,
we enable to set a relatively large i∗ to bypass the un-
matched score. On the other hand, ϵ defined in Eq. (4)
varies greatly, fo r instance, one can choose ϵ = 10−2 or
ϵ = 10−5 [67]. Therefore, we establish a unified standard
for stable correction with ϵ as reference. Concretely, we set
i∗ as the nearest and larger step to c and keep this setting
across all tasks and datasets, where c = max {0.01, ϵ}. In
this manner, our framework can correct the sampling trajec-
tory, leading to a reduction on the residual and an improved
image quality.

4.2. Transferable Residual Correction

Adhering to the design philosophy of our framework, the
correction function has the property: its outputs are consis-
tent for arbitrary pairs of (xODE

i , i) that belong to the same
PF ODE trajectory, i.e, f(xODE

a , a) = f(xODE
b , b) for all

a, b ∈ (0, t]. Hence, the optimized correction function can
guide samples near xODE

i∈(0,t)
to true distribution, for instance,

xSDE
i∈(0,t)

. On the other hand, for a given D-dimensional data
x0 ∼ pdata(x0), different DMs all aim to model a distri-
bution which overlaps with the true distribution. The PF
ODE sampling trajectory for a given dataset is fixed since
the score ∇ log pt(x) is invariable, and the corresponding
SDE sampling trajectory always near to the ODE trajectory.
Hence, the sampling trajectories modeled by different DMs
are similar, given that the prior and true distributions are
fixed, resulting in the same sampling error pattern. In this

sense, samples xSDE
i in the same time step i that are mod-

eled by different DMs fall within the similar domain, thus
can be rectified by the same optimized correction function.

Motivated by this understanding, for a given dataset,
we can use our optimized correction function to correct
any sampling trajectory modeled by different DMs, dubbed
transferable residual correction ability. Below we provide a
theoretical justification for the transferable capability of our
framework based on asymptotic analysis.

Theorem 1 Let ∆i := max(i,iξ)∈[ϵ,t] {|i− iξ|}. As-
sume fϕ(·, ·) satisfies the Lipschitz condition: there ex-
ists L > 0 such that for all (x, i) and (y, iξ), we have
∥fϕ(x, i)− fϕ(y, iξ)∥2 ≤ L ∥x− y∥2. Assume further
that the correction function called at i has local error uni-
formly bounded by O

(
(i− iξ)

p+1
)

with p ≥ 1. Then if

L(ϕ;λ, β) = 0, we have

sup
x,y

∥fϕ(x, i)− fϕ(y, iξ)∥2 = O ((∆i)
p
) .

Proof. For a fixed PF ODE trajectory corresponds to a given
dataset, any modeling sampling trajectory is near to the PF
ODE trajectory. Hence, (x, i) is close to (y, iξ) since i is
close to iξ, and our correction function can naturally map
them to true distribution.

Based on Theorem 1, our correction function, optimized
on a fixed PF ODE sampling trajectory for a given pre-
trained DM, can correct any model sampling trajectory of
different DMs trained on the same dataset. We will verify
the transferable capability of correction function in our ex-
periment.

4.3. Optimization

To learn the residual and enhance the transferable correction
capability, below we delve into the optimization of our cor-
rection function. For a given correction function f(·, ·), we
have f(xODE

i , i) = x0, where i ∈ (0, t]. Suppose we have
a free-form deep neural network to represent our correction

7293

function, we can train it with our correction loss

L(ϕ;λ) = E
[
λ(i)d(fϕ(x

ODE
i , i), x0)

]
,

where λ(·) is a positive time-dependent weighting function,
and d(·, ·) is a metric function that satisfies ∀x, y : d(x, y) ≥
0 and d(x, y) = 0 if and only if x = y. In our experiments,
we consider the squared l2 norm d(x, y) = ∥x− y∥22, l1
norm d(x, y) = ∥x− y∥1, and the Learned Perceptual Im-
age Patch Similarity (LPIPS) [70, 80].

To further improve the transferable ability of our frame-
work, we utilize some widely used data augmentation tech-
niques [8, 21, 22, 43] to reformulate our correction loss

L(ϕ;λ, β) = E
[
λ(i)d(fϕ(x

ODE
i , i), x0)

]
+ E

[
βd(fϕ(x

+
0), x0)

]
,

where x+
0 represents the corresponding image augmented

from x0, β is a positive weight which performs well across
all tasks and datasets when β = 1. In practice, we utilize
several data augmentation methods to obtain (x+

0), for in-
stance, add small order of magnitude Gaussian noise to x0,
rotate and crop x0, as well as mask some pixels [22].

For training our parameterized correction function
fϕ(·, ·), we minimize the L(ϕ;λ, β) by stochastic gradient
descent on the model parameters ϕ, with detailed informa-
tion given in Appendix.

4.4. Efficient Residual Correction

To avoid worsening the issue of slow sampling in DMs, we
propose an efficient residual correction method, where the
correction function is parameterized by a lightweight back-
bone. Concretely, we distill correction ability from an opti-
mized correction function fϕ∗(·, ·) parameterized by heavy
parameters ϕ∗ to the one with light parameters ϕ−

L(ϕ−;α) = E
[
d(fϕ∗(xODE

i , i),fϕ−(xODE
i , i))

]
.

Similarly, we train the lightweight correction function
through stochastic gradient descent on the model parame-
ters ϕ−. Once optimized, the lightweight correction func-
tions fϕ−(·, ·) are 4 ∼ 64 times smaller than their heavier
versions fϕ∗(·, ·), with only a slight drop in image quality.

5. Experiments
5.1. Setting and Implementation

To evaluate the performance of our residual learning frame-
work, we conduct groups of experiments on four benchmark
datasets, including CIFAR-10 [37], CelebA 64 × 64 [44],
AFHQv2 64 × 64 [10], ImageNet 256 × 256 and 512 ×
512 [73]. In our main experiments, our correction function
is combined with pre-trained DMs to improve them. For
CIFAR-10, we employ NSCNv2 [65], DDPM [24], SDE

Pre-trained Model FID↓ IS↑
ImageNet 256× 256 (class-conditional)

ADM [13] 10.94→9.86 100.98→111.01
ADM-G [13] 4.59→4.47 186.70→191.23
LDM-4 [56] 10.56→10.35 103.49→114.62
LDM-8 [56] 15.51→14.47 79.03→84.68

DiT [54] 9.62→9.49 121.50→127.84
ImageNet 512× 512 (class-conditional)

ADM [13] 23.24→19.97 58.06→61.54
ADM-G [13] 7.72→7.65 172.71→180.62

DiT [54] 12.03→11.37 105.25→121.53

Table 1. Performance on ImageNet. Models in the first column
represents the baseline pre-trained DMs. The values before → are
the results of baseline pre-trained DMs on ImageNet, and values
after → are results improved by our residual learning framework.

Pre-trained Model FID↓ IS↑
NSCNv2 [65] 10.87→9.89 8.40→8.73
DDPM [24] 3.17→3.05 9.46→9.50

SDE (VE) [69] 2.55→ 2.44 9.83→9.86
SDE (deep, VE) [69] 2.20→ 2.15 9.89→9.92

EDM [28] 2.04→1.93 9.84→9.89

Table 2. Performance on CIFAR-10. Models in the first column
represents the baseline pre-trained DMs. Analogously, values be-
fore → are the results obtained from baseline pre-trained DMs,
and values after → are results improved by our framework.

AFHQv2 64× 64 CelebA 64× 64

Pre-trained Model FID↓ Pre-trained Model FID↓
EDM VE [28] 2.16→2.10 DDPM++ [69] 2.32→2.22
EDM VP [28] 1.96→1.91 STDDPM [32] 1.90→1.85
FDM VP [75] 2.39→2.30 Soft Diffusion [12] 1.85→1.80
FDM VE [75] 47.30→ 42.10 INDM [31] 1.75→1.71

Table 3. Performance on AFHQv2 and CelebA. The values before
→ are the results obtained from baseline pre-trained DMs, and
values after → are results improved by our framework.

series [69], and EDM [28] as pre-trained DMs. Our cor-
rection functions are implemented with the architecture of
the corresponding pre-trained DMs. For ImageNet, we uti-
lize ADM [13], LDM [56], and DiT [54] as pre-trained
DMs, and the correction function is implemented with the
architecture of ADM. For CelebA and AFHQv2, we em-
ploy EDM [28], FDM [75], DDPM++ [69], STDDPM [32],
Soft Diffusion [12], INDM [31] as pre-trained DMs, and
choose the architecture of EDM to formulate the correction
function. The correction function is randomly initialized.

During training, we exclude the time embedding setting
from the architecture of DM and use it to construct correc-

7294

Figure 3. Randomly selected 512×512 images improved by our residual learning framework.

Figure 4. Ablation study on different optimization strategies evaluated on CIFAR-10. (a) we train the correction function with different
metric functions, wherein L2 norm performs better. (b) we use PF ODE to reverse xt to xi with n steps, and random choice of n achieves the
best performance. (c) we use different weighting functions to optimize our correction loss, such as signal-to-noise ratio (SNR) [34], peak
signal-to-noise ratio (PSNR) [9], and also constant values. In practice, we find SNR weighting schedule performs best. (d) we validate that
combining all data augmentation methods, including mask pixel, add Gaussian noise, rotate and crop, leads to the best correction ability.

Correction Function FID↓ IS↑
EDM-H ≡ [256, 204M] 2.04→1.93 9.84→9.91
EDM-XL ≡ [128, 51M] 2.04→1.93 9.84→9.89
EDM-L ≡ [96, 28.7M] 2.04→1.94 9.84→9.89
EDM-M ≡ [64, 12.7M] 2.04→1.95 9.84→9.86
EDM-S ≡ [32, 3.2M] 2.04→1.99 9.84→9.84
EDM-T ≡ [16, 0.8M] 2.04→2.03 9.84→9.80

Table 4. Ablation study on the size of correction function. [·, ·]
represents the pair of model channels and model size. For instance,
EDM-H≡ [256, 204M] is the correction function constructed by
EDM backbone with 256 channels and the resulting model size is
204M [28]. Values before → are the results obtained from base-
line pre-trained DMs, and values after → are results improved by
our framework. Obviously, the performance of correction function
shows a gradual improvement with an increase in the model size,
but this improvement does not continue indefinitely.

tion function. We retain only the input as a batch of images,
and the output is also images, with a slightly reduced model
size. Besides, we augment the training images with data
augmentation approaches that mentioned in section 4.3.

5.2. Results

To quantitative compare the correction performance, we uti-
lize standard metrics, including Fréchet Inception Distance
(FID) [23] and Inception Score (IS) [60], to verify them on

50,000 generated samples. In the experimental results on
CIFAR-10, our framework enhances the generation perfor-
mance, indicating that correction function effectively learns
the residuals and, consequently, enhances the overall image
quality, seen in Table 2. Our framework also demonstrate
the effectiveness on CelebA and AFHQv2 with FID signif-
icantly increased, shown in Table 3. Moreover, our frame-
work enables a remarkable performance on high-resolution
data sets, such as ImageNet 256 and 512, detailed see in Ta-
ble 1. The qualitative analysis results are shown in Figure 3.

Transferable Residual Correction To demonstrate the
transferable capability of our framework, we utilize an opti-
mized correction function to rectify model sampling trajec-
tories constructed by different pre-trained DMs. Concretely,
we create five distinct correction functions by configuring
different model channels on the architecture of EDM. For
example, we configure EDM-XL with 128 channels and
EDM-L with 96 channels. After optimizing those correc-
tion functions on CIFAR-10, we employ them to improve
various target pre-trained DMs that also trained on CIFAR-
10, results shown in Table 5.

Moreover, we further verify the transfer capability on
model sampling trajectories of some classical training-free
methods, for instance, DPM-Solver [46] and DEIS [78],
results are displayed in Table 7. It is logical that our
framework can capture the residual in images generated by
training-free fast samplers, given that their sampling trajec-
tories exhibit the same properties as the true sampling tra-

7295

Source Pre-Trained Model: EDM [28] Correction Function

Target Pre-Trained Model↓ Origin FID↓ EDM-S EDM-M EDM-L EDM-XL EDM-H

NSCNv2 [65] 10.87 10.43(0.44) 10.27(0.60) 10.14(0.73) 10.01(0.86) 10.01(0.86)
DDPM [24] 3.17 3.15(0.02) 3.14(0.03) 3.09(0.08) 3.07(0.10) 3.06(0.11)

SDE VE [69] 2.55 2.52(0.03) 2.50(0.05) 2.47(0.08) 2.46(0.09) 2.46(0.09)
SDE VP [69] 2.20 2.20 2.18(0.02) 2.15(0.05) 2.15(0.05) 2.15(0.05)

EDM [28] 2.04 1.99(0.05) 1.95(0.09) 1.94(0.10) 1.93(0.11) 1.93(0.11)

Table 5. Transferable residual correction on CIFAR-10, evaluated by FID score. ‘Origin FID’ refers to the results obtained from the
target pre-trained DMs without correction. These target pre-trained DMs include NSCNv2 [65], DDPM [24], SDE VE and VP [69].
EDM-∗ represents the correction function constructed by the corresponding EDM backbone with different model channels (detailed seen
in Table 4), referred to as the source pre-trained model. For example, EDM-XL denotes the utilization of an optimized correction function
constructed by EDM-XL backbone to enhance target pre-trained DMs. In this manner, we verify that a correction function optimized on a
given pre-trained DM has the ability to correct any model sampling trajectory construced by different DMs trained on the same dataset.

Correction Function Heavy Function

Light Function↓ EDM-XL EDM-H
EDM-T 2.03→2.00 2.03→1.99
EDM-S 1.99→1.97 1.99→1.96
EDM-M 1.95→1.93 1.95→1.93

Table 6. Efficient correction performance evaluated by FID score.
We utilize the pre-trained heavy correction functions, formulated
by EDM-XL and EDM-H, to train light correction functions that
formulated by EDM-T, EDM-S and EDM-M respectively. Values
before → are the results obtained from baseline pre-trained DMs,
and values after → are results improved by our framework.

Method NFE 10 NFE 20 NFE 50

DPM-Solver-2 (VP) 5.28(+2) 3.02(+4) 2.69(-2)
DPM-Solver-2 (VP)⋆ 5.12(+2) 2.94(+4) 2.65(-2)
DPM-Solver-3 (VP) 6.03(+2) 2.75(+4) 2.65(-2)
DPM-Solver-3 (VP)⋆ 5.89(+2) 2.69(+4) 2.62(-2)

DEIS (VP) 4.17(+0) 2.86(+0) 2.57(+0)
DEIS (VP)⋆ 4.11(+0) 2.82(+0) 2.55(+0)
DEIS (VE) 20.89(+0) 16.59(+0) 16.31(+0)
DEIS (VE)⋆ 19.94(+0) 16.05(+0) 15.91(+0)

Table 7. FID performance on CIFAR-10 when combined with
training-free fast samplers. ⋆ indicates that the results has been
improved by an optimized correct function, and number in paren-
thesis indicates extra or less NFE used. We verify that the our
framework enables to improve arbitrary model sampling trajectory
formulated by training-free fast samplers.

jectory. Consequently, the experimental results further em-
phasize the transferable performance of our framework.

Efficient Residual Correction To avoid the slow sam-
pling problem in DMs, we propose an efficient residual cor-
rection method. We distill correction ability from an opti-
mized heavy correction function to a lightweight correction

function, results shown in Table 6. With only a slight de-
cline in performance, the light correction functions are 4 ∼
65 ×times smaller than those heavy correction function.

Ablations In the ablation studies on various optimiza-
tion strategies, we perform four distinct experiments to val-
idate their effectiveness. These experiments encompass the
setting of optimization metric function, ODE reverse steps,
data augmentation methods and weighting functions, de-
tailed seen in Figure 4. For the ablations on model size,
we design six different correction functions with different
EDM backbone channels, seen in Table 4.

6. Conclusion
In this paper, we analyze that the sampling gap resulting
from score estimation and discretization errors, leading to a
residual in the generated image. To remedy this, we propose
a residual learning framework built upon a correction func-
tion. The optimized correction function can rectify model
sampling trajectory, thereby improving the image quality.
Moreover, our correction function, trained on a given pre-
traned DM, can enhance the arbitrary sampling trajectories
of different DMs trained on the same dataset, showcasing a
significant transferable capability. Empirical results clearly
demonstrate the benefit of our residual learning framework.

Acknowledgement. This work was supported in part
by the National Natural Science Foundation of China
under grant 62172451. Chang Xu was supported in
part by the Australian Research Council under Projects
DP210101859 and FT230100549. This work was also
supported by the National Research Foundation (NRF)
grants (RS-2023-00245342) funded by the Ministry of
Science and ICT (MSIT) of Korea. The AI training
platform supporting this work were provided by High-Flyer
AI (Hangzhou High-Flyer AI Fundamental Research Co.,
Ltd.). This work was also supported by the High Per-
formance Computing Center of Central South University.
This work was supported by the China Scholarship Council.

7296

References
[1] Brian DO Anderson. Reverse-time diffusion equation mod-

els. Stochastic Processes and their Applications, 12(3):313–
326, 1982. 1, 3

[2] Fan Bao, Chongxuan Li, Jiacheng Sun, Jun Zhu, and Bo
Zhang. Estimating the optimal covariance with imper-
fect mean in diffusion probabilistic models. arXiv preprint
arXiv:2206.07309, 2022. 2

[3] Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov,
Valentin Khrulkov, and Artem Babenko. Label-efficient se-
mantic segmentation with diffusion models. arXiv preprint
arXiv:2112.03126, 2021. 1

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, pages 9650–9660, 2021. 2

[6] Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen
Lo, Chia-Che Chang, Yu-Lun Liu, Yu-Lin Chang, Chia-
Ping Chen, and Chun-Yi Lee. Denoising likelihood score
matching for conditional score-based data generation. arXiv
preprint arXiv:2203.14206, 2022. 2

[7] Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen
Lo, Chia-Che Chang, Yu-Lun Liu, Yu-Lin Chang, Chia-Ping
Chen, and Chun-Yi Lee. Denoising likelihood score match-
ing for conditional score-based data generation. In ICLR,
2022. 2

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 2, 6

[9] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon
Kim, Hyunwoo Kim, and Sungroh Yoon. Perception priori-
tized training of diffusion models. In CVPR, pages 11472–
11481, 2022. 7

[10] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
StarGAN v2: Diverse image synthesis for multiple domains.
In CVPR, pages 8188–8197, 2020. 6

[11] Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and
Jong Chul Ye. Improving diffusion models for inverse prob-
lems using manifold constraints. NeurIPS, 35:25683–25696,
2022. 1

[12] Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alexan-
dros G Dimakis, and Peyman Milanfar. Soft diffusion:
Score matching for general corruptions. arXiv preprint
arXiv:2209.05442, 2022. 6

[13] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. NeurIPS, 34:8780–8794,
2021. 1, 2, 6

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 2

[15] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-
based generative modeling with critically-damped langevin
diffusion. In ICLR, 2022. 2

[16] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and
Shuicheng Yan. Masked diffusion transformer is a strong
image synthesizer. arXiv preprint arXiv:2303.14389, 2023.
1

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[18] Zheng Gu, Wenbin Li, Jing Huo, Lei Wang, and Yang Gao.
Lofgan: Fusing local representations for few-shot image
generation. In CVPR, pages 8463–8471, 2021. 2

[19] Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong
Chen, Han Hu, Xin Geng, and Baining Guo. Efficient diffu-
sion training via min-snr weighting strategy. arXiv preprint
arXiv:2303.09556, 2023. 2

[20] William Harvey, Saeid Naderiparizi, Vaden Masrani, Chris-
tian Weilbach, and Frank Wood. Flexible diffusion modeling
of long videos. NeurIPS, 35:27953–27965, 2022. 1

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, pages 9729–9738, 2020. 6

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, 2022. 6

[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 30, 2017. 7

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 33:6840–6851, 2020. 1,
2, 4, 6, 8

[25] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What
makes imagenet good for transfer learning? arXiv preprint
arXiv:1608.08614, 2016. 2

[26] Aapo Hyvärinen and Peter Dayan. Estimation of non-
normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005. 1, 2, 3

[27] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021. 2

[28] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. NeurIPS, 35:26565–26577, 2022. 1, 2, 3, 4, 6, 7, 8

[29] Beomsu Kim and Jong Chul Ye. Denoising MCMC for ac-
celerating diffusion-based generative models. arXiv preprint
arXiv:2209.14593, 2022. 1, 2

[30] Dongjun Kim, Yeongmin Kim, Wanmo Kang, and Il-Chul
Moon. Refining generative process with discriminator
guidance in score-based diffusion models. arXiv preprint
arXiv:2211.17091, 2022. 1, 2, 3

[31] Dongjun Kim, Byeonghu Na, Se Jung Kwon, Dongsoo Lee,
Wanmo Kang, and Il-chul Moon. Maximum likelihood train-
ing of implicit nonlinear diffusion model. Advances in Neu-
ral Information Processing Systems, 35:32270–32284, 2022.
6

7297

[32] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo
Kang, and Il-Chul Moon. Soft truncation: A universal train-
ing technique of score-based diffusion model for high preci-
sion score estimation. In International Conference on Ma-
chine Learning, pages 11201–11228. PMLR, 2022. 1, 2, 3,
5, 6

[33] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Mu-
rata, Yuhta Takida, Toshimitsu Uesaka, Yutong He, Yuki
Mitsufuji, and Stefano Ermon. Consistency trajectory mod-
els: Learning probability flow ode trajectory of diffusion.
arXiv preprint arXiv:2310.02279, 2023. 2

[34] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan
Ho. Variational diffusion models. NeurIPS, 34:21696–
21707, 2021. 1, 2, 7

[35] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[36] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do bet-
ter imagenet models transfer better? In CVPR, pages 2661–
2671, 2019. 2

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[38] Nupur Kumari, Richard Zhang, Eli Shechtman, and Jun-Yan
Zhu. Ensembling off-the-shelf models for gan training. In
CVPR, pages 10651–10662, 2022. 2

[39] Shigui Li, Wei Chen, and Delu Zeng. Scire-solver: Effi-
cient sampling of diffusion probabilistic models by score-
integrand solver with recursive derivative estimation. arXiv
preprint arXiv:2308.07896, 2023. 2, 3

[40] Daochang Liu, Qiyue Li, Anh-Dung Dinh, Tingting Jiang,
Mubarak Shah, and Chang Xu. Diffusion action segmenta-
tion. In ICCV, pages 10139–10149, 2023. 1

[41] Gongye Liu, Haoze Sun, Jiayi Li, Fei Yin, and Yujiu Yang.
Accelerating diffusion models for inverse problems through
shortcut sampling. arXiv preprint arXiv:2305.16965, 2023.
1

[42] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. arXiv
preprint arXiv:2202.09778, 2022. 2

[43] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and
Xinchao Wang. Dataset distillation via factorization. Ad-
vances in neural information processing systems, 35:1100–
1113, 2022. 6

[44] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In CVPR, pages
3730–3738, 2015. 6

[45] Cheng Lu, Kaiwen Zheng, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Maximum likelihood training for score-
based diffusion odes by high order denoising score matching.
In International Conference on Machine Learning, pages
14429–14460. PMLR, 2022. 1, 2, 3

[46] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. DPM-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. NeurIPS,
35:5775–5787, 2022. 1, 2, 3, 7

[47] Calvin Luo. Understanding diffusion models: A unified per-
spective. arXiv preprint arXiv:2208.11970, 2022. 1, 2

[48] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang,
Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and
Tieniu Tan. Videofusion: Decomposed diffusion models
for high-quality video generation. In CVPR, pages 10209–
10218, 2023. 1

[49] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In CVPR, pages
14297–14306, 2023. 2

[50] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 2

[51] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealis-
tic image generation and editing with text-guided diffusion
models. In International Conference on Machine Learning,
pages 16784–16804. PMLR, 2022. 1

[52] Atsuhiro Noguchi and Tatsuya Harada. Image generation
from small datasets via batch statistics adaptation. In CVPR,
pages 2750–2758, 2019. 2

[53] Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros,
Yong Jae Lee, Eli Shechtman, and Richard Zhang. Few-
shot image generation via cross-domain correspondence. In
CVPR, pages 10743–10752, 2021. 2

[54] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In CVPR, pages 4195–4205, 2023. 1, 3,
6

[55] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[56] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 2, 6

[57] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, pages 22500–22510, 2023. 1

[58] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. NeurIPS, 35:36479–36494, 2022. 1

[59] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 2

[60] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. NeurIPS, 29, 2016. 7

[61] J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner,
Jiajun Wu, and Gordon Wetzstein. 3d neural field genera-
tion using triplane diffusion. In CVPR, pages 20875–20886,
2023. 1

7298

[62] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pages 2256–2265. PMLR, 2015.
1

[63] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2022. 2

[64] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. NeurIPS, 32, 2019.
1, 2, 3

[65] Yang Song and Stefano Ermon. Improved techniques for
training score-based generative models. NeurIPS, 33:12438–
12448, 2020. 1, 3, 6, 8

[66] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon.
Sliced score matching: A scalable approach to density and
score estimation. In Uncertainty in Artificial Intelligence,
pages 574–584. PMLR, 2020. 1, 3

[67] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon.
Maximum likelihood training of score-based diffusion mod-
els. NeurIPS, 34:1415–1428, 2021. 1, 2, 3, 5

[68] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solv-
ing inverse problems in medical imaging with score-based
generative models. arXiv preprint arXiv:2111.08005, 2021.
1

[69] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In ICLR, 2021. 1, 2, 3, 4, 6, 8

[70] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023. 2, 3, 6

[71] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR,
pages 7167–7176, 2017. 2

[72] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. NeurIPS, 34:11287–
11302, 2021. 1, 2

[73] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In Interna-
tional conference on machine learning, pages 1747–1756.
PMLR, 2016. 6

[74] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation, 23(7):1661–
1674, 2011. 3

[75] Zike Wu, Pan Zhou, Kenji Kawaguchi, and Hanwang Zhang.
Fast diffusion model, 2023. 6

[76] Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf:
Regularizing neural radiance fields with denoising diffusion
models. In CVPR, pages 4180–4189, 2023. 1

[77] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In CVPR, pages 3712–
3722, 2018. 2

[78] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffu-
sion models with exponential integrator. ICLR, 2023. 1, 2,
3, 7

[79] Qinsheng Zhang, Jiaming Song, and Yongxin Chen. Im-
proved order analysis and design of exponential inte-
grator for diffusion models sampling. arXiv preprint
arXiv:2308.02157, 2023. 2

[80] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 6

[81] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and
Jiwen Lu. Unipc: A unified predictor-corrector frame-
work for fast sampling of diffusion models. arXiv preprint
arXiv:2302.04867, 2023. 2

7299

	. Introduction
	. Related Works
	. Preliminary
	. Sampling Gap Analysis
	. Residual Definition

	. Residual Learning Framework
	. Overview
	. Transferable Residual Correction
	. Optimization
	. Efficient Residual Correction

	. Experiments
	. Setting and Implementation
	. Results

	. Conclusion

