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Abstract

Capturing and preserving motion semantics is essential
to motion retargeting between animation characters. How-
ever, most of the previous works neglect the semantic infor-
mation or rely on human-designed joint-level representa-
tions. Here, we present a novel Semantics-aware Motion
reTargeting (SMT) method with the advantage of vision-
language models to extract and maintain meaningful mo-
tion semantics. We utilize a differentiable module to ren-
der 3D motions. Then the high-level motion semantics are
incorporated into the motion retargeting process by feed-
ing the vision-language model with the rendered images
and aligning the extracted semantic embeddings. To en-
sure the preservation of fine-grained motion details and
high-level semantics, we adopt a two-stage pipeline con-
sisting of skeleton-aware pre-training and fine-tuning with
semantics and geometry constraints. Experimental results
show the effectiveness of the proposed method in produc-
ing high-quality motion retargeting results while accurately
preserving motion semantics. Project page can be found at
https://sites.google.com/view/smtnet.

1. Introduction
3D animation characters have extensive application in an-
imation production, virtual reality, and various other do-
mains. These characters are animated using motion data, re-
sulting in lifelike and immersive animations. Nevertheless,
acquiring motion data for each character can be a costly en-
deavor. Therefore, the ability to retarget existing motion
data for new characters holds immense importance. The
goal of motion retargeting is to transfer existing motion data
to new characters following motion feature extraction and
integration processes, which ensure the preservation of the
original motion’s characteristics.

Semantics encompasses the meaningful and contextually
relevant information conveyed in motion and plays a criti-
cal role in ensuring the realism and vividness of the anima-
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Figure 1. Comparison with previous motion retargeting methods.
(a) Previous works rely on human-designed joint distance matrix
[25] or self-contacts between mesh vertices [23] to ensure seman-
tics preservation. (b) Ours work enforces human-level motion
semantics consistency with the extensive knowledge of vision-
language models. (c) Comparison of motion quality and semantics
preservation on the Mixamo dataset [1]. Our method achieves the
best motion quality and semantics consistency.

tion characters. Preservation of motion semantics can en-
hance the efficiency of motion retargeting by reducing the
need for time-consuming manual adjustments and refine-
ments. However, previous methods [2, 15, 22] are mainly
based on retargeting of joint positions and make less use
of the extraction of semantic information. They focus on
trajectory-level motion retargeting with few attention to mo-
tion semantics. Consequently, this leads to a significant loss
of motion semantics and necessitates the labor-intensive in-
tervention of animation artists for manual trajectory adjust-
ments. Recent advancements have introduced self-contacts
[23] and joint distance matrices [25] as the representation of
motion semantics. Nevertheless, self-contacts are not appli-
cable to non-contact semantics and require intricate vertex
correspondence. The human-designed joint distance matri-
ces primarily focus on joint relative relationships and still
lack consideration of high-level semantic information.

To address the intricate task of capturing and preserv-
ing motion semantics, we introduce a new perspective: the
most general and comprehensive form of motion semantics
is human-level natural language, reflecting the user’s intu-
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itive understanding of motion. However, the main challenge
of human-level motion semantics representation lies in the
scarcity of labelled data. It is difficult and expensive to label
sufficient semantic textual descriptions for motion data.

In this paper, we introduce the incorporation of robust,
state-of-the-art vision-language models to provide seman-
tic guidance to the motion retargeting network. In the ab-
sence of labelled semantic data, we leverage the capabilities
of a vision-language model to serve as a semantic supervi-
sor in an unsupervised manner, which can extract motion
semantics in a more intuitive way, as illustrated in Fig. 1.
This approach offers a solution to the challenge of the lim-
ited availability of labelled semantic datasets for motion re-
targeting. To establish a connection between the vision-
language model and motion semantics extraction, we em-
ploy the differentiable skinning and rendering modules to
translate 3D motions into image sequences. Subsequently,
we adopt visual question answering with guiding questions
to inquire about the most relevant motion semantics from
the vision-language model.

To guarantee the preservation of motion semantics dur-
ing motion retargeting, we introduce a semantics consis-
tency loss that enforces the semantic embeddings of the re-
targeted motion to closely align with those of the source
motion. For dense semantic supervision and computational
efficiency, we utilize latent features extracted by the vision-
language model as the semantic embeddings instead of tex-
tual descriptions. To alleviate the non-linearity of the se-
mantics consistency loss, we introduce a two-stage training
approach. We categorize motion information into two dis-
tinct levels: the skeletal level and the semantic level. Our
approach involves pre-training the motion retargeting net-
work at the skeletal level, which is then further refined and
fine-tuned at the semantic level with the power of vision-
language models. To the best of our knowledge, we are the
first to leverage the extensive capability of vision-language
models for the task of semantics-aware motion retargeting.

To summarize, the contributions of our work include:

• We introduce an innovative framework that leverages the
expertise of vision-language models as a semantic super-
visor to tackle the challenge of limited labelled semantic
data for the task of motion retargeting.

• We propose to use differentiable skinning and rendering
to translate from the motion domain to the image domain
and perform guiding visual question answering to obtain
human-level semantic representation.

• We design a semantics consistency loss to maintain mo-
tion semantics and introduce an effective two-stage train-
ing pipeline consisting of pre-training at the skeletal level
and fine-tuning at the semantic level.

• Our model achieves state-of-the-art performance in the
challenging task of semantics-aware motion retarget-
ing, delivering exceptional performance marked by high-

quality motion and superior semantics consistency.

2. Related Works
Optimization-based Motion Retargeting. Motion retar-
geting is a technique to adapt existing motion data from a
source character to a target character with different bone
proportions, mesh skins, and skeletal structures. Early
works formulate motion retargetting as a constrained op-
timization problem [4, 6, 11, 18]. Gleicher et al. [6] in-
troduced a motion retargeting method, which identifies mo-
tion features as constraints and computes an adapted mo-
tion using a space-time constraint solver to preserve the
desirable qualities. Lee et al. [11] proposed a method to
adapt existing motion of a human-like character to have
the desired features with specified constraints and com-
bined a hierarchical curve fitting technique with inverse
kinematics. Nonetheless, these methods necessitate the te-
dious and time-consuming process of formulating human-
designed constraints for specific motion sequences.
Learning-based Motion Retargeting. With the rise of
deep learning, researchers have been developing learning-
based motion retargeting methods in recent years [2, 9, 15,
22, 23, 25]. Villegas et al. [22] presented a recurrent neural
network architecture, which incorporates a forward kine-
matics layer and cycle consistency loss for unsupervised
motion retargetting. Aberman et al. [2] designed a skeleton-
aware network with differentiable convolution, pooling, and
unpooling operators to transform various homeomorphic
skeletons into a primary skeleton for cross-structural motion
retargeting. However, these methods tend to concentrate on
trajectory-level motion retargeting with limited considera-
tion for motion semantics, which often results in a notable
loss of motion semantics and increase the heavy burden of
manual adjustments to the trajectories. To address these
problems, Zhang et al. [25] presented a residual retarget-
ing network that uses a skeleton-aware module to preserve
motion semantics and a shape-aware module to reduce in-
terpenetration and contact missing. While this method suc-
cessfully preserves joint relative relationships, it still falls
short in addressing high-level motion semantics.
Vision-Language Models. Vision-language models have
empowered various vision-language tasks, including visual
question answering and image captioning. Tevet et al. [20]
introduced a human motion generation model that aligns the
latent space with that of the Contrastive Language-Image
Pre-training (CLIP) model. Li et al. [13] proposed a pre-
training strategy from off-the-shelf frozen pre-trained im-
age encoders and frozen large language models for vision-
to-language generative learning. Zhu et al. [27] presented a
vision-language model, which uses one projection layer to
align a frozen visual encoder with a frozen advanced large
language models (LLM). However, these efforts primarily
concentrate on vision-language tasks, leaving the question
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Figure 2. Model Architecture. Our semantics-aware motion retargeting framework employs a two-stage pipeline. Initially, the retargeting
network consisting of multiple spatial-temporal graph convolution layers is trained at the skeletal level to establish a base model. Sub-
sequently, this model undergoes further refinement and fine-tuning at the semantic level by the alignment of latent semantic embeddings
of the source and target, leveraging the extensive knowledge of vision-language models. The latent semantic embedding is extracted by
guiding visual question answering. Additionally, the geometry constraints are also enforced during fine-tuning to avoid interpenetration.

of how to effectively employ vision-language models to
guide motion retargeting as an open and unexplored area.
Human motion synthesis. Human motion synthesis is a
domain related to motion retargeting, which aims to synthe-
size realistic and lifelike human motions from random noise
or other inputs with generative networks. Guo et al. [7] pro-
posed to generate human motion sequences based on action
type. Guo et al. [8] presented a temporal variational autoen-
coder to synthesize human motions from text input. Tevet
et al. [21] introduced a diffusion-based generative model
for human motion generation. As comparison, we focus on
the task of motion retargeting, where existing motion data
is transferred from a source character to a target character.

3. Method

3.1. Overview

We present a novel semantic-aware motion retargeting
method, as illustrated in Fig 2. In contrast to previous
methods that neglect motion semantics [2, 15, 22] or rely
on human-designed joint-level representations [25], our ap-
proach integrates natural language descriptions from vision-
language models to offer an explicit and comprehensive se-
mantic representation of character motions, thereby main-
taining the preservation of semantic consistency.
Task definition. Given a source motion sequence, consist-
ing of the skeleton motion and its associated skinning geom-
etry, as well as a target character in the reference pose (e.g.,

T-pose), the objective of motion retargeting is to generate
the target motion while preserving crucial motion charac-
teristics, such as joint trajectory similarity and motion se-
mantics, and satisfying geometry constraints.

Graph representation. The skeleton motion sequence can
be modelled as a sequence of graphs according to the skele-
ton hierarchy where each node corresponds to a joint and
each edge represents a directed connection between joints.
Assume that the motion sequence has T frames in total and
the animation characters have N nodes and M edges. In
our approach, we consider motion data as node features
Q ∈ RT×N×9, which encompass the 6D joint rotation
representation [26] and 3D joint positions. Additionally,
we utilize skeleton hierarchy information as edge features
E ∈ RM×3, which consists of the 3D position offset be-
tween each joint and its parent joint.

Two-stage training. The motion of animation characters
can be divided into skeletal movements and skinned move-
ments, represented by skeletal joints and skinned vertices
respectively. The skinned movements can be derived from
the skeletal movements through the linear blend skinning al-
gorithm [12]. Therefore, motion retargeting at the skeletal
level can effectively downscale the data and reduce the com-
plexity of the problem. However, this simplification process
can lead to the loss of motion semantics and violations of
geometry constraints. To address these issues, we employ a
two-stage pipeline. Initially, we pre-train a skeleton-aware
network to ensure a general initialization for motion retar-
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geting without considering motion semantics and geometry
constraints. Subsequently, we fine-tune the pre-trained net-
work for each source-target character pair with the vision-
language model to maintain semantic consistency and en-
force geometry constraints to prevent interpenetrations.

3.2. Skeleton-aware Pre-training

Retargeting network. We propose a retargeting network
consisting of a graph motion encoder and a graph motion
decoder for motion retargeting. The motion encoder Fθ en-
codes the motion data QA of the source character A into
the latent motion embedding ZA. Then, the motion decoder
Fϕ generates the joint angles QB of the target character
B based on the latent features. Both the motion encoder
and decoder are composed of multiple graph convolutions.
More details are available in the supplementary materials.

ZA = Fθ(QA,EA)

QB = Fϕ(ZA,EB)
(1)

In the first phase, we train the motion encoder and de-
coder at the skeletal level to establish a robust initialization
for motion retargeting. Following the unsupervised learning
setting in [22], we train the network with the reconstruction
loss, cycle consistency loss, adversarial loss, and joint rela-
tionship loss. The overall objective function for skeleton-
aware pre-training is defined as follows:

Lskel = λrLrec + λcLcyc + λaLadv + λjLjdm (2)

The reconstruction loss Lrec encourages the retargeted
motion to match the source motion when the target char-
acter is the same as the source character. Let QA,t be the
motion data of source character A at frame t, and Q̂rec

A,t be
the reconstructed motion. Then Lrec is defined as:

Lrec =
∑
t

∣∣∣∣∣∣Q̂rec
A,t −QA,t

∣∣∣∣∣∣2
2

(3)

The cycle consistency loss Lcyc promotes the consistency
of retargeted motion from the source character A to the tar-
get character B and then back to the source character A, en-
suring it remains in line with the original motion. Let Q̂cyc

A,t

represent the retargeted motion.Then Lcyc is defined as:

Lcyc =
∑
t

∣∣∣∣∣∣Q̂cyc
A,t −QA,t

∣∣∣∣∣∣2
2

(4)

The adversarial loss Ladv is calculated by a discriminator
network, which utilizes the unpaired data of the target char-
acter to learn how to distinguish whether the motions are
real or fake. Let Fγ be the discriminator network, and QB,t

be the retargeted motion at frame t. Then it is defined as:

Ladv =
∑
t

log (1−Fγ (QB,t)) (5)

The joint relationship loss Ljdm is calculated by the joint
distance matrix (JDM) D ∈ RN×N , which represents the
relative positional relationships of the joints. The element
di,j of D represents the Euclidean distance between joint i
and joint j. We extract the joint distance matrix from the
target character and compare it with the source character.
Then Ljdm is defined as:

Ljdm =
∑
t

||η(DA,t)− η(DB,t)||22 (6)

where η(.) is an L1 normalization performed on each row
of the distance matrix. This normalization operation elimi-
nates the difference in bone length to some extent.

3.3. Semantics & Geometry Fine-tuning

In the second phase, we fine-tune the pre-trained retarget-
ing network for each source-target character pair to preserve
motion semantics and satisfy geometry constraints. The
motion semantics is maintained by the semantics consis-
tency loss, which aligns the semantic embeddings extracted
from a vision-language model for both the source and tar-
get. Additionally, the geometry constraint is satisfied by
minimizing the interpenetration loss. The overall objective
function for fine-tuning is outlined as follows:

Lfine = λsLsem + λpLpen (7)

Differentiable skinning & rendering. To make the fine-
tuning process differentiable for gradient back-propagation,
we first use the differentiable linear blend skinning algo-
rithm [12], denoted as Flbs, to transform the target joint
angles QB into skinned motions VB , represented by 3D
mesh vertices. Subsequently, we employ the differentiable
projection function Fproj as introduced in [16] to convert
the skinned motions into 2D images IB . A limitation for the
differentiable rendering process is that when projecting the
3D skinned mesh onto 2D images, the depth information is
lost. To obtain a comprehensive semantic representation of
the motion, we render the character from multiple perspec-
tives and then combine the extracted features, following the
Non-rigid Shape Fitting task in [16].

IA = Fproj(Flbs(QA))

IB = Fproj(Flbs(QB))
(8)

Frozen vision-language model. To obtain an explicit and
reliable semantic feature of the motion, we employ a frozen
vision-language model as our semantic supervisor. Cur-
rent 3D vision-language datasets [3, 28] mainly focus on
the occupation or the segmentation of the object in a spatial
scene like rooms, and thus the state-of-the-art 3D vision-
language models [28] lack prior knowledge relevant to an-
imation characters. In contrast, 2D vision-language mod-
els achieve better results in semantic tasks, such as im-
age captioning, visual question answering and image-text
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Figure 3. An example of guiding visual question answering.

retrieval, and provides cleaner and richer semantics [24].
Therefore, we utilize a frozen 2D vision-language model to
extract latent embeddings of motion semantics. The frozen
2D vision-language model employed in our work is BLIP-2
[14], which incorporates a lightweight querying transformer
as a bridge between the off-the-shelf frozen pre-trained im-
age encoder and the frozen large language model.
Prompt design. Since the vision-language model has the
capability to extract rich information from images, it is pos-
sible that the extracted features might contain redundant de-
tails, such as the appearance of the character. To guide the
vision-language model to obtain semantic embedding rele-
vant to character motions, we adopt a guiding visual ques-
tion answering approach for motion semantics extraction,
as depicted in Fig. 3. We believe that there is a strong corre-
lation between motion semantics and hand movements. To
acquire a more comprehensive description of the motion,
we initially provide a guiding question to BLIP-2: “Where
are the hands of the character?”. Subsequently, we intro-
duce a new question and combine it with the first answer
as the input to BLIP-2: “[The answers to the first question
generated by the vision-language model] What is the char-
acter in the image doing?”. For more details, please refer
to the supplementary materials.
Latent semantic embedding. We opt to align the latent
semantic embeddings of the source and target generated by
the vision-language model rather than relying on textual de-
scriptions, specifically leveraging the encoder output of the
large language model. This approach enables us to acquire a
more accurate and denser representation, while also mitigat-
ing computational costs and the non-linearity of the training
objective caused by the large number of parameters of the
vision-language model. Let EA and EB be the latent se-
mantic embeddings of the source and target motions, Fω
be the frozen pre-trained image encoder, Fσ be the frozen
querying transformer, Fψ be the encoder of the frozen large
language model, and context be the question.

EA = Fψ(Fσ(Fω(IA), context))
EB = Fψ(Fσ(Fω(IB), context))

(9)

Fine-tuning with semantics consistency. As illustrated in
Fig. 2, our approach aligns the latent semantic embeddings
of both the source and target motions in an unsupervised
manner, ensuring a high degree of semantic consistency in
the retargeted results. The semantics consistency loss Lsem
is calculated using the mean square error and it is defined as
follows:

Lsem =
∑
t

∥EA,t −EB,t∥22 (10)

Fine-tuning with geometry constraints. From our obser-
vations, most interpenetration problems occur between the
limbs and the main body. To address this, we incorporate
the signed distance field between the limb vertices and the
body mesh as the interpenetration loss. First, we convert
the skeleton motion output from the network into mesh ver-
tices using the linear blend skinning method [12]. Then, the
interpenetration loss is defined as follows:

Lpen =
∑
t

ReLU(−Φb,t(Vl,t)) (11)

where Φb indicates the signed distance field function, Vl

is the vertices of the limbs. If the vertex locates inside the
body, the value of the function is less than zero. Therefore,
we use the ReLU function to penalize the inner vertices.

4. Experiments
4.1. Settings

Datasets. We train and evaluate our method on the Mix-
amo dataset [1], an extensive repository of animations per-
formed by various 3D virtual characters with distinct skele-
tons and geometry shapes. The training set we use to pre-
train our skeleton aware module is the same as that used in
[2], which contains 1646 motions performed by 7 charac-
ters. It’s important to note that the Mixamo dataset does not
provide clean ground truth data, since many of the motion
sequences suffer from interpenetration issues and semantic
information loss. To mitigate this, we have carefully se-
lected a subset of motion sequences that are both semanti-
cally clean and free of interpenetration issues for fine-tuning
and testing. Our fine-tuning process involves retargeting 15
clean motions including 3127 frames, originally performed
by 3 source characters, namely “Y Bot”, “X Bot”, and “Or-
tiz”, onto 3 target characters, including “Aj”, “Kaya”, and
“Mousey”. Then we evaluate the performance of our model
on the task of retargeting 30 additional motions that are pre-
viously unseen in the training set and fine-tuning sets. More
details could be found in the supplementary materials.
Implementation details. The hyper-parameters λr, λc, λa,
λj , λp, λs for pre-training and fine-tuning loss functions
are set to 10.0, 1.0, 0.1, 1.0, 1.0, 0.1. For semantics fine-
tuning, we use BLIP-2 [14] with pre-trained FlanT5-XXL
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[5] large language model. To extract the semantic represen-
tation of the motion, we render animation from three per-
spectives, including the front view, left view and right view.
The fine-tuning process takes 25 epochs with 5 clean motion
sequences of the source character for each target character.
During pre-training and fine-tuning, we use an Adam opti-
mizer to optimize the retargeting network. Please refer to
the supplementary materials for more details.
Evaluation metrics. We evaluate the performance of our
method across three key dimensions: skeleton, geometry,
and semantics. At the skeletal level, we measure the Mean
Square Error (MSE) between retargeted joint positions and
the ground truth provided by Mixamo, analyzing both the
global and the local joint positions. At the geometric level,
we evaluate the interpenetration percentage (PEN). At the
semantic level, we utilize the Image-Text Matching (ITM)
score, Fréchet inception distance (FID) and semantics con-
sistency loss (SCL) as metrics. The ITM score quantifies
the visual-semantic similarity between the source textual
description and the rendered retargeted motion. FID is cal-
culated between the semantic embedding distribution of re-
targeted motion and source motion. More details are pro-
vided in the supplementary materials.

4.2. Comparison with State of the Arts

Quantitative. In this section, we conduct a compara-
tive analysis of our method against the state-of-the-art ap-
proaches as illustrated in Tab. 1. The baseline methods in-
clude R2ET [25], SAN [2], NKN [22] and the Copy strat-
egy. The Copy strategy achieves the lowest local MSE be-
cause the ground truth data in the Mixamo dataset are not
entirely clean, and many of them are generated by copying
rotations. As a result, this strategy comes at the cost of se-
mantic loss and interpenetration issues. SAN [2] and NKN
[22] focus on skeleton-level motion features, which results
in a high interpenetration rate and relatively low semantics
preservation. R2ET [25] treats motion semantics as the joint
distance matrix and mesh distance field, which helps it ob-
tain better motion semantics than SAN and Copy. Never-
theless, there is still a gap between the human-designed dis-
tance matrix and the human-level semantics. Notably, our
model exhibits the best interpenetration rate and semantics
preservation among all methods, showcasing the capabil-
ity of the proposed method in producing high-quality retar-
geted motions with semantics consistency.
Qualitative. In Fig. 4, we visualize the text descriptions
of the motions and the qualitative comparison between the
state-of-the-arts and our method. SAN [2] and Copy neglect
the preservation of semantics and have severe interpenetra-
tion. R2ET [25] utilizes joint distance matrix as semantics
representation and fails to capture high-level semantic infor-
mation. For example, the salute motion retargeted by R2ET
[25] appears more like a hand-up motion. As a comparison,

Method MSE ↓ MSElc ↓ Pen.% ↓ ITM ↑ FID ↓ SCL ↓
Source - - 4.43 0.796 - -
GT - - 9.06 0.582 26.99 1.331

Copy - 0.005 9.03 0.581 26.58 1.327
NKN [22] 0.326 0.231 8.71 0.575 27.79 1.414
SAN [2] 0.435 0.255 9.74 0.561 28.33 1.448
R2ET [25] 0.499 0.496 7.62 0.643 5.469 0.405
Ours 0.284 0.229 3.50 0.680 0.436 0.143

Table 1. Quantitative comparison with the state-of-the-arts.
MSElc denotes the local MSE. ITM indicates the image-text
matching score. FID is Fréchet inception distance of motion se-
mantics. SCL is the semantics consistency loss.

Method MSE ↓ MSElc ↓ Pen.% ↓ ITM ↑ FID ↓ SCL ↓
SMTtws 0.248 0.129 8.37 0.586 7.727 0.769
SMTtwf 7.798 7.083 0.44 0.432 56.53 13.29
SMTtwa 0.335 0.288 5.36 0.658 2.826 0.266
SMTfwp 0.439 0.368 1.22 0.597 7.241 0.583
SMTfwi 5.418 4.576 4.41 0.552 78.46 18.96
SMTfwq 0.739 0.517 4.56 0.668 2.497 0.191
SMTOurs 0.284 0.229 3.50 0.680 0.436 0.143

Table 2. Ablation study. SMTtws is the network trained with only
skeleton-aware pre-training. SMTtwf is the network trained with
only semantics and geometry fine-tuning. SMTtwa is the network
trained in one stage. SMTfwp is the network fine-tuned with only
the interpenetration loss. SMTfwi is the network fine-tuned with
image features. SMTfwq is the network fine-tuned with the fea-
tures of the querying transformer.

our method is able to successfully preserve high-level mo-
tion semantics leveraging the vision-language model. We
observe that our approach reaches the best results among
all methods, achieving more reliable semantics preservation
and lower interpenetration rates. It suggests that with se-
mantics and geometry fine-tuning, our method could effec-
tively solve interpenetration issues together with semantics
preservation.

4.3. Ablation Studies

Skeleton-aware pre-training. The proposed method can
be divided into two stage: pre-training and fine-tuning. To
illustrate the importance of skeleton-aware pre-training, we
evaluate the network trained with only the semantics consis-
tency loss and the interpenetration loss in Tab. 2, denoted as
SMTtwf . The network trained without skeleton-aware pre-
training performs worst in MSE and semantics preservation.
A reasonable explanation is that the semantics consistency
loss is highly non-linear, so it is important to pre-train the
network at the skeletal level to provide better initial values.
We also visualize qualitative results in Fig. 5.
Semantics & geometry fine-tuning. We also conduct ab-
lation study to illustrate the importance of semantics and
geometry fine-tuning in Tab. 2. We first evaluate the per-
formance of the skeleton-aware model without fine-tuning,
denoted as SMTtws. Though it reaches the best global posi-
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Figure 4. Qualitative comparision. The results demonstrate that our method can effectively preserve semantics while the baseline methods
suffer from interpenetration or semantic information loss. From the first column to the last column are the source motion, the Copy strategy,
NKN [22], SAN [2], R2ET [25], our method and text descriptions, respectively.

Figure 5. The qualitative comparison of ablation study between
the network without fine-tuning (TWS), the network trained with
only semantics and geometry fine-tuning (TWF), the network
trained with all loss functions (TWA), the network fine-tuned with
only the interpenetration loss (FWP) and our full model (All).

tion MSE, it suffers from interpenetration and semantic in-
formation loss because of the low-quality motion data pro-
vided by Mixamo. We next evaluate the network fine-tuned
with only the interpenetration loss, denoted as SMTfwp.
This version results in a significant boost in terms of pene-
tration rate. However, the gradient of interpenetration loss
is only relevant with the face normals of the geometry mesh
without considering the semantic information conveyed in
the motion. It indicates the importance of the semantic con-
sistency loss that makes the network reach a better balance

between interpenetration and semantics. We also try to train
the network with all loss functions in one stage, denoted as
SMTtwa. However, it is challenging for the model to ac-
quire general knowledge of interpenetration and semantics
that is suitable for every character with limited data. There-
fore, training the model with skeleton-aware pre-training
and fine-tuning it with semantics consistency and geometry
constraints for each target character remains a more reason-
able and data-efficient strategy.

Latent semantic embedding. The vision-language model
used for semantic extraction can be divided into three parts:
the image encoder from CLIP [19], the querying trans-
former and the large language model. In Tab. 2, we compare
the feature outputted by the image encoder, the querying
transformer and the encoder of the large language model,
denoted as SMTfwi, SMTfwq , and SMTOurs, respectively.
The results show that the image feature performs worse
since it is greatly affected by the appearance of the char-
acter. It indicates that with the help of the large language
model, the semantic representation better focuses on the se-
mantic meaning of the motion instead of the character’s vi-
sual appearance. Therefore, the encoder output of the large
language model is more suitable for semantic embedding.
More details can be found in the supplementary materials.

Prompt design. To validate the importance of guiding vi-
sual question answering, we compare the textual descrip-
tions generated by visual question answering with and with-
out guiding questions as well as image captioning. The re-
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Image Captioning
A 3d model of a boy wearing 
glasses and a hat.

Visual Question Answering
Q：What is the character doing?
A：The character is praying.

Guiding Visual Question Answering
Q：Where are the hands of the character?
A： In front of his head.
Q：What is the character doing?
A：The character is praying and holding 
his hand in front of him.

Image Captioning
A 3d model of a robot running on a 
checkered floor.

Visual Question Answering
Q：What is the character doing?
A：The character is running on a 
checkered floor.

Guiding Visual Question Answering
Q：Where are the hands of the character?
A：Holding a ball.
Q：What is the character doing?
A：The character is trying to throw a ball 
with both hands on the right side of his 
body.

Figure 6. Text descriptions generated by different ways. The guid-
ing visual question answering yields more comprehensive results.

Method Quality ↑ Smoothness ↑ Semantics ↑
Copy 0.72 0.86 0.71
NKN [22] 0.65 0.80 0.66
SAN [2] 0.69 0.82 0.67
R2ET [25] 0.80 0.61 0.85
Ours 0.89 0.80 0.92

Table 3. User study results. We collect 100 comparisons in three
aspects. Our method gets highest scores in the overall quality as
well as semantics preservation.

sults in Fig. 6 indicate that using guiding questions for vi-
sual question answering yields the most comprehensive and
reasonable text descriptions for motion semantics. Com-
pared with image captioning that uses the vision-language
model to generate text description directly from images, the
answers from visual question answering task can be guided
by the designed question to focus on motion semantics.

4.4. User Study

We conduct a user study to evaluate the performance of our
method against the baseline methods. Human subjects are
given 12 videos. Each video includes one source skinned
motion and five anonymous skinned results. The retargeted
results are randomly placed. We ask subjects to rate the
results out of 1.0 in three aspects: overall quality, motion
smoothness and semantics preservation. We collect a total
of 100 comparisons. During the evaluation, users are re-
quired to extract semantic meaning from the source motion
themselves and then evaluate the preservation of retargeted
motions. In general, more than 92% of subjects prefer the
retargeting results of our method.

4.5. Retargeting Motion from Human Videos

In this section, we evaluate our motion retargeting approach
from human videos in the human3.6M [10] dataset. Video
retargeting involves two stages: human pose estimation
from video and motion retargeting. However, inaccuracies
in estimating body postures may result in semantic infor-
mation loss and thus accumulation of errors in the entire

Figure 7. We retarget from human motion clips in the human3.6M
[10] dataset. The retargeted motions are free from interpenetration
and preserve semantics well.

retargeting process. Therefore, we first get the estimated
human pose from [17]. Then we utilize the vision-language
model to extract the semantic embedding of the original
video and calculate the semantic consistency loss to opti-
mize the joint angles acquired from the retargeting process
directly. In Fig. 7, we show our results of motion retargeting
from human videos to Mixamo characters.

5. Conclusions
In this paper, we present a novel semantics-aware motion
retargeting method that leverages the capabilities of vision-
language models to extract semantic embeddings and facili-
tate the preservation of motion semantics. This approach of-
fers a promising solution to the challenge of lacking labelled
semantic data for motion. Our proposed method involves
a two-stage process that integrates skeleton-level motion
characteristics and semantics-level consistency along with
geometry constraints. Experimental results demonstrate
that our approach excels in generating high-quality retar-
geted motions with semantics consistency.
Limitations. The main limitation is the performance of
the vision-language model in extracting motion semantics.
Without the support of motion semantic datasets of suffi-
cient data size and quality, we rely on the model pre-trained
on large image-text datasets. Although the model achieves
some remarkable results in motion semantics extraction,
there is still room for improvement. In addition, the projec-
tion of 3D motion into 2D images loses spatial information
and affects the performance.
Future work. Compared with 2D vision-language models,
3D vision-language models have the advantage of captur-
ing spatial relationships directly. Therefore, fine-tuning 3D
vision-language models to make them more suitable for the
task of motion semantics extraction is worth exploring in
our future work.
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