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Figure 1. Our SSR-Encoder is a model generalizable encoder, which is able to guide any customized diffusion models for single subject-
driven image generation (top branch) or multiple subject-driven image generation from different images (middle branch) based on the
image representation selected by the text query or mask query without any additional test-time finetuning. Furthermore, our SSR-Encoder
can also be applied for the controllable generation with additional control (bottom branch).

Abstract lection and focus on crucial subject representations re-

main challenging. Addressing this, we introduce the SSR-

Recent advancements in subject-driven image gener- Encoder, a novel architecture designed for selectively cap-
ation have led to zero-shot generation, yet precise se- turing any subject from single or multiple reference images.
It responds to various query modalities including text and

*Work done during internship at Xiaohongshu Inc. masks, without necessitating test-time fine-tuning. The SSR-
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Encoder combines a Token-to-Patch Aligner that aligns
query inputs with image patches and a Detail-Preserving
Subject Encoder for extracting and preserving fine features
of the subjects, thereby generating subject embeddings.
These embeddings, used in conjunction with original text
embeddings, condition the generation process. Character-
ized by its model generalizability and efficiency, the SSR-
Encoder adapts to a range of custom models and control
modules. Enhanced by the Embedding Consistency Regu-
larization Loss for improved training, our extensive exper-
iments demonstrate its effectiveness in versatile and high-
quality image generation, indicating its broad applicability.
Project page: ssr—encoder.github.io

1. Introduction

Recent advancements in image generation, especially
with the advent of text-to-image diffusion models trained on
extensive datasets, have revolutionized this field. A prime
example is Stable Diffusion, an open-source model cited as
[31], which allows a broad user base to easily generate im-
ages from textual prompts. A growing area of interest that
has emerged is the subject-driven generation, where the fo-
cus shifts from creating a generic subject, like “a cat” to
generating a specific instance, such as “the cat”. How-
ever, crafting the perfect text prompt to generate the de-
sired subject content poses a significant challenge. Con-
sequently, researchers are exploring various strategies for
effective subject-driven generation.

Subject-driven image generation aims to learn subjects
from reference images and generate images aligning with
specific concepts like identity and style. Currently, one
prominent approach involves test-time fine-tuning [1, 10,
17, 32], which, while efficient, requires substantial compu-
tational resources to learn each new subject. Another ap-
proach [7, 16, 30, 36, 39] encodes the reference image into
an image embedding to bypass the fine-tuning cost. How-
ever, these encoder-based models typically require joint
training with the base diffusion model, limiting their gener-
alizability. A concurrent work, IP-adapter [42], tackles both
fine-tuning costs and generalizability by learning a projec-
tion to inject image information into the U-Net, avoiding
the need to fine-tune the base text-to-image model, thereby
broadening its application in personalized models.

Despite these advancements, a critical aspect often over-
looked is the extraction of the most informative representa-
tion of a subject. With images being a complex mixture of
subjects, backgrounds, and styles, it’s vital to focus on the
most crucial elements to represent a subject effectively. To
address this, we introduce the SSR-Encoder, an image en-
coder that generates Selective Subject Representations for
subject-driven image generation.

Our SSR-Encoder firstly aligns patch-level visual em-

beddings with texts in a learnable manner, capturing de-

tailed subject embeddings guided by token-to-patch atten-

tion maps. Furthermore, we propose subject-conditioned
generation, which utilizes trainable copies of cross-
attention layers to inject multi-scale subject information.

A novel Embedding Consistency Regularization Loss is

proposed to enhance the alignment between text queries

and visual representations in our subject embedding space
during training. This approach not only ensures effective
token-to-patch alignment but also allows for flexible sub-
ject selection through text and mask queries during infer-
ence. Our SSR-Encoder can be seamlessly integrated into
any customized stable diffusion models without extensive
fine-tuning. Moreover, the SSR-Encoder is adaptable for
controllable generation with various additional controls, as
illustrated in Fig. 1.
We summarize our main contributions as follows:

* We propose a novel framework, termed as SSR-Encoder,
for selective subject-driven image generation. It al-
lows selective single- or multiple-subject generation,
fully compatible with ControlNets (e.g. canny, OpenPose,
etc.), and customized stable diffusion models without ex-
tra test-time training.

» Token-to-Patch Aligner and Detail-Preserved Subject En-
coder are proposed in our SSR-Encoder to learn selective
subject embedding. We also present an Embedding Con-
sistency Regularization Loss to enhance token-to-patch
text-image alignment in the subject embedding space.

* Our extensive experiments have validated the robustness
and flexibility of our approach, showcasing its capa-
bility to deliver state-of-the-art (SOTA) results among
finetuning-free methods. Impressively, it also demon-
strates competitive performance when compared with
finetuning-based methods.

2. Related Work

Text-to-image diffusion models. In recent years, text-
to-image diffusion models [2, 25, 26, 28, 29, 31, 33,
34, 40, 43] have made remarkable progress, particularly
with the advent of diffusion models, which have pro-
pelled text-to-image generation to large-scale commercial-
ization. DALLE [28] first achieved stunning image gener-
ation results using an autoregressive model. Subsequently,
DALLE2 [29] employed a diffusion model as the genera-
tive model, further enhancing text-to-image synthesis abil-
ity. Imagen [33] and Stable Diffusion [31] trained diffu-
sion models on larger datasets, further advancing the devel-
opment of diffusion models and becoming the mainstream
for image generation large models. DeepFloyd IF [34] uti-
lized a triple-cascade diffusion model, significantly enhanc-
ing the text-to-image generation capability, and even gener-
ating correct fonts. Stable Diffusion XL [26], a two-stage
cascade diffusion model, is the latest optimized version of
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stable diffusion, greatly improving the generation of high-
frequency details, small object features, and overall image
color.

Controllable image generation. Current diffusion
models can incorporate additional modules, enabling im-
age generation guided by multimodal image information
such as edges, depth maps, and segmentation maps. These
multimodal inputs significantly enhance the controllability
of the diffusion model’s image generation process. Meth-
ods like ControlNet [44] utilize a duplicate U-Net struc-
ture with trainable parameters while keeping the original
U-Net parameters static, facilitating controllable generation
with other modal information. T2I-adapter [24] employs
a lightweight adapter for controlling layout and style us-
ing different modal images. Uni-ControlNet [46] differenti-
ates between local and global control conditions, employing
separate modules for injecting these control inputs. Paint
by Example [41] allows for specific region editing based
on reference images. Other methods [3, 5, 9, 13, 23, 45]
manipulate the attention layer in the diffusion model’s de-
noising U-Net to direct the generation process. P2P [13]
and Null Text Inversion [23] adjust cross-attention maps to
preserve image layout under varying text prompts.

Subject-driven image generation. Subject-driven im-
age generation methods generally fall into two categories:
those requiring test-time finetuning and those that do not.
The differences in characteristics of these methods are illus-
trated in Table 1. Test-time finetuning methods [1, 6, 10—
12, 15, 17, 32, 38] often optimize additional text embed-
dings or directly fine-tune the model to fit the desired sub-
ject. For instance, Textual Inversion [10] optimizes addi-
tional text embeddings, whereas DreamBooth [32] adjusts
the entire U-Net in the diffusion model. Other methods like
Customdiffusion [17] and SVDiff [12] minimize the param-
eters needing finetuning, reducing computational demands.
Finetuning-free methods [16, 18, 21, 30, 36, 37, 39, 42]
typically train an additional structure to encode the refer-
ence image into embeddings or image prompts without ad-
ditional finetuning. ELITE [39] proposes global and local
mapping training schemes to generate subject-driven im-
ages but lack fidelity. Instantbooth [36] proposes an adapter
structure inserted in the U-Net and trained on domain-
specific data to achieve domain-specific subject-driven im-
age generation without finetuning. IP-adapter [42] encodes
images into prompts for subject-driven generation. BLIP-
Diffusion [18] enables efficient finetuning or zero-shot se-
tups. However, many of these methods either utilize all in-
formation from a single image, leading to ambiguous sub-
ject representation, or require finetuning, limiting general-
izability and increasing time consumption. In contrast, our
SSR-Encoder is both generalizable and efficient, guiding
any customized diffusion model to generate images based
on the representations selected by query inputs without any

Table 1. Comparative Analysis of Previous works. Considering
Fine-Tuning free, Model Generalizability, and Selective Represen-
tation, SSR-Encoder is the first method offering all three features.

Method Finetuning Model Selective
-free Generalizable | Representation
Textual Inversion [10] X v X
Dreambooth [32] X X X
LoRA [15] X v X
Custom diffusion [17] X X X
Break-A-Scene [1] X X v
EAT [30] X X X
Instantbooth [36] v X X
ELITE [39] v X X
Taming [16] v X X
IP-adapter [42] v v X
BLIP-diffusion [18] v X v
SSR-Encoder(Ours) v v v
test-time finetuning.
3. The Proposed Method

Selective subject-driven image generation aims to gen-
erate target subjects in a reference image with high fidelity
and creative editability, guided by the user’s specific queries
(text or mask). To tackle this, we propose our SSR-Encoder,
a specialized framework designed to integrate with any cus-
tom diffusion model without necessitating test-time fine-
tuning.

Formally, for a given reference image I and a user query
q, the SSR-Encoder effectively captures subject-specific in-
formation and generates multi-scale subject embeddings c;.
These multi-scale subject embeddings ¢, are subsequently
integrated into the U-Net model with trainable copies of
cross-attention layers. The generation process, conditioned
on both subject embeddings ¢, and text embedding c;, al-
lows for the production of desired subjects with high fidelity
and creative editability. The overall methodology is illus-
trated in Fig. 2.

In general, SSR-Encoder is built on text-to-image dif-
fusion models [31]'. It comprises two key components:
the token-to-patch aligner and detail-preserving subject en-
coder (Sec. 3.1). The subject-conditioned generation pro-
cess is detailed in Sec. 3.2. Lastly, training strategies and
loss functions are presented in Sec. 3.3.

3.1. Selective Subject Representation Encoder

Our Selective Subject Representation Encoder (SSR-
Encoder) is composed of two integral parts: Token-to-Patch
Aligner and Detail-Preserving Subject Encoder. The details
of each component are as follows.

Token-to-patch aligner. Several works [8, 20, 47] have
pointed out that CLIP tends to prioritize background regions

Reviewed in the Supplementary.
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Figure 2. Overall schematics of our method. Given a query text-image pairs (g, I), the SSR-Encoder employs a token-to-patch aligner to
highlight the selective regions in the reference image by the query. It extracts more fine-grained details of the subject through the detail-
preserving subject encoder, projecting multi-scale visual embeddings via the token-to-patch aligner. Then, we adopt subject-conditioned
generation to generate specific subjects with high fidelity and creative editability. During training, we adopt reconstruction loss Lz, pns and
embedding consistency regularization loss L. for selective subject-driven learning.

over foreground subjects when identifying target categories.
Therefore, relying solely on text-image similarity may not
adequately capture subject-specific information. To address
this issue, we propose the Token-to-Patch (T2P) Aligner,
which implements two trainable linear projections to align
image patch features with given text token features. Math-
ematically, given a query text-image pair (¢, ), we em-
ploy pre-trained CLIP encoders to generate the text query
and image reference into query embedding z, € RNa*Pq
and semantic visual embedding 2z, € RN:*Di from the last
CLIP layer, respectively, where Ny and D,y represent the
number of tokens and dimensions for query and image fea-
tures respectively. We then use the trainable projection lay-
ers WQ and WX to transform them into a well-aligned
space. The alignment is illustrated as follows:

Q:WQ'Zv
K (1)
K=W * 20,
QKT>
Ao, = Soft —_— ), 2
2p 0maux<\/g 2)

where Az, € RNt*Ni represents the token-to-patch atten-
tion map.

Furthermore, the A;s, matrix serves a dual purpose:
similarity identification and region selection. Consequently,
our aligner naturally supports mask-based query. In prac-
tice, we can manually assign a mask M to A, for mask-
guided generation with null-text query inputs. Following
Eq. (2), we can proceed to reweight Ao, using the prede-
fined mask M to highlight selected regions, ensuring our
SSR-Encoder focuses solely on the selected valid regions
of reference images.

Detail-preserving subject encoder. Following most of
the preceding methods [19, 39, 42], we employ a pre-trained
CLIP visual backbone to extract image representations from
reference images. However, the conventional practice of ex-
tracting visual embeddings zy from the last CLIP layer does
not align with our objective of preserving fine details to the
maximum extent. Our preliminary experiments> have iden-

%Detailed in the supplementary.

tified a notable loss of fine-grained details in the semantic
image features zy. Addressing this, we introduce the detail-
preserving subject encoder, which extracts features across
various layers to preserve more fine-grained details. For-
mally, the visual backbone processes an image / to produce
multi-scale detailed image features z; = {zk}kKZO, where 2y
represents semantic visual embedding used in T2P aligner
and zj, represents other detailed visual embeddings at the
scale of k£ in CLIP visual backbone and K refers to the
number of target scales. We set K to 6 in all experimen-
tal settings.

To fully leverage the benefits of multi-scale represen-
tation, we adopt separate linear projections WlY for im-
age feature z;, at different scales. Combining with the
token-to-patch attention map Az, the subject embeddings

s = {cF}E are computed as per Eq. (3):

3)

where c¥ denotes subject embedding at scale of k. Our
SSR-Encoder now enables to capture multi-scale subject
representation cs = {c¥}X_ | which are subsequently used
for subject-driven image generation via subject-conditioned
generation process.

A\ k T
Vk :Wk * Rl Cg ZAtngk ,

3.2. Subject Conditioned Generation

In our approach, c; is strategically projected into the
cross-attention layers of the U-Net. This is achieved
through newly added parallel subject cross-attention lay-
ers, each corresponding to a text cross-attention layer in
the original U-Net. Rather than disturbing the text embed-
ding ¢, these new layers independently aggregate subject
embeddings cs. Inspired by works like [17, 39, 42, 44],
we employ trainable copies of the text cross-attention lay-
ers to preserve the efficacy of the original model. The key
and value projection layers are then adapted to train specif-
ically for a subject-conditioned generation. To full exploit
of both global and local subject representation, we concate-
nate all ¢ at the token dimension before projection, i.e.
¢, = concat (cf,dim = 0), where ¢F € RNa*Di repre-
sents subject representation at the scale of k. The output
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value O of the attention layer is formulated as follows:

O = CrossAttention (Q, K, V, ¢;, z;)

text condition

4
+ A CrossAttention (Q, Ks, Vs, %, 7¢), @

subject condition

where c; represents the text embedding and x; represents
the latent. Q, K,V represents query, key, and value pro-
jection layers in the original text branch respectively while
K, Vg represents trainable copies of key and value pro-
jection layers for concatenated subject embedding c,. A is
a weight adjustment factor, with a default value of 1.

By our subject-conditioned generation, text-to-image
diffusion models can generate target subjects conditioned
on both text embeddings and subject embeddings.

3.3. Model Training and Inference

During the training phase, our model processes paired
images and texts from multimodal datasets. The trainable
components include the token-to-patch aligner and the sub-
ject cross-attention layers.

In contrast to CLIP, which aligns global image fea-
tures with global text features, our token-to-patch aligner
demands a more granular token-to-patch alignment. To
achieve this, we introduce an Embedding Consistency Reg-
ularization Loss L,.4. This loss is designed to enhance
similarity between the subject embeddings ¢, and the cor-
responding query text embedding z,, employing a cosine
similarity function as demonstrated in Eq. (5):

c; = Mean (0507031,...,05),
_ Cs - 2 ®)
Lreg = Cos (C5,2y) =1— \ci\|zq|’
sl1%q

where ¢, is the mean of subject embeddings and z, repre-
sents the query text embeddings. As illustrated in Fig. 5, our
T2P Aligner, trained on a large scale of image-text pairs,
can effectively align query text with corresponding image
regions. This capability is a key aspect of selective subject-
driven generation.

Similar to the original Stable diffusion model, our train-
ing objective also includes the same L}, s loss, as outlined
in Eq. (6):

2

Lrpm(0) =Eg, 1 |ll€e —€o (z,t, ¢, ¢5)ll5] . (6)
where x¢ is the noisy latent at time step ¢, € is the ground-
truth latent noise. €g is the noise prediction model with pa-

rameters 6.
Thus, our total loss function is formulated as:

£total = ELDM + Tﬂreg> (7)

where 7 is set as a constant, with a value of 0.01. As de-
picted in Fig. 6 (in the last column), the inclusion of £,
significantly enhances the text-image alignment capabilities
of the SSR-Encoder. This improvement is evident in the
generated images, which consistently align with both the
subject prompt and the details of the reference image.

During inference, our method has the ability to decom-
pose different subjects from a single image or multiple im-
ages. By extracting separate subject embeddings for each
image and concatenating them together, our SSR-Encoder
can seamlessly blend elements from multiple scenes. This
flexibility allows for the creation of composite images with
high fidelity and creative versatility.

4. Experiment
4.1. Experimental Setup

Training data. Our model utilizes the Laion 5B dataset,
selecting images with aesthetic scores above 6.0. The text
prompts are re-captioned using BLIP2. The dataset com-
prises 10 million high-quality image-text pairs, with 5,000
images reserved for testing and the remainder for training.

Implementation details. We employed Stable Diffusion
V1-5 as the pre-trained diffusion model, complemented by
the pre-trained CLIP text encoder. For training, images are
resized to ensure the shortest side is 512 pixels, followed by
a center crop to achieve a 512x512 resolution, and sent to
the stable diffusion. The same image is resized to 224 x224
and sent to the SSR encoder. The model training process
is divided into two steps. In the first step, the multi-scale
strategy is not employed, and the model is trained for 1 mil-
lion steps on 8H800s GPUs, with a batch size of 16 per
GPU and a learning rate of 5e-5. In the second step, the
same hyper-parameters are used, and the model parameters
obtained from the first step are used as the initialization pa-
rameters. The multi-scale strategy is employed in this step
to train the model for an additional 100,000 steps. Inference
was performed using DDIM as the sampler, with a step size
of 30 and a guidance scale set to 7.5.

4.2. Evaluation Metrics

To evaluate our model, we employ several metrics and
datasets:

* Multi-subject bench: We created a benchmark with 100
images, each containing 2-3 subjects.

¢ DreamBench datasets [32]: This dataset includes 30
subjects, each represented by 4-7 images.

For a comprehensive comparison with state-of-the-art
(SOTA) methods, we employed the following metrics:
DINO Scores[4], CLIP-I[27] and DINO-M Scores to as-
sess subject alignment, CLIP-T [14] for evaluating image-
text alignment, CLIP Exclusive Score (CLIP-ES) to mea-
sure the exclusivity of subject representation, and the Aes-
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the reference subjects in visual fidelity. Notably, the SSR-Encoder achieves this without the need for fine-tuning.

thetic Score [35] to gauge the overall quality of the gener-
ated images.

Notably, CLIP-ES is calculated by generating an image
I using prompts for subject A from a reference image and
evaluating the CLIP-T score with a different subject B and
I. A 'lower CLIP-ES score indicates higher exclusivity. The
DINO-M score, specifically designed for multiple subjects,
evaluates identity similarity between masked versions of in-
put and generated images, as detailed in [1]. Both CLIP-
ES and DINO-M scores are evaluated on the Multi-Subject
Bench.

4.3. Comparison Methods

For a comprehensive evaluation of our method, we
benchmarked it against a range of state-of-the-art (SOTA)
techniques. The methods we compared are categorized
based on their approach to fine-tuning. In the fine-
tuning-based category, we include Textual Inversion [10],
Dreambooth [32], and Break-a-Scene [1]. For fine-
tuning-free methods, our comparison encompassed Refer-
ence Only [22], Elite [39], IP-adapter [42], and BLIPDif-
fusion [18]. This selection of methods provides a diverse
range of approaches for a thorough comparative analysis
with our SSR-Encoder.

4.4. Experiment Results

Quantitative comparison. Table 2 presents our quanti-
tative evaluation across two benchmarks: the Multi-Subject
Bench and DreamBench. Overall, SSR-Encoder clearly
outweighs previous SOTA finetuning-free methods on all of
the metrics, including subject alignment, image-text align-
ment, subject exclusivity, and overall quality. Remarkably,
it also outperforms fine-tuning-based methods in image
quality and image-text alignment within both benchmarks.
Particularly in the Multi-Subject Benchmark, the SSR-
Encoder demonstrates outstanding performance in subject
exclusivity, markedly outperforming competing methods.

This highlights the efficacy of its selective representation
capability and editability. While Dreambooth excels in sub-
ject alignment within the DreamBench dataset, the SSR-
Encoder and Break-A-Scene show comparable performance
on the Multi-Subject Bench. This suggests that although
Dreambooth is highly effective in capturing detailed subject
information, SSR-Encoder achieves a balanced and compet-
itive performance in subject representation.

Qualitative comparison. Fig. 3 displays the high-
fidelity outcomes produced by the SSR-Encoder using di-
verse query inputs, affirming its robustness and zero-shot
generative capabilities. The SSR-Encoder demonstrates
proficiency in recognizing and focusing on common con-
cepts, ensuring an accurate representation of the selected
image subjects. Its seamless integration with other cus-
tomized models and control modules further solidifies its
significant role in the stable diffusion ecosystem.

In qualitative comparisons, as depicted in Fig. 4, Tex-
tual Inversion and Reference Only encounter difficulties in
maintaining subject identity. Dreambooth, IP-adapter, and
BLIP-Diffusion, although advanced, exhibit limitations in
effectively disentangling intertwined subjects. Break-A-
Scene achieves commendable subject preservation but at the
cost of extensive fine-tuning. ELITE, with its focus on local
aspects through masks, also faces challenges in consistent
identity preservation.

In contrast, our SSR-Encoder method stands out for its
fast generation of selected subjects while adeptly preserving
their identities. This capability highlights the method’s su-
perior performance in generating precise and high-quality
subject-driven images, thereby addressing key challenges
faced by other current methods.

Ablation study. Our ablation study begins with visual-
izing the attention maps generated by our Token-to-Patch
Aligner, as shown in Fig. 5. These maps demonstrate how
different text tokens align with corresponding patches in the
reference image, evidencing the Aligner’s effectiveness.
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Table 2. Quantitative comparison of different methods. Metrics that are bold and underlined represent methods that rank 1st and 2nd,
respectively. ' indicates that the experimental value is referenced from BLIP-Diffusion[18].

Teoe Method CLIP-Tt CLIP-ES| DINO-Mt ~CLIP-TT DINOt CLIP-IT — Aesthetic
yp (Multi-subject bench) \ (DreamBench) \ Scoret
Textual Inversion 0.240 0.212 0.410 0.255% 0.5691 0.7807 6.029
Finetune-based Dreambooth 0.298 0.223 0.681 0.305F 0.668" 0.803F 6.330
methods Break-A-Scene 0.285 0.187 0.630 0.287 0.653 0.788 6.234
7 TOurs(ful) T [ T 0302 T T T 0182 ~ T 0556 | 0308 ~ 0612 " 0821 | " 6563
BLIP-Diffusion 0.287 0.198 0.514 0.3007 0.594F 0.779F 6.212
Reference only 0.242 0.195 0.434 0.286 0.542 0.727 5.812
Finetune-free IP-adapter 0.272 0.201 0.442 0.274 0.608 0.809 6.432
methods ELITE 0.253 0.194 0.483 0.298 0.605 0.775 6.283
7 TOurs(ful) T T [ T 0302 T T T 0182 ~ T 0556 | 0308 ~  0.612° 0821 | " 6563
“man” “flower” wj/o subject w/o w/o
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Figure 5. Visualization of attention maps A¢2p.

Table 3. Ablation results on Multi-subject Bench. Removing
each component would lead to a performance drop on different
aspects.

Ablation Setups CLIP-Tt CLIP-ES| DINO-M 1

Text2Image 0.352 - 0.318
Ours(w/o multi-scale) 0.257 0.185 0.510
Ours(w/o reg loss) 0.235 0.199 0.552
Ours(full) 0.302 0.182 0.556

To evaluate the significance of various components, we
conducted experiments by systematically removing them
and observing the outcomes. Initially, we removed the sub-
ject condition, relying solely on the text condition for im-
age generation, to determine if the subject details could be
implicitly recalled by the base model. Subsequently, we
trained a model without the embedding consistency regular-
ization loss (L,.4) to assess its criticality. We also substi-
tuted our multi-scale visual embedding with a conventional
last-layer visual embedding. The results of these experi-
ments are depicted in Fig. 6.

Our observations reveal that without subject condition-
ing, the generated subjects failed to correspond with the
reference image. Omitting the multi-scale image feature re-
sulted in a loss of detailed information, as evidenced by a
significant drop in the DINO-M score. Discarding the em-
bedding consistency regularization loss led to challenges in
generating specific subjects from coexisting subjects, ad-
versely affecting the CLIP-ES score. In contrast, the full
implementation of our method demonstrated enhanced ex-
pressiveness and precision.

Quantitative comparisons, as shown in Table 3, also in-
dicate that our complete method achieves the best results
across subject exclusivity and subject alignment. It slightly
trails the original Stable Diffusion (SD) model only in text-
image alignment. Substituting the multi-scale visual em-

Query: “girl”

Figure 6. Qualitative ablation. We ablate our approach by using
different model settings. Without the L4, the model struggles
to exclude undesired subjects from reference images. Substituting
the multi-scale image feature results in less detailed outputs.

bedding significantly impacts image consistency, while ex-
cluding the embedding consistency regularization loss ham-
pers text-image consistency.

5. Conclusion

In this paper, we introduced the SSR-Encoder, a ground-
breaking finetuning-free approach for selective subject-
driven image generation. This method marks a signifi-
cant advancement in the field, offering capabilities previ-
ously unattainable in selective subject representation. At its
core, the SSR-Encoder consists of two pivotal the token-
to-patch aligner and the detail-preserving subject encoder.
The token-to-patch aligner effectively aligns query input
tokens with corresponding patches in the reference image,
while the subject encoder is adept at extracting multi-scale
subject embeddings, capturing fine details across different
scales. Additionally, the incorporation of a newly pro-
posed embedding consistency regularization loss further en-
hances the overall performance of the system. Our ex-
tensive experiments validate the SSR-Encoder’s robustness
and versatility across a diverse array of scenarios. The re-
sults clearly demonstrate the encoder’s efficacy in generat-
ing high-quality, subject-specific images, underscoring its
potential as a valuable tool in the open-source ecosystem.
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