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Abstract

Recovering images distorted by atmospheric turbulence
is a challenging inverse problem due to the stochastic na-
ture of turbulence. Although numerous turbulence mitiga-
tion (TM) algorithms have been proposed, their efficiency
and generalization to real-world dynamic scenarios remain
severely limited. Building upon the intuitions of classi-
cal TM algorithms, we present the Deep Atmospheric TUr-
bulence Mitigation network (DATUM). DATUM aims to
overcome major challenges when transitioning from clas-
sical to deep learning approaches. By carefully integrat-
ing the merits of classical multi-frame TM methods into
a deep network structure, we demonstrate that DATUM
can efficiently perform long-range temporal aggregation us-
ing a recurrent fashion, while deformable attention and
temporal-channel attention seamlessly facilitate pixel reg-
istration and lucky imaging. With additional supervision,
tilt and blur degradation can be jointly mitigated. These
inductive biases empower DATUM to significantly outper-
form existing methods while delivering a tenfold increase
in processing speed. A large-scale training dataset, ATSyn,
is presented as a co-invention to enable the generalization
to real turbulence. Our code and datasets are available at

1. Introduction

Atmospheric turbulence is a dominant image degradation
for long-range imaging systems. Reconstructing images
distorted by atmospheric turbulence is an important task
for many civilian and military applications. The degrada-
tion process can be considered a combination of content-
invariant random pixel displacement (i.e., tilt) and random
blur. Until recently, reconstruction algorithms have often
been in the form of model-based solutions, often relying
on modalities such as pixel registration and deblurring. Al-
though there have been many important insights into the
problem, e.g., lucky imaging, they are primarily limited to
static scenes with slow processing speed.

With the development of physics-grounded data synthe-
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Figure 1. Benchmarking video restoration models for turbulence
mitigation on our ATSyn-dynamic dataset. The circles in orange
are other video-based TM networks, and the circles in blue are
representative video deblurring and general restoration networks.
The proposed Deep Atmospheric TUrbulence Mitigation network
(DATUM) is state-of-the-art while highly efficient.

sis methods [7, 17, 18, 33, 65, 77], data-driven algorithms
have been developed in the past two years. Most exist-
ing deep learning methods focus on single-frame problems
[24, 32, 34, 44, 45, 48, 49, 53, 71]. Since the degradation
is highly ill-posed, the performance of these algorithms is
naturally limited, especially when attempting to generalize
to real data. On the other hand, multi-frame turbulence mit-
igation networks [1, 26, 72] have shown greater potential
for generalization across a broader spectrum of real-world
test scenarios. However, these networks are adapted from
generic video restoration methods and do not reflect the
insights developed by traditional methods; few turbulence-
specific properties are incorporated as inductive biases into
their methods.

For deep learning methods to work on real-world scenar-
ios, two common factors hinder the application of current
turbulence mitigation methods: (1) the complexity of cur-
rent data-driven methods is usually high, which impedes the
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practical deployment of these algorithms, and (2) the data

synthesis models are suboptimal, either too slow to produce

large-scale and diverse datasets or not accurate enough to

represent the real-world turbulence profiles, restricting the

generalization capability of the model trained on the data.
To overcome these pressing issues, we propose the Deep

Atmospheric TUrbulence Mitigation (DATUM) network

and the ATSyn dataset. We offer three contributions:

* DATUM is the first deep-learning video restoration
method customized for turbulence mitigation based on
classical insights. By carefully integrating the merits of
classical multi-frame TM methods, we propose feature-
reference registration, temporal fusion, and the decou-
pling of pixel rectification and deblurring as effective in-
ductive biases in the multi-frame TM challenge.

* DATUM is the first recurrent model for turbulence
restoration. It is significantly more lightweight and ef-
ficient than the prior multi-frame TM methods. On both
synthetic and real data, DATUM consistently surpasses
the SOTA methods while being 10x faster.

» Through the integration of numerous theoretical and prac-
tical improvements in physics modeling over the Zernike-
based simulators, we further propose an extensive, real-
world inspired dataset ATSyn. Experiments on real-world
data show that models trained on ATSyn significantly
generalize better than those trained on alternative ones.

2. Related works
2.1. Turbulence modeling

Atmospheric turbulence simulation spans from computa-
tional optics to computer vision-oriented approaches. Op-
tical simulations use split-step methods, which numeri-
cally propagate waves through phase screens that repre-
sent the atmosphere’s spatially varying index of refrac-
tion [6, 21, 55, 60]. Despite the existence of moderately
faster optical simulations, including brightness function-
based simulations [30, 31, 66] or learning-based alternatives
[46, 47], the relatively slow speed limits their application in
deep learning training [43]. In computer vision simulations,
pixels are first displaced according to heuristic correlation
functions followed by invariant Gaussian blur [7, 33, 77],
offering speed but arguably lacking physical foundations.
Recent Zernike-based methods [9, 12, 13, 43] can match
the statistics of optics-based simulation, achieving realistic
visual quality while maintaining a fast data synthesis speed.
It has been applied to turbulence mitigation [24, 25, 44, 72]
to facilitate the generalization capability of those models.

2.2. Conventional turbulence mitigation

Conventional TM algorithms, since [17, 18, 65], mostly
treat the TM challenge as a many-to-one restoration prob-
lem. Considering that turbulence primarily induces random

tilt and blur, the common procedure in conventional algo-
rithms is as follows. They first align the input frames to ac-
count for pixel displacements, followed by temporal fusion
to combine the information from the aligned frames. Subse-
quently, the residual blur is often considered to be spatially
invariant, allowing a blind deconvolution to be applied to
produce a visually satisfactory image.

The tilt rectification is typically achieved in a two-step
fashion: construct a tilt-free reference frame, then regis-
ter every frame with respect to the reference. Since the
pixel displacement is assumed to be zero-mean over time
[17, 36], the temporal average can be assumed tilt-free
[22, 40, 41, 63, 77] and hence be the reference frame. Be-
sides that, low-rank components from all input frames are
frequently used [33, 35, 69] as the reference. The regis-
tration step can be done by B-spline or optical flow based
warping [40, 41, 63, 69, 77] in the spatial domain or phase
correction [2, 22, 70] in the phase domain. Because of
the “lucky effect” phenomenon [20] in the short-exposure
turbulence, the goal of temporal aggregation is to identify
and fuse the randomly emerging sharp regions, a technique
known as lucky fusion [4]. [33, 42, 77] design spatial de-
scriptors to select and score lucky regions. [2] identify and
fuse sharp components in the wavelet space, and [23, 33]
apply a similar principle to the sparse components derived
through robust PCA. While several methods have been pro-
posed for moving object scenarios [3, 42, 50, 52, 57], they
are restricted by their assumption that the dynamic regions
are rigid and can be isolated, leaving the remaining static
regions to be restored using the conventional pipelines.

2.3. Learning-based turbulence mitigation

With the rapid advancements in machine learning, numer-
ous recent learning-based methods have demonstrated su-
perior turbulence mitigation results. The majority of them
are single-frame TM methods. [32, 45, 49, 53] demon-
strate promising performance using generative models with
simplified turbulence properties as prior. [34, 48, 71] fo-
cus on restoring long-range face images through turbulence.
[24, 44] show physics-grounded synthetic data facilitates
certain degrees of generalization capability. These single-
frame methods do not account for the temporal dimension
and can fall short in multi-frame TM scenarios. In contrast,
video-based TM algorithms [26, 72] exhibit superior adapt-
ability by leveraging the temporal information, but their de-
signs lack the integration of specific turbulence properties,
making their model less efficient. Moreover, [26] only sim-
ulated mild turbulence effect, which restricts the generaliza-
tion capability of their model. Although [72] has achieved
better generalization, the point spread function (PSF) im-
plementation is less precise, and the parameter sets are not
physics-oriented. Hence, the representative of their turbu-
lence modalities is restricted.
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Figure 2. The proposed DATUM network. In this figure, block (a) shows the three common stages proposed by classical TM methods.
The corresponding stages in DATUM are shown in block (b), which illustrates the forward time process of the ¢-th frame. The dashed line
means the information passing from other temporal directions and frames. Block (c), (d), and (e) demonstrate the DAAB, GRUM, and
MTCSA modules, respectively, where the input features are marked by green, and the output features are marked by red.

3. Proposed method
3.1. Insights from Classical Methods

Image degradation by atmospheric turbulence can be
roughly described by a compositional operation of the blur
B and the tilt 7 via the relationship I = [B o T](J) + n,
where J is the clean image, I is the distorted image, and n
is the noise term. Traditional algorithms handle turbulence
in three steps, as illustrated in Fig. 2:

Frame-to-reference registration [77], where a reference
frame is constructed from the observed images and all im-
ages are registered with respect to the reference using op-
tical flow. In strong turbulence or dynamic scenes, con-
structing a reference is often difficult.

Lucky image fusion [2, 27], where a “lucky” image is
constructed by collecting the sharpest and most consistent
patches from the inputs. However, if turbulence is strong,
identifying lucky patches can be difficult.

Blind deconvolution [42], where a final blind deconvo-
lution algorithm is employed to sharpen the lucky image.
The success and failure of this step depend heavily on
how spatially uniform the blur in the lucky image is. Of-
tentimes, since the blur is spatially varying, the perfor-

mance of blind deconvolution is limited.
While each step is important each has its limitations, mo-
tivating us to develop end-to-end trained networks to ap-
proximate these functions. Empowered by training on our
physical-grounded dataset, our network enjoys the induc-
tive biases of those insights while avoiding their limitations.

3.2. DATUM network

3.2.1 Overview

The block diagram of the DATUM network is depicted in
Fig. 2. We first summarize these three components and
describe them in detail in the next subsections.
Feature-to-reference registration. This component is
analogous to the classical frame-to-reference registration.
For each input frame I, at time ¢, we first extract three lev-
els of features ft{1’2’3} We propose the Deformable At-
tention Alignment Block (DAAB) to register the high-level
feature f to a previously hidden reference map r,_,. We
also propose the Gated Reference Update Module (GRUM)
updates this reference feature recurrently, which is inspired
by the gated recurrent unit [5, 15] and illustrated in Fig. 2.

Temporal fusion. This component is analogous to the
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classical lucky fusion step. The registered feature f;, to-
gether with r,_, and f7, are fused by a new Deep Integra-
tion Module (DIM). DIM consists of a series of Residual
Dense Blocks (RDB) [73] and is used to produce the for-
ward embedding e{ . Since e{ “ is a deep feature, it is pre-
sumed to be free of tilt and is thus utilized for updating the
reference feature for the subsequent frame. After the bidi-
rectional recurrent process, we perform a temporal fusion
of e{ “ by augmenting it with the backward embedding e}*
and bidirectional embeddings from neighboring frames. We
propose the Multi-head Temporal-Channel Self-Attention
(MTCSA) module for this purpose.

Post processing. In the final stage, the temporally fused
features are decoded to form the turbulence-free image.
This decoding involves a twin of decoders. The first pre-
dicts a reverse tilt map that rectifies the shallow features,
and the second subsequently reconstructs the clean image.

3.2.2 components

Feature registration via Deformable Attention Align-
ment Block (DAAB). In classical methods, a crucial stage
for turbulence mitigation is registering the input frames to
the tilt-free reference frame. This reference frame is usually
obtained by temporal averaging or using variants of prin-
ciple component analysis. However, these methods may
not be applicable to dynamic videos. Since learning-based
video TM is possible [26, 72], the deep feature of a video
TM network can be considered tilt-mitigated to work as the
reference feature for the next input feature. This section ex-
plains our method to use deformable attention to facilitate
feature registration in our DATUM network.

The computations in the DDAB are summarized in Al-
gorithm 1, where (A; B) denotes warping A by deformation
field B, ¢(A;p) denotes sampling A by positions p. W,
Wy, Wq, and W are linear projections on the channel di-
mension, and o denotes the SoftMax. The optical flow at
line 3 is estimated with the SPyNet [54], and lines 6-11 are
inspired by the guided deformation attention (GDA) [38].
Temporal fusion via Multi-head Temporal Channel Self-
Attention (MTCSA). After feature registration and deep
integration, we propose to augment the embedding with
contra-directional information, which is essential to ensure
consistent restoration quality across various frames. In ad-
dition, like classical methods, a spatially adaptive fusion
with adjacent frames is advantageous. We propose the
Multi-head Temporal-Channel Self-Attention (MTCSA), as
illustrated in Fig. 2. The MTCSA begins by concatenating
channels from multiple frames, followed by a 1 x 1 convo-
lution to shrink the channel dimension. Separable convo-
lution is used to construct the spatially varying query, key,
and value on the temporal and channel dimensions, and the
dynamic fusion is facilitated by self-attention. Finally, a

Algorithm 1 Deformation Attention Alignment Block

1: Input: Current frame feature f}, reference feature r,_,
and alignment flow from last frame O{jr, two down-
sampled frames I; and I;_4

2: Output: Updated feature f; and flow Of -
> Estimate rough deformation field OAtf " that register
feature f} to reference 7, _;

3: Estimate the optical flow OZ _y¢—q from Iy and I;_;.

« Of 7"« ol7 + (0], ;o7

5: Pre-align f; < (O 7", f3)
> Register input feature to reference frame using multi-
group multi-head deformation attention

6: for all group g do

> Predict offsets 0

7: Aol + RDB(Concat(fy,r)_,,0{~"))

8: ogg) ~ O+ Aogg)

> Compute the g-th aligned feature ft(g ),
90 KO ¢(f3Wi;0), VO  ¢(f3Wy;0l)
100 Q7 Wo, fi¥ « o(QKWT )TV
11: end for
12: Fuse all groups f; < Concat({ f\” )W
13: Update final alignment flow Of " by mean of {o§9 )}
14: Output f; + f; + FeedForward( f;)

residual connection is used to stabilize training. Consider-
ing the quadratic complexity of MTCSA relative to window
size, this size is kept moderate. Additionally, we integrate a
hard-coded positional embedding wherein features from the
focal frame are positioned at the end. This strategy is essen-
tial for boundary frames with disproportionate neighboring
frames on either side.

Twin decoder and loss function Given the refined feature
embedding from the MTCSA, we also developed a twin de-
coder to progressively remove the tilt and blur, as shown in
Fig. 2. The decoder uses transposed convolution for up-
sampling and channel attention blocks (CAB) [68] for de-
coding. Before decoding in higher levels, the deep features
are concatenated with the shallow features to facilitate the
residual connection like a typical UNet [56]. Since the deep
and shallow features are misaligned by the random tilt £,
we propose to first rectify the shallow features by the esti-
mated inverse tilt field 7! estimated in the first stage. The
tilt-rectification is optimized by reducing the loss:

Lt = Lenar(Tar, (Ta; T1)) (1

Where L.n, denotes the Charbonnier loss [10], Igt is the
input frame and Iy is the tilt-only frame that can be pro-
duced without additional cost by our data synthesis method.
In the second stage, the rectified shallow features are jointly
decoded with the deep features to generate the final recon-
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Figure 3. Scheme of our data synthesis method.

struction I. The overall loss function is computed by:

L = o L + o Lonar (Lo, I) (2)
where weights oy and o are empirically set to 0.2 and 0.8.
3.3. ATSyn dataset
3.3.1 Physics-based data synthesis

As introduced previously, the ground truth image J is first
geometrically distorted and then blurred to produce the de-
graded image I in our synthesis method. Data synthe-
sis for the turbulence effect essentially requires a physics-
grounded representation of and . We adopted the Zernike-
based turbulence simulator [12, 13] and improved it with
non-trivial modifications. Fig. 3 presents the scheme of
our implementation. The and is generated from the phase
distortion represented by Zernike polynomials {Z;} [51] as
the basis, with corresponding coefficients a; where 7 rang-
ing from 1 to 36. Among all 36 coefficients, 7 = 1 denotes
the current component, ¢ = 2, 3 controls the by a constant
scale, and the rest high order Zernike coefficients contribute
to the blur effect.

The phase distortion can be assumed as a wide sense sta-
tionary (WSS) random field [13]. Hence, it can be sam-
pled with Fast Fourier Transform (FFT) from white Gaus-
sian noise and the autocorrelation map. Transforming the
phase distortion to the spatial domain point spread func-
tions (PSF) can be achieved by the Phase-to-Space (P2S)
transform, which transforms the sampled Zernike coeffi-
cients to spatial coefficients 3, assuming the PSFs can be
represented by a low-rank approximation of 100 basis v
and corresponding 3. The overall degradation in the spatial
domain is implemented by

100

I:Z¢k®(ﬂk'(J§))+nv 3)
k=1

where ® denotes the depth-wise convolution. Although
subtle, this fundamentally generates more reliable degrada-
tion than the simulator in [72], as elaborated in [14]. Except
for this, our correlation kernels are more precise by incor-
porating the continuous C?2 path technique [11].

3.3.2 Guideline of implementation

With the proposed simulator, we created the ATSyn dataset
to match various real-world turbulence conditions and
benchmark deep neural networks for turbulence mitigation.
This dataset is segmented into two distinct subsets based on
scene type: the ATSyn-dynamic and ATSyn-static. The dy-
namic sequences contain camera or object motion, whereas
the static sequences are each associated with only one un-
derlying clean image. We adopted parameters including fo-
cal length, F-number, distance, wavelength, scene size, and
sensor resolution to control the simulation. In comparison
with the synthetic dataset introduced in [72], which utilized
the D/rq [19] and empirically chosen blur kernel size, our
dataset’s parameter space more closely aligns with actual
camera settings, making it more representative.
ATSyn-dynamic contains 4,350 training and 1,097 val-
idation instances synthesized from [26, 58], and ATSyn-
static contains 2,000 and 1,000 instances synthesized from
the Places dataset [75] for training and validation, respec-
tively. Those instances have varying numbers of frames,
each with a distinct turbulence parameter set. Besides
ground truth and fully degraded videos, ATSyn further pro-
vides associated 7T -only videos to facilitate the training of
L in Eq. 1. We categorize the turbulence parameters by
three levels: weak, medium, and strong. The range of tur-
bulence parameters is determined by matching with a large-
scale, long-range video dataset [16] and other real-world
videos, with more details in the supplementary document.

4. Experiments
4.1. Training setting

This section describes how we trained our DATUM and
other models. Except for turbulence mitigation networks
[26, 44, 72], we also benchmarked several representative
video restoration [37, 38] and deblurring networks [74, 76]
for a more thorough comparison.

To train the proposed model, we used the Adam opti-
mizer [29] with the Cosine Annealing learning rate sched-
ule [39]. The initial learning rate is 2 X 10~*, and batch size
is 8. All dynamic scene TM networks in this experiment are
trained end-to-end from scratch for 800K iterations. To get
their static-scene variant, we fine-tuned them on the static-
scene modality with half the initial learning rate and 400K
iterations. We clip the gradient if the L2 norm exceeds 20
to prevent gradient explosion during inference.

We trained the ESTRNN [74], RNN-MBP [76], and
RVRT [74] with the same configuration as DATUM. The
number of input frames of DATUM and ESTRNN during
training is set to 30 for ATSyn-dynamic and 36 for ATSyn-
static. Since RNN-MBP and RVRT require much more re-
sources to train, the number of input frames is set to 16.
Because TSRWGAN [26], TMT [72], and TurbNet [44] are
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Methods | TurbNet [44] TSRWGAN [26] VRT [37] TMT [72] RNN-MBP [76] ESTRNN [74] RVRT [38] DATUM J[ours]
PSNR 24.2229 26.3262 27.6114 27.7419 27.7152 27.3469 27.8512 28.5875
SSIMcw 0.8230 0.8596 0.8691 0.8741 0.8730 0.8617 0.8788 0.8803

Table 1. Preliminary study: evaluate on TMT’s synthetic dynamic scene data [72]. SSIMcw denotes Complex Wavelet SSIM.

Turbulence Level Weak Medium Strong Overall Cost

Methods PSNR  SSIMcw  PSNR  SSIMcw  PSNR  SSIMcw  PSNR  SSIMcew | Size  FPS
TSRWGAN [26] | 27.0844 0.8575 26.7046  0.8514 254230 0.8372 26.4541 0.8493 | 46.28 0.87
TMT [72] 29.1183  0.8836  28.5050 0.8791 269744  0.8552  28.2665 0.8734 | 26.04 0.80
VRT [37] 28.8453  0.8797 282628  0.8769  26.7492  0.8506  28.0179  0.8699 | 18.32 0.17
RNN-MBP [76] | 27.9243  0.8699 27.4742 0.8642 26.0812 0.8495 27.2161 0.8618 | 14.16 1.14
ESTRNN [74] 28.9805 0.8750 28.3338  0.8697 26.8897 0.8463  28.1347  0.8645 | 2.468 27.65
RVRT [38] 29.6080 0.8845 289605 0.8806  27.5344  0.8595 28.7672  0.8756 | 13.50 2.43
DATUM [ours] 30.2058 0.8857 29.6203 0.8829 28.2550 0.8640 29.4222 0.8781 | 5.754 9.17

Table 2. Performance comparison on the ATSyn-dynamic set, we list the image quality scores on different turbulence levels and frame-wise
resource consumption (measured with 960 x 540 frame sequences on RTX 2080 Ti).

all designed for turbulence mitigation, we trained them fol-
lowing the original paper and public code.

4.2. Comparison on dynamic scene modality

We first trained and evaluated all networks for comparison
on a previous Zernike-based synthetic dataset [72] for pre-
liminary study. We choose PSNR and Complex Wavelet
Structure Similarity [59] (CW-SSIM) as the criterion in this
paper, and the reason for selecting CW-SSIM rather than
SSIM is provided in the supplementary document. The re-
sult in Table 1 shows our DATUM outperforms the previ-
ous state-of-the-art TMT [72] with 5x fewer parameters
and over 10x faster inference speed. We also benchmark
a representative single-frame TM network [44] to demon-
strate the superiority of multi-frame TM methods. Next, we
present extensive results from the ATSyn-dynamic dataset
in Table 2. Our model outperforms all other networks by a
significant margin, while it is the second smallest network
among all models and the most efficient network among all
existing turbulence mitigation networks.

4.3. Comparison on static scene modality

When training on the ATSyn-static, the loss is computed
between the single ground truth and all output frames. For
testing, we instead calculate the average score of the cen-
tral four frames in the entire output sequence (for single-
directional models, we use the last 4). We evaluated the
performance on the ATSyn-static and the turbulence text
dataset [64], and the result is shown in Table 3. The tur-
bulence text dataset contains 100 sequences of text images,
each a static scene of degraded text pattern captured at 300
meters or farther. Real-world turbulence videos do not have
ground truth, while [64] uses the accuracy score of pre-
trained text recognition models CRNN [61], DAN [67], and
ASTER [62] as metrics, where a better turbulence mitiga-
tion offers better recognition performances. Our model is

Benchmark ATSyn-static Turb-Text (%)

Methods PSNR SSIMcw  CRNN/DAN/ASTER
TSRWGAN [26] 23.16 0.8407 60.30/73.90/74.40
TMT [72] 24.51 0.8716 80.90/87.25/ 88.55
VRT [37] 24.27 0.8641 76.30/84.45/ 83.60
RNN-MBP [76] 24.64 0.8775 51.35/65.00/64.30
ESTRNN [74] 26.23 0.9017 87.10/97.80/96.95
RVRT [38] 25.71 0.8876 86.40/89.00/89.20
DATUM [ours] 26.76 0.9102 93.55/97.95/97.25

Table 3. Static scene modality. CRNN/DAN/ASTER are the text
recognition rates of these three models from the restored images.

trained on a wide range of turbulence conditions and generic
data, without specific augmentation tricks, yet performs on
par with the best systems in the UG2+ turbulence challenge
[64]. Our model outperforms other networks trained on the
ATSyn-static dataset by an even larger margin.

4.4. Ablation study

Our ablation study examines key elements that introduce
effective inductive biases of our model, including the use
of additional frames, recurrent reference updating, feature-
reference registration, and multi-frame embedding fusion.
Influence of the number of input frames. The number
of input frames for both training and inference matters for
recurrent-based networks, especially in turbulence mitiga-
tion. Since turbulence degradation is caused by zero-mean
stochastic phase distortion, the more frames the network can
perceive, the better the non-distortion state it can evaluate.
This is particularly valid for static scene sequences, where
the pixel-level turbulence statistics are much easier to track
and analyze through time.

We trained two models with 12-frame and 24-frame in-
puts and presented their respective performance during in-
ference in Fig. 4. This figure shows in the temporal range of
our experimental setting, a positive correlation between the
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Figure 4. Influence of the number of input frames.

performance and the number of input frames always exists,
especially on the static scene modality where an over 1 dB
boost can be obtained with more frames. This phenomenon
suggests one of the success factors for turbulence mitigation
is the capability of fusing more frames, similar to the video
super-resolution problem [8].

Influence of DAAB, MTCSA, GRUM, and twin decoder.
The design of DAAB and MTCSA are inspired by pixel reg-
istration and lucky fusion in the conventional TM methods.
Although our spatial registration and temporal fusion are
implemented at the feature level, they are still effective in
turbulence mitigation, as shown in Table 4.

While the MTCSA fuses embeddings from multiple
frames in a sliding window manner, determining the opti-
mal window size is crucial. If the window size is too small,
the temporal fusion only relies on the implicit temporal
propagation by the recurrent unit, limiting the performance;
if the window size is too large, because of the quadratic
complexity along the temporal dimension, the MTCSA be-
comes very resource-demanded, and the network becomes
less flexible to deal with a small number of input frames.
We investigated the temporal window size of the MTCSA
module, as shown in Fig. 4, where we found that five frames
meet the trade-off between performance and efficiency.

The GRUM utilizes a gating mechanism in the recurrent
network to facilitate more extended temporal dependency
[5, 15]. It fuses the reference feature with deeper embed-
dings in a more adaptive manner, which also turns out to
be effective. Finally, in the post-processing stage, we com-
pared the two-stage twin decoder with the one-stage plain
decoder. We found that by incorporating additional super-
vision and rectifying shallow features in the decoding stage,
better performance can be obtained.

4.5. Comparison on real-world data

In this section, we demonstrate our data’s generalization ca-
pability qualitatively and quantitatively on real-world data.

Given the impracticality of directly obtaining ground
truth images for real-world turbulence scenarios, quantita-
tive performance evaluation typically involves applying re-
stored images to downstream tasks, as noted in [24, 44, 49].
Adopting this approach, we evaluated various restoration
methods using the turbulence text dataset. The results are

PSNR/SSIM  Size GMACs
28.62/0.8465 3.912 261.5
28.79/0.8497 4.131 272.7
28.87/0.8522 4.768 304.2
28.92/0.8532 5.808 358.1
29.06/0.8576  4.894 317.7
29.33/0.8638 5.241 351.8
29.42/0.8647 5.754 372.7

Components
Base (MTCSA-1f)
Base (MTCSA-3f)
* Base (MTCSA-5f)
Base (MTCSA-7f)
+ GRUM
+ DAAB
+ Twin Decoder

Table 4. Ablation study. We conducted experiments on the ATSyn-
dynamic set by adding each proposed component progressively
and observed a constant performance improvement.

100

Dataset from [72] 9305 947 9608
9207

90 Original Dataset [26] 88.87
5 86.04
sais 557

69.53
701 67.43

Averge Text Recognition Rate (%)

34.72

TSRWGAN [26] TMT [72] RVRT [38] ESTRNN[74]  DATUM [ours]
Restoration Models

Figure 5. Comparison on the real-world turbulence-text dataset.
The metric is the average text recognition accuracy of CRNN,
DAN, and ASTER tested on the restored images.

Face Retrieval | Degraded Simulator in [72]  Our simulator
Rank 5 37.75% 38.83% 39.18%
Rank 10 40.59% 41.83% 42.18%
Rank 20 45.29% 46.40% 46.70%

Table 5. Face recognition results on a subset of the BRIAR dataset.

presented in Fig. 5, revealing two key insights: 1) our pro-
posed ATSyn-static dataset enhances the generalization ca-
pabilities of other TM methods. 2) on both synthetic and
real-world sequences, DATUM consistently outperforms
other models trained on our dataset. To further validate
the effectiveness of our modifications to the Zernike-based
simulator, we extensively compared DATUM trained on our
ATSyn-dynamic dataset and TMT’s dataset [72]. We first
enhance the long-range subset in the BRIAR dataset [16] by
those two versions, run the same pre-trained face recogni-
tion model [28] on the enhanced images, and it yields the
result provided in Table 5. We can observe the ATSyn-
dynamic dataset improved network performance on real-
world videos compared to the [72] dataset. These compar-
isons demonstrate our method facilitates better generaliza-
tion of both scene types than other existing datasets.

We also provide a qualitative comparison in Fig. 6 and
7 to demonstrate the advance of our network and dataset.
By comparing the same networks trained by our data and
their original checkpoints, our data enhances their general-
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(a) Input frame (b) TSRWGAN [26] (c) TMT [72] (d) NDIR [36] (e) TurbNet [44] (f) AT-DDPM [49] (g) PiRN [24]

(h) DATUM [Ours] (i) TSRWGAN* [26] () TMT* [72] (k) RNN-MBP* [44] (1) RVRT* [38] (m) VRT* [26] (n) ESTRNN* [74]

Figure 6. Qualitative comparison on the turbulence-text dataset [64]. The input frame (a) is the 49th frame of the 94th sequence in [64].
Figures on the top row are restoration results of corresponding TM methods using their original model and checkpoints. Figures on the

bottom row are TM or general restoration models (marked by *) trained on our ATSyn-static dataset.

(a) Input frame

¥

(h) DATUM* [Ours] (i) TSRWGAN* [26] ) TM* [72]

(k) RNN-MBP* [44]

(1) RVRT* [38] (m) VRT* [26] (n) ESTRNN* [74]

Figure 7. Qualitative comparison on a dynamic scene sample from the BRIAR dataset [16]. Figures on the top row are the original
restoration results of corresponding TM methods. Figures on the bottom row are models (marked by *) trained on ATSyn-dynamic dataset.

ization capability. On the other hand, by comparison among
all networks trained on our dataset, our model significantly
outperforms other networks.

5. Conclusion

In this research, we introduced a novel approach leverag-
ing deep learning to address the enduring challenge of at-
mospheric turbulence mitigation. Taking a translational
perspective, our method integrated the strengths of tradi-
tional turbulence mitigation (TM) techniques into a neu-
ral network architecture. This fusion elevated our network
to state-of-the-art performance while ensuring significantly
enhanced efficiency and speed compared to prior TM mod-
els. Additionally, we developed a physics-based synthe-
sis method that accurately models the degradation process.

This led to the creation of an extensive synthetic dataset
covering a diverse spectrum of turbulence effects. Utilizing
this dataset, we facilitated a stronger generalization capabil-
ity for data-driven models than other existing datasets.
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