
SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection

Gang Zhang1 Junnan Chen2 Guohuan Gao3 Jianmin Li1 Si Liu4 Xiaolin Hu1,5,6*

1Department of Computer Science and Technology, Institute for AI, BNRist, Tsinghua University
2Huazhong University of Science and Technology 3Beijing Institute of Technology

4Institute of Artificial Intelligence, Beihang University
5Tsinghua Laboratory of Brain and Intelligence (THBI),

IDG/McGovern Institute for Brain Research, Tsinghua University
6Chinese Institute for Brain Research (CIBR), Beijing 100010, China

zhang-g19@mails.tsinghua.edu.cn, chen jn@hust.edu.cn, gaoguohuan@bit.edu.cn,
liusi@buaa.edu.cn, lijianmin@mail.tsinghua.edu.cn, xlhu@tsinghua.edu.cn

Abstract

LiDAR-based 3D object detection plays an essential role
in autonomous driving. Existing high-performing 3D object
detectors usually build dense feature maps in the backbone
network and prediction head. However, the computational
costs introduced by the dense feature maps grow quadrati-
cally as the perception range increases, making these models
hard to scale up to long-range detection. Some recent works
have attempted to construct fully sparse detectors to solve
this issue; nevertheless, the resulting models either rely on
a complex multi-stage pipeline or exhibit inferior perfor-
mance. In this work, we propose a fully sparse adaptive
feature diffusion network (SAFDNet) for LiDAR-based 3D
object detection. In SAFDNet, an adaptive feature diffusion
strategy is designed to address the center feature missing
problem. We conducted extensive experiments on Waymo
Open, nuScenes, and Argoverse2 datasets. SAFDNet per-
formed slightly better than the previous SOTA on the first two
datasets but much better on the last dataset, which features
long-range detection, verifying the efficacy of SAFDNet in
scenarios where long-range detection is required. Notably,
on Argoverse2, SAFDNet surpassed the previous best hy-
brid detector HEDNet by 2.6% mAP while being 2.1× faster,
and yielded 2.1% mAP gains over the previous best sparse
detector FSDv2 while being 1.3× faster. The code will be
available at https://github.com/zhanggang001/HEDNet.

1. Introduction
LiDAR-based 3D object detection poses a significant chal-
lenge in computer vision and has received increasing atten-
tion for its potential applications in autonomous driving [1]
and advanced robotics [2]. Currently, most LiDAR-based
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Figure 1. Comparison among previous one-stage hybrid detectors,
the fully sparse detector FSDv1, and our SAFDNet.

3D detectors [3–7] convert sparse features into dense fea-
ture maps to facilitate further feature extraction and predic-
tion, termed hybrid detectors (see Figure 1(a)). These meth-
ods demonstrate excellent performance on well-established
benchmarks like nuScenes [8] and Waymo Open [9], primar-
ily designed for a relatively short perception range (below
75 meters). However, scaling these methods to more prac-
tical long-range scenarios (exceeding 200 meters) becomes
challenging because the computational costs associated with
dense feature maps grow quadratically as the perception
range increases [10]. Additionally, processing unoccupied
areas is often unnecessary and might even hinder detection
accuracy. Consequently, there’s a growing interest among
researchers in developing fully sparse detectors [10–13].

Constructing fully sparse detectors by removing dense
feature maps from existing hybrid detectors is non-trivial, as
these feature maps play a crucial role in these methods. Most
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hybrid detectors rely on features at object centers for predic-
tions, considering them reliable representations of the entire
object. These methods usually first employ sparse voxel en-
coders to efficiently extract features from non-empty voxels.
Subsequently, they transform these sparse features into dense
feature maps in a bird’s eye view (BEV) and use convolu-
tional neural networks (CNNs) to diffuse features towards
object centers, creating center features. However, for fully
sparse detector, in the absence of dense feature maps, the
centers of large objects like vehicles and trucks often remain
empty, leading to the center feature missing problem [10, 12].
Thus, learning an appropriate object representation becomes
pivotal for building fully sparse detectors.

To tackle the center feature missing problem, FSDv1 [10]
proposes a multi-stage pipeline involving instance clustering
(Figure 1(b)). Specifically, it begins by segmenting raw point
clouds into foreground and background, then conducts cen-
ter voting for instance clustering. Subsequently, it extracts
instance features from each cluster for initial predictions,
which are refined by a group correction head. FSDv2 [12]
eliminates feature clustering in favor of a virtual voxelization
module to reduce the inductive bias of handcrafted instance-
level representations, yet it still relies on point segmentation
and prediction refinement. The complex pipeline makes it
challenging to deploy them in real-world scenarios due to
numerous hyperparameters requiring tuning. In contrast,
VoxelNeXt [13] directly predicts objects based on the fea-
tures nearest to object centers but exhibits inferior accuracy.

In this work, we introduce SAFDNet, a simple yet effec-
tive architecture tailored for fully sparse 3D object detection
(Figure 1(c)). Similar to hybrid detectors, SAFDNet initially
employs a sparse voxel encoder to extract 3D sparse features,
which are then transformed into 2D sparse BEV features.
Subsequently, an adaptive feature diffusion (AFD) strategy is
proposed to propagate features towards object centers, serv-
ing as the core component in SAFDNet for addressing the
center feature missing problem. Unlike the uniform feature
diffusion achieved by dense convolutional networks in hy-
brid detectors, our AFD selectively expands features within
object bounding boxes to neighboring regions, dynamically
adjusting the diffusion range according to voxel positions.
As a result, SAFDNet can still leverage efficient calculations
on sparse features. The expanded features are fed into the
sparse detection head for predictions. Importantly, SAFDNet
maintains most hyperparameters compatible with existing
hybrid detectors, including those of the detection head, en-
abling easy adaptation to new scenarios.

We conducted extensive experiments on the challeng-
ing Waymo Open [9], nuScenes [8], and Argoverse2 [14]
datasets to verify the effectiveness of our method. On the
first two datasets for short-range detection, SAFDNet per-
formed on par with the previous best hybrid detector HED-
Net and was 2× faster than the previous best sparse detector

FSDv2. On the Argoverse2 dataset for long-range detection,
SAFDNet surpassed HEDNet by 2.6% mAP while being
2.1× faster and outperformed FSDv2 by 2.1% mAP while
being 1.3× faster. These results demonstrate the efficacy of
SAFDNet in scenarios that requires long-range detection.

2. Related work
2.1. Dense detectors

VoxelNet [3] is the first to introduce dense convolutions for
LiDAR-based 3D object detection, achieving competitive
performance. However, directly applying dense convolutions
to 3D voxel feature learning poses efficiency challenges due
to their computational complexity. To address this limitation,
pillar-based methods [15–17] utilize 2D dense convolutions
on BEV dense feature maps instead, which improves com-
putational efficiency but leads to inferior accuracy.

2.2. Hybrid detectors

Unlike dense detectors, hybrid detectors [4–7, 18–21] incor-
porate both sparse and dense features. For instance, SEC-
OND [18], a pioneering effort, employs a sparse CNN to ex-
tract 3D sparse voxel features and then transforms them into
dense BEV feature maps for predictions. FocalsConv [22]
enhances the efficiency of sparse CNNs by adaptively ex-
panding features through spatially learnable sparsity. Cen-
terPoint [4] introduces a center-based detection head, show-
casing excellent performance in 3D object detection and
tracking. Recent studies [5, 7, 19, 23] have further enhanced
CenterPoint from diverse perspectives. Additionally, another
line of works [6, 11, 21, 24, 25] has explored transformers
to capture long-range dependencies among spatial features.
However, despite leveraging a sparse backbone, these meth-
ods face challenges when scaling to long-range scenarios,
primarily due to their dependence on dense feature maps.

2.3. Sparse detectors

Some early works [26–28] employ the PointNet series [29,
30] to extract sparse features from raw point clouds for pre-
dictions. Point R-CNN [26] stands out as the pioneer in
developing fully point-based detectors. VoteNet [28] intro-
duces a center voting mechanism and generates proposals
from the voted centers. Despite efforts to speed up full point-
based methods, the time-consuming neighborhood searching
remains impractical for large-scale point clouds. In contrast,
FSDv1 [10] segments raw point clouds into foreground and
background, and then clusters the foreground points to rep-
resent individual objects. Then, it uses a PointNet-style [29]
network to extract features from each cluster for initial coarse
predictions, refined by a group correction head. FSDv2 [12]
replaces the instance clustering with a virtual voxelization
module, aiming to eliminate the inductive bias of handcrafted
instance-level representations. Yet, it still requires point seg-
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Figure 2. Overall framework of SAFDNet. Taking the raw point clouds as input, SAFDNet extracts initial 3D sparse feature maps by the
voxel feature encoder (VFE), and then it employs the 3D sparse backbone and the 2D sparse backbone to extract high-level sparse features
for predictions in the sparse detection head. L, W and H denote length, width, and height of feature maps, respectively.

mentation and prediction refinement. The complex pipeline
demands tuning numerous hyperparameters for deployment
in real-world scenarios. In contrast, SWFormer [11] presents
a fully transformer-based architecture for 3D object detec-
tion. And the more recent VoxelNeXt [13] streamlines the
fully sparse architecture with a purely voxel-based design,
localizing objects by the features nearest to their centers.
Despite their notable efficiency, both SWFormer and Voxel-
NeXt exhibit inferior accuracy compared to hybrid detectors.

3. SAFDNet
3.1. Background

Sparse convolutions. Existing LiDAR-based 3D object
detectors commonly leverage sparse convolutions for data
processing to enhance computational efficiency. There are
primarily two types of sparse convolutions used: submani-
fold sparse convolution [31], which maintains feature spar-
sity between input and output feature maps, and regular
sparse convolution [32], which increases the density of the
feature map by expanding features into neighboring regions.
Since regular sparse convolution decreases feature sparsity
dramatically, it is often merely used to down-sample feature
maps in existing methods [4, 5, 7, 18].
Sparse residual block (SRB). Most voxel-based meth-
ods [4, 7, 18] adopt sparse CNNs to extract features. These
CNNs typically comprise a series of sparse residual blocks,
where each block contains two submanifold sparse convolu-
tions and a skip connection linking its input and output.
Sparse encoder-decoder block (EDB). Since subman-
ifold sparse convolutions preserve feature sparsity from
input to output, they may impede information exchange
among spatially distant features. As a result, merely stack-
ing SRBs can result in a receptive field with limited size.
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Figure 3. Sparse encoder-decoder block. It adopts regular sparse
convolution with stride 2 to down-sample feature maps and uses
sparse inverse convolution [33] to up-sample feature maps.

HEDNet [7] addresses this by incorporating sparse encoder-
decoder blocks that capture long-range dependencies among
features while maintaining computational efficiency. Fig-
ure 3 illustrate a general structure of EDB. It decreases the
spatial distance among distant features via feature down-
sampling and subsequently restores lost details through
multi-scale feature fusion. By applying 3D and 2D sub-
manifold sparse convolutions to construct the SRB, we can
obtain 3D-EDB and 2D-EDB, respectively.

3.2. Overall architecture

Figure 2 presents an overview of the proposed SAFDNet.
SAFDNet shares a similar pipeline to existing hybrid detec-
tors [4, 18]. It comprises three parts: a 3D sparse backbone,
a 2D sparse backbone, and a sparse detection head.

3D sparse backbone. Taking raw point clouds as input,
the 3D sparse backbone initially extracts sparse feature maps
using a voxel feature encoder (VFE) and progressively down-
samples them to extract high-level features. At the end of
the backbone, it incorporates a 3D-EDB to facilitate infor-
mation exchange among distant features. Subsequently, the
3D sparse features are compressed into 2D sparse BEV fea-
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Method Type mAPH Vehicle Pedestrian Cyclist

HEDNet Hybrid 73.2 72.1 72.0 75.6
Nearest Sparse 71.5 68.9 70.9 74.7

Table 1. Preliminary experiments on the Waymo Open dataset. The
second model shares a similar structure to HEDNet but replaces
all dense convolutions with submanifold sparse convolutions. The
overall accuracy mAPH and the per-category APH are presented.

tures. This compression is implemented by using two regular
sparse convolutions with stride 2 to down-sample features
along the Z-axis and then aggregating features of voxels
sharing the same coordinates in BEV.

2D sparse backbone. Taking the BEV sparse features as
input, the 2D sparse backbone begins by performing voxel
classification on each voxel to determine whether the geo-
metric center of each voxel falls within an object bounding
box of a specific category or belongs to the background. Sub-
sequently, an adaptive feature diffusion (AFD) operation, in
conjunction with a 2D-EDB, is employed to propagate voxel
features towards object centers.

Sparse detection head. Since most high-performing hy-
brid detectors utilize the center-based head introduced by
CenterPoint [4], we adopt a similar head for SAFDNet. How-
ever, as the designs for classification and regression in Cen-
terPoint are tailored for dense feature maps, we have made
some adjustments to accommodate sparse features. For more
details, please refer to Section 3.4.

3.3. Adaptive feature diffusion

Existing hybrid detectors typically decompose 3D object
detection into classification and regression tasks. The clas-
sification task aims to locate voxels at object centers for
each category, while the regression task predicts precise
bounding boxes based on these center features. Given that
LiDAR point clouds reside on the surfaces of objects, to
construct fully sparse detectors by simply removing dense
feature maps would result in the center feature missing prob-
lem. A straightforward solution is to make predictions based
on the features nearest to object centers. Specifically, we
reformulate the classification task into identifying the vox-
els closest to object centers, enabling the regression task
to predict precise bounding boxes using these closest voxel
features. Our experiments, detailed in Table 1, demonstrate
that such a sparse model (the bottom row) performed worse
than the hybrid detector HEDNet. This discrepancy is partic-
ularly notable on larger vehicles, which are more severely
affected by the center feature missing problem. These find-
ings indicate that center features indeed provide better object
representations than their nearest counterparts.

Uniform feature diffusion (UFD). Is it possible for de-
tectors to extract features nearer or at object centers while

(a) Uniform feature diffusion (b) Adaptive feature diffusion
Figure 4. Illustration of uniform and adaptive feature diffusion. The
red points denote object centers. The voxels with centers falling
within object bounding boxes are indicated in dark orange, while
those outside are in dark blue. The expanded features are indicated
in light orange or light blue. Empty voxels are indicated in white.

maintaining feature sparsity as much as possible? An intu-
itive idea is to diffuse sparse features to neighboring voxels
rather than all voxels like hybrid detectors. Figure 4 (a) de-
picts a uniform feature diffusion strategy, where input voxel
features are expanded to a K×K neighborhood, with K set
to 5 as an example. There are two possible implementations:
a. Parameter-based (PB) UFD: employing a regular sparse

convolution with kernel size K×K to spread features, in
conjunction with a 2D-EDB for further transformation.

b. Parameter-free (PF) UFD: initializing zero features in
neighboring regions and then incorporating a 2D-EDB
to spread features progressively.

Adaptive feature diffusion (AFD). Through our analysis
of the sparse voxels output by the 3D sparse backbone, we
observed that: (a) fewer than 10% of the voxels fall within
the bounding boxes of objects; (b) smaller objects often have
voxel features near or at their centers. This indicates poten-
tial redundancy in uniformly expanding features into neigh-
borhoods of the same size, particularly for voxels within
the bounding boxes of small objects and those belonging
to the background. Hence, we propose an adaptive feature
diffusion strategy according to voxel positions, as depicted
in Figure 4 (b). The idea is to assign a larger diffusion range
to voxels within the bounding boxes of large objects to bring
features nearer to object centers, while assigning a smaller
range to voxels within the bounding boxes of small objects
or the background to preserve feature sparsity. Implement-
ing this idea necessitates voxel classification to determine
whether a voxel’s center is within the bounding box of an
object of a specific category or belongs to the background.

Training. For the training process of voxel classification,
we group object categories of similar size and perform binary
classification for each group. Let G denote the number of
category groups and N be the number of sparse voxels. For
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Method mAP/mAPH Vehicle AP/APH Pedestrian AP/APH Cyclist AP/APH
L1 L2 L1 L2 L1 L2 L1 L2

Results on the validation data set

SECOND [18] 67.2/63.1 61.0/57.2 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0
PointPillar [15] 69.0/63.5 62.8/57.8 72.1/71.5 63.6/63.1 70.6/56.7 62.8/50.3 64.4/62.3 61.9/59.9
Part-A2-Net [34] 73.6/70.3 66.9/63.8 77.1/76.5 68.5/68.0 75.2/66.9 66.2/58.6 68.6/67.4 66.1/64.9
SST [21] 74.5/71.0 67.8/64.6 74.2/73.8 65.5/65.1 78.7/69.6 70.0/61.7 70.7/69.6 68.0/66.9
CenterPoint [4] 74.4/71.7 68.2/65.8 74.2/73.6 66.2/65.7 76.6/70.5 68.8/63.2 72.3/71.1 69.7/68.5
PV-RCNN [35] 76.2/73.6 69.6/67.2 78.0/77.5 69.4/69.0 79.2/73.0 70.4/64.7 71.5/70.3 69.0/67.8
CenterPoint [4] 75.9/73.5 69.8/67.6 76.6/76.0 68.9/68.4 79.0/73.4 71.0/65.8 72.1/71.0 69.5/68.5
PillarNet-34 [16] 77.3/74.6 71.0/68.5 79.1/78.6 70.9/70.5 80.6/74.0 72.3/66.2 72.3/71.2 69.7/68.7
AFDetV2 [23] 77.2/74.8 71.0/68.8 77.6/77.1 69.7/69.2 80.2/74.6 72.2/67.0 73.7/72.7 71.0/70.1
CenterFormer [19] 75.6/73.2 71.4/69.1 75.0/74.4 69.9/69.4 78.0/72.4 73.1/67.7 73.8/72.7 71.3/70.2
LargeKernel3D[36] -/- -/- 78.1/77.6 69.8/69.4 -/- -/- -/- -/-
PV-RCNN++ [37] 78.1/75.9 71.7/69.5 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2
DSVT-Voxel [6] 80.3/78.2 74.0/72.1 79.7/79.3 71.4/71.0 83.7/78.9 76.1/71.5 77.5/76.5 74.6/73.7
HEDNet [7] 81.4/79.4 75.3/73.4 81.1/80.6 73.2/72.7 84.4/80.0 76.8/72.6 78.7/77.7 75.8/74.9

SWFormer [11]† -/- -/- 77.8/77.3 69.2/68.8 80.9/72.7 72.5/64.9 -/- -/-
VoxelNeXt [13]† 78.6/76.3 72.2/70.1 78.2/77.7 69.9/69.4 81.5/76.3 73.5/68.6 76.1/74.9 73.3/72.2
FSDv1 [10]† 79.6/77.4 72.9/70.8 79.2/78.8 70.5/70.1 82.6/77.3 73.9/69.1 77.1/76.0 74.4/73.3
FSDv2 [12]† 81.8/79.5 75.6/73.5 79.8/79.3 71.4/71.0 84.8/79.7 77.4/72.5 80.7/79.6 77.9/76.8
SAFDNet (ours)† 81.8/79.9 75.7/73.9 80.6/80.1 72.7/72.3 84.7/80.4 77.3/73.1 80.0/79.0 77.2.76.2

Results on the test data set

FSDv1 [10]† 80.4/78.2 74.4/72.4 82.7/82.3 74.4/74.1 82.9/77.9 75.9/71.3 75.6/74.4 72.9/71.8
FSDv2 [12]† 81.1/79.0 75.4/73.3 82.4/82.0 74.4/74.0 83.8/78.9 77.4/72.8 77.1/76.0 74.3/73.2
SAFDNet (ours)† 81.9/79.8 76.5/74.6 83.9/83.5 76.6/76.2 84.3/79.8 78.4/74.1 77.5/76.3 74.6/73.4

Table 2. Comparison with prior methods on the Waymo Open dataset. Metrics: mAP/mAPH (%)↑ for the overall results, and AP/APH (%)↑
for each category. † represents a fully sparse detector, the same as below. All models were trained under single-frame setting.

group i, the model predicts a vector Pi of length N . The
corresponding training target Ti is defined as follows:

Tj
i =

{
1, if (xj , yj) is in object box of group i
0, otherwise (1)

where j∈{1, ..., N}, (xj , yj) represents the coordinates of
the corresponding voxel center, and the ‘object box’ refers to
the human-annotated bounding box of an object. The overall
loss for voxel classification is defined by the equation:

LAFD =

G∑
i=1

sigmoid focal loss(Pi,Ti) (2)

Inference. Given Pi, a binary mask Mi that indicates
voxels whether fall within any object bounding boxes of
category group i is calculated by threshold t, then the binary
mask Ri that indicates the feature diffusion areas can be
jointly decided by Mi and the diffusion kernel size Ki×
Ki. Ki is defined as α · Si, where Si is the average size
of objects in category group i and α controls the range of
feature diffusion. The object size is defined as the maximum
value between the length and width of the bounding box
and is normalized by the voxel size. After that, the binary
mask representing the overall feature diffusion areas can be
calculated as R = R1 ∪ R2 ∪ ... ∪ RG. For each voxel

in the feature diffusion areas, if there are no features, we
initialize it with zero features. Finally, a 2D-EDB is utilized
for further feature transformation.

3.4. Sparse detection head

For the detection head, we adhere to most design principles
of CenterPoint but make some adjustments to accommo-
date sparse features. Despite employing adaptive feature
diffusion, covering all object centers remains challenging,
particularly for extremely large objects. For classification
training, we calculate a Gaussian heatmap for each object
using the distance from each voxel center to the object cen-
ter. Different from CenterPoint, we normalize the heatmap
values with the maximum value for each object to avoid gra-
dient vanishing. For regression, we compute the loss based
on predictions from voxels features nearest to object centers.

4. Experiments
4.1. Datasets and metrics

We conducted experiments on the popular Waymo Open [9],
nuScenes [8], and Argoverse2 [14] datasets to validate the
effectiveness of our approach. The detection ranges of the
three datasets are 75, 54 and 200 meters, respectively. For ob-
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Method NDS mAP Car Truck Bus T.L. C.V. Ped. M.T. Bike T.C. B.R.

Results on the validation data set

VoxelNeXt [13]† 68.7 63.5 83.9 55.5 70.5 38.1 21.1 84.6 62.8 50.0 69.4 69.4
FSDv2 [12]† 70.4 64.7 84.4 57.3 75.9 44.1 28.5 86.9 69.5 57.4 72.9 73.6
SAFDNet (Ours)† 71.0 66.3 87.6 60.8 78.0 43.5 26.6 87.8 75.5 58.0 75.0 69.7

Results on the test data set

PointPillars [15] 45.3 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
3DSSD [38] 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9
CenterPoint [4] 65.5 58.0 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
HotSpotNet [39] 66.0 59.3 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6
CVCNET [40] 66.6 58.2 82.6 49.5 59.4 51.1 16.2 83.0 61.8 38.8 69.7 69.7
AFDetV2 [23] 68.5 62.4 86.3 54.2 62.5 58.9 26.7 85.8 63.8 34.3 80.1 71.0
UVTR-L [41] 69.7 63.9 86.3 52.2 62.8 59.7 33.7 84.5 68.8 41.1 74.7 74.9
VISTA [42] 69.8 63.0 84.4 55.1 63.7 54.2 25.1 82.8 70.0 45.4 78.5 71.4
Focals Conv [22] 70.0 63.8 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
TransFusion-L [5] 70.2 65.5 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
LargeKernel3D [20] 70.6 65.4 85.5 53.8 64.4 59.5 29.7 85.9 72.7 46.8 79.9 75.5
LinK [43] 71.0 66.3 86.1 55.7 65.7 62.1 30.9 85.8 73.5 47.5 80.4 75.5
HEDNet [7] 72.0 67.7 87.1 56.5 70.4 63.5 33.6 87.9 70.4 44.8 85.1 78.1

VoxelNeXt [13]† 70.0 64.5 84.6 53.0 64.7 55.8 28.7 85.8 73.2 45.7 79.0 74.6
FSDv2 [12]† 71.7 66.2 83.7 51.6 66.4 59.1 32.5 87.1 71.4 51.7 80.3 78.7
SAFDNet (Ours)† 72.3 68.3 87.3 57.3 68.0 63.7 37.3 89.0 71.1 44.8 84.9 79.5

Table 3. Comparison with prior methods on the nuScenes dataset. Metrics: NDS (%)↑ and mAP (%)↑ for the overall results, AP (%)↑ for
each category. ‘T.L.’, ‘C.V.’, ‘Ped.’, ‘M.T.’, ‘T.C.’, and ’B.R.’ denote trailer, construction vehicle, pedestrian, motor, traffic cone, and barrier.

ject detection on the Waymo Open dataset, evaluation metrics
include mean average precision (mAP) and mAP weighted
by heading accuracy (mAPH). Both are further broken down
into two difficulty levels: L1 for objects with more than five
LiDAR points and L2 for objects with at least one LiDAR
point. For object detection on the nuScenes dataset, evalua-
tion metrics include mAP and the nuScenes detection score
(NDS). mAP is calculated by averaging over the distance
thresholds of 0.5m, 1m, 2m, and 4m across all categories.
NDS is a weighted average of mAP and five other true pos-
itive metrics that measure translation, scaling, orientation,
velocity, and attribute errors. For object detection on the
Argoverse2 dataset, mAP is adopted as the evaluation metric.

4.2. Implementations details

We implemented our method based on the open-source Open-
PCDet [44]. To build SAFDNet, we set the hyperparameters
m, n to 4, 2 for the 3D-EDB, and 8, 4 for the 2D-EDB. The
hyperparameters t and α in AFD were set to 0.4 and 1.0.
All experiments were conducted on 8 RTX 4090 GPUs with
a total batch size of 16. To compare with previous state-
of-the-art methods, we trained SAFDNet for 24 epochs, 20
epochs, and 24 epochs on the Waymo Open, nuScenes, and
Argoverse2 datasets, respectively. For ablation experiments
in Section 4.4, we trained models for 12 epochs and 6 epochs
on the Waymo Open and Argoverse2 datasets, respectively.
Please refer to the Appendix A for more details.

4.3. Comparison with state-of-the-art methods

Results on Waymo Open. On the validation set, SAFDNet
achieved 75.7% L2 mAP and 73.9% L2 mAPH, perform-
ing slightly better than the hybrid detector HEDNet and the
sparse detector FSDv2. On the test set, SAFDNet yielded
1.3% L2 mAPH gains over the previous best fully sparse
detector FSDv2. Notably, SAFDNet achieved significant im-
provements over FSDv2 on the large vehicle category (2.2%
L2 mAPH on the test set), which suffers more from the cen-
ter feature missing problem with the full sparse architecture.
More comparison on model runtime has been presented later.

Results on nuScenes. We primarily compared SAFDNet
with previous top-performing LiDAR-based methods on the
nuScenes test set (Table 3). On the nuScenes test set, SAFD-
Net achieved impressive results with 72.3% NDS and 68.3%
mAP. Compared with FSDv2, SAFDNet showcased signifi-
cant improvements on the categories of large objects includ-
ing car (+3.6%), truck (+5.7%), and trailer (+4.6%). These
results further demonstrate the effectiveness of our method.

Results on Argoverse2. To validate the effectiveness of
SAFDNet on the long-range detection, we conducted exper-
iments on the Argoverse2 dataset with a perception range
of 200 meters (Table 4). SAFDNet achieved a gain of 2.1%
mAP over the previous best sparse detector FSDv2. It is
worth noting that the proposed SAFDNet also outperformed
the hybrid detector HEDNet, which indicates that expanding
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CenterPoint [4] 22.0 67.6 38.9 46.5 16.9 37.4 40.1 32.2 28.6 27.4 33.4 24.5 8.7 25.8 22.6 29.5 22.4 6.3 3.9 0.5 20.1 22.1 0.0 3.9 0.5 10.9 4.2
HEDNet [7] 37.1 78.2 47.7 67.6 46.4 45.9 56.9 67.0 48.7 46.5 58.2 47.5 23.3 40.9 27.5 46.8 27.9 20.6 6.9 27.2 38.7 21.6 0.0 30.7 9.5 28.5 8.7

VoxelNeXt [13]† 30.7 72.7 38.8 63.2 40.2 40.1 53.9 64.9 44.7 39.4 42.4 40.6 20.1 25.2 19.9 44.9 20.9 14.9 6.8 15.7 32.4 16.9 0.0 14.4 0.1 17.4 6.6
FSDv1 [10]† 28.2 68.1 40.9 59.0 29.0 38.5 41.8 42.6 39.7 26.2 49.0 38.6 20.4 30.5 14.8 41.2 26.9 11.9 5.9 13.8 33.4 21.1 0.0 9.5 7.1 14.0 9.2
FSDv2 [12]† 37.6 77.0 47.6 70.5 43.6 41.5 53.9 58.5 56.8 39.0 60.7 49.4 28.4 41.9 30.2 44.9 33.4 16.6 7.3 32.5 45.9 24.0 1.0 12.6 17.1 26.3 17.2
SAFDNet (Ours)† 39.7 78.5 49.4 70.7 51.5 44.7 65.7 72.3 54.3 49.7 60.8 50.0 31.3 44.9 24.7 55.4 31.4 22.1 7.1 31.1 42.7 23.6 0.0 26.1 1.4 30.2 11.5

Table 4. Comparison with prior methods on Argoverse2 validation set. Metrics: mAP (%)↑ for the overall results, AP (%)↑ for each category.

Method Waymo Open Argoverse2
mAPH FPS Speedup mAP FPS Speedup Mem.

HEDNet [7] 73.4 17.2 1.0× 37.1 7.3 1.0× 28.7G

VoxelNeXt [13]† 70.1 15.7 0.9× 30.7 19.6 2.7× 6.2G
FSDv2 [12]† 73.5 10.3 0.6× 37.6 11.5 1.6× 8.6G
SAFDNet†(Ours) 73.9 20.2 1.2× 39.7 15.1 2.1× 7.3G

Table 5. Runtime comparison on the Waymo Open and Argov-
erse2 datasets. Mem. denotes the training GPU memory measured
following [45]. FPS (frame per second, ↑) is the inference speed
measured on a single NVIDIA 4090 GPU with a batch size of 1.

features towards all unoccupied area without restriction may
hurt the detection performance.
Runtime comparison. We compared the inference speed
of SAFDNet with prior top-performing methods, as shown in
Table 5. On the Waymo Open dataset with a short perception
range, SAFDNet was 2× faster than the sparse detector
FSDv2 and was 1.2× faster than the hybrid detector HEDNet.
On the Argoverse2 dataset with a long perception range,
SAFDNet yielded 2.1% mAP gains over FSDv2 while being
1.3× faster. Compared with HEDNet, SAFDNet achieved
2.6% mAP improvements while being 2.1× faster. Note that
the hybrid detector HEDNet requires much more training
memory than the other sparse detectors.

4.4. Ablation studies

A step-by-step ablation. We performed step-wise ablation
experiments from the hybrid detector HEDNet to our SAFD-
Net on the Waymo Open dataset (Table 6 (a)). Initially, we
removed the 2D dense backbone in HEDNet and replaced all
convolutions in the detection head with submanifold sparse
convolutions, resulting in the first model. The accuracies
across all categories dropped significantly. We observed that
using the voxels within which object centers fall, as done in
CenterPoint, to calculate the Gaussian heatmap during classi-
fication training led to rapid convergence of the classification
loss to zero. In the second model, we used the nearest non-
empty voxel as the center to generate the Gaussian heatmap.
This adjustment notably increased accuracy to 71.0% mAPH.
In the third model, we continued to adopt the center voxel
but normalized the training target with the maximum values

No. Method mAPH Veh. Ped. Cyc.

* HEDNet 73.2 72.1 72.0 75.6

1 Center heatmap 55.2 53.3 54.5 60.7
2 Nearest heatmap 71.0 69.1 70.6 73.3
3 Normalized heatmap 71.4 69.1 70.6 74.2
4 Row-3 w/ 2D-EDB 71.5 68.8 70.9 74.7
5 Row-4 w/ AFD 73.3 71.7 72.3 75.7

(a) A step-by-step ablation.

Type Waymo Open Argoverse2
mAPH FLOPs mAP FLOPs

w/o 71.5 90G 36.4 34G
PB UFD 73.0 189G 37.6 147G
PF UFD 73.1 182G 37.7 144G

AFD 73.3 108G 37.8 45G

(b) Different types of feature diffusion.

α
Waymo Open Argoverse2

mAPH FLOPs mAP FLOPs

0.0 71.5 90G 36.4 34G
0.5 72.7 100G 37.3 38G
1.0 73.3 108G 37.8 45G
2.0 73.0 153G 37.8 67G

(c) Different ranges of adaptive feature diffusion.

Table 6. Ablation studies. The overall and per-category L2 mAPH
on Waymo Open and the mAP on Argoverse2 are presented. The
hyperparameter α controls the feature diffusion range. FLOPs were
calculated excluding the 3D sparse backbone. Veh., Ped. and Cyc.
are short for vehicle, pedestrian, and cyclist, respectively.

to prevent gradient vanishing, resulting in a slight accuracy
boost. Adding the 2D-EDB in the fourth model did not lead
to a performance improvement. Notably, there still existed
a significant accuracy gap, particularly on large vehicles,
between the fourth model and HEDNet (over 3% mAPH).
Finally, incorporating the proposed adaptive feature diffu-
sion strategy effectively bridged this gap. An ablation on
different sparse backbones is presented in Appendix B.

Different types of feature diffusion. We compared dif-
ferent type of diffusion strategies on the Waymo Open and

14483



Figure 5. Qualitative results on Argoverse2. The red, blue, and green boxes are human annotations, SAFDNet predictions and HEDNet
predictions, respectively. The orange points denote the points that fall within the human-annotated boxes. SAFDNet performed comparably
to HEDNet in some scenarios (top row). Additionally, SAFDNet demonstrated better predictions for small objects (bottom-left panel) but
encountered challenges in direction prediction for partially large objects (bottom-right panel). Red arrows mark the prediction differences.

Argoverse2 datasets, as presented in Table 6 (b). While the
models with the two types of UFD strategies showed sub-
stantial gains over the model without feature diffusion, they
introduced significantly higher computational FLOPs. In
contrast, the model with the AFD strategy achieved the high-
est accuracy while incurring fewer computational costs.

Different ranges of feature diffusion. We compared dif-
ferent diffusion ranges of AFD on the Waymo Open and
Argoverse2 datasets. Table 6 (c) shows that, setting α to 1,
wherein the diffusion kernel size matches the average ob-
ject size, resulted in the highest accuracy for SAFDNet. On
the Waymo Open dataset, a large diffusion range slightly
degraded the performance, suggesting that excessive feature
diffusion might be unnecessary and could harm performance.

4.5. Qualitative visualization

We showcase predictions made by HEDNet and SAFDNet
on the Argoverse2 dataset in Figure 5. SAFDNet performed
comparably to HEDNet in some scenarios, exhibiting better
predictions for small objects but encountering challenges in
predicting the direction of certain large objects. Please note
that this issue arises only with partially large objects, like
box truck, and is not a general problem for all large objects.

5. Conclusion
We present SAFDNet, a fully sparse architecture tailed for
3D object detection. To address the center feature missing
problem, we propose an adaptive feature diffusion strategy
to diffuse features towards object centers while maintaining
feature sparsity as much as possible. SAFDNet achieved
impressive performance on the Waymo Open, nuScenes, and
Argoverse2 datasets, which demonstrates the effectiveness
of our method. We hope that our work can provide some
inspiration for the design of fully sparse 3D object detector.

Limitations. We mitigate the center feature missing prob-
lem through our proposed adaptive feature diffusion strategy.
However, this approach may generate some unnecessary fea-
ture regions, such as the expanded regions outside of objects.
We believe a more efficient solution could address this issue,
such as by grouping voxels associated with the same object.
We defer exploration of this solution to future research.
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