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Abstract

The traditional frame-based cameras that rely on expo-
sure windows for imaging experience motion blur in high-
speed scenarios. Frame-based deblurring methods lack re-
liable motion cues to restore sharp images under extreme
blur conditions. The spike camera is a novel neuromorphic
visual sensor that outputs spike streams with ultra-high tem-
poral resolution. It can supplement the temporal informa-
tion lost in traditional cameras and guide motion deblur-
ring. However, in real-world scenarios, aligning discrete
RGB images and continuous spike streams along both tem-
poral and spatial axes is challenging due to the complex-
ity of calibrating their coordinates, device displacements
in vibrations, and time deviations. Misalignment of pixels
leads to severe degradation of deblurring. We introduce the
first framework for spike-guided motion deblurring without
knowing the spatiotemporal alignment between spikes and
images. To address the problem, we first propose a novel
three-stage network containing a basic deblurring net, a
carefully designed bi-directional deformable aligning mod-
ule, and a flow-based multi-scale fusion net. Experimental
results demonstrate that our approach can effectively guide
the image deblurring with unknown alignment, surpassing
the performance of other methods. Public project page:
https://github.com/Leozhangjiyuan/UaSDN.

1. Introduction
The imaging principle of conventional frame-based cameras
is based on the concept of exposure time windows. Dur-
ing the continuous imaging process, the time between the
exposure windows of adjacent frames is unused. Due to
the presence of exposure windows, when the camera is in
high-speed motion or there are fast-moving objects in the
scene, images may exhibit a blur effect. In recent years,
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Figure 1. Illustration of unknown spatiotemporal alignment be-
tween a spike camera and an RGB camera.

many studies have focused on addressing the challenging
task of recovering clear images from blurry ones utilizing
deep-learning routes [4, 5, 16]. However, the texture or
structural information in blurry images is partially lost dur-
ing the exposure, making it difficult to infer clear textures
directly from blurry images, as in Fig. 2 (Orange Box).

Introducing spike cameras as clues of deblurring. Bio-
inspired neuromorphic vision sensors have attracted in-
creasing attention and achieved significant development.
They possess advantages such as ultra-high temporal res-
olution, low latency, and high dynamic range. Due to
the continuous recording of light intensity, neuromorphic
cameras can be used to compensate for the lack of tem-
poral information in image deblurring. Based on differ-
ent sampling principles, they can be classified into event
cameras [1, 21, 23] and spike cameras [12]. Event cam-
eras asynchronously detect changes in light intensity and
are highly sensitive to moving edges. Studies utilize events
for image deblurring [28, 32]. Spike cameras accumulates

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

25047



photons and emits 20,000Hz spike streams. Due to the in-
tegration sampling principle, it can thoroughly record spa-
tiotemporal information, including the texture and motion
information of the scene. The precise texture information
recorded in spikes can effectively guide the deblurring pro-
cess. Our paper explores the effectiveness of using spike
cameras to guide motion deblurring, uncovering the poten-
tial advantages of spike cameras in this novel task.

Take misalignment between cameras in real applica-
tion into consideration. At present, most deblurring works
based on event cameras assume that the imaging planes of
the two cameras are absolutely coaxial [32, 33] and that
the event stream and video are fully synchronized on the
time axis. Such assumptions facilitate model design but are
overly idealistic. In the real world, achieving strict align-
ment of a spike camera and an RGB camera in both spatial
and temporal dimensions is quite challenging. As shown
in Fig. 1, in this work, we consider the unknown alignment
factors in the real world:

(A) Spatial alignment of the two cameras is challeng-
ing. Alignment of the coordinate systems of the two cam-
eras can be achieved using methods such as beam splitters
or manual calibration (e.g., chessboard calibration). How-
ever, beam splitters can result in significant loss of light,
and differences in focal length, aperture, and relative po-
sitions between cameras, which can vary with the scene,
make alignment operations complex and difficult.

(B) Position displacements. During motion, minor dis-
placements in the relative positions of the two cameras oc-
cur due to vibrations. For current algorithms, pixel mis-
alignment will lead to significant performance losses.

(C) Synchronizing discrete image sequences with contin-
uous spike streams on the time axis is challenging. Tech-
nically, obtaining spikes strictly synchronized with blurry
images requires acquiring the accurate exposure start and
end times of the blurry images, which is complex. More-
over, in high-speed motion scenes, the two data streams are
prone to small time deviations, leading to misalignment.

What we focus on and How we deal with the real-
world misalignment? In response to the real-world mis-
alignments mentioned above, we focus on investigating
spike-guided motion deblurring with unknown spatiotem-
poral alignment between spikes and RGB images, as shown
in Figs. 1 and 2. The proposed method allows for the
use of two cameras simultaneously without the need for
complex and rigorous spatial calibration and time align-
ment design. To address the problem, we propose an ef-
fective three-stage model Unaligned Spike-guided Deblur
Net (UaSDN). (1) In the first stage, we employ a simplified
off-the-shelf network to perform basic deblurring. In this
stage, we aim to leverage existing technology to alleviate
the blurring and enhance textures. (2) In the second stage,
we first use a shallow net to estimate coarse light intensity

from the spike stream. Besides, we design a bidirectional
deformable modal alignment module. The module achieves
better alignment by learning bidirectional deformable con-
volutions between spike features and image features. (3) In
the third stage, we design a multi-scale dense fusion net-
work combining the optical flow, which performs feature
fusion by aligning pixel motion offsets between modali-
ties and fuse features in a multi-scale network. Through
comparisons with various networks, experimental results
demonstrate the effectiveness of our method in motion de-
blurring with unknown spatiotemporal alignment between
modalities. To comprehensively validate the model’s per-
formance, we construct spike datasets for training and vali-
dation. Our contributions can be summarized as follows:
• We first explore the motion deblurring tasks guided by the

spike camera and deal with the unknown spatiotemporal
alignment between two modalities in the real world.

• We propose the three-stage UaSDN model which contains
a bi-directional deformable modal alignment module and
a flow-based fusion module.

• Experimental results demonstrate that our model signif-
icantly outperforms other methods on motion deblurring
with unknown spatiotemporal alignment.

2. Related Work
2.1. Advances on Spike Cameras

The spike camera outputs spikes with an ultra-high tempo-
ral resolution of 20,000Hz [12]. Due to the sampling prin-
ciple, it effectively captures texture in both moving and sta-
tionary areas, demonstrating potential in high-speed scenar-
ios. Research focuses on utilizing spike cameras for image
recovery or high-level visual tasks. Early studies involved
direct statistics of spike counts or intervals for a rough es-
timation of light intensity [57]. Zhao et al. [52] introduces
the first learning-based method. Zhang et al. [47] lever-
ages wavelet transforms on spikes, and enhances the repre-
sentational capability of spikes. Some bio-inspired works
employ spiking neural networks (SNN) [53, 55] to process
spikes. The introduction of self-supervised schemes en-
hanced the generalization capability [6]. Many applications
have emerged, such as super-resolution reconstruction [51]
and high-dynamic-range restoration [3], spike-guided video
interpolation [41], denoising [11] and tracking [54].

2.2. Frame-based Motion Deblurring

In recent years, with the rise of deep learning, CNN-based
approaches have shown remarkable performance in frame-
based deblurring tasks. Popular technical routes is em-
ploying end-to-end training [4, 9, 16, 24, 34, 44]. Some
works [17, 18] employ generative networks. Rather than
mapping a blurry image one-to-one to a single sharp image,
some work [2, 13, 26, 27, 31, 38, 56, 58] attempts to mine
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Figure 2. Illustration of the process of deblurring images in different scenarios. Orange box: deblurring directly from the RGB camera;
blue box: deblurring with precise alignment of spike-RGB data; green box: unknown alignment in X-Y-T for spike-RGB data.

clues from video sequence input to assist in deblurring.
However, video-based methods always use future frames,
which is not applicable in the real world. Besides, many
image-based image restoration models are able to deal with
deblurring [4, 5, 19, 20, 39, 43–45].

2.3. Event-guided Motion Deblurring

As neuromorphic vision sensors, event cameras have been
used in deblurring. Pan et al. [28] builds a computa-
tional model between blurred images and events. Several
works [14, 36] utilize motion information and recurrent net-
works for aligning. Shang et al. [29] enhances the deblur-
ring by finding adjacent sharp frames. Kim et al. [15] and
Weng et al. [40] deal with images with unknown exposure
time. EFNet [32] introduces an attention-based module to
better fuse events. Cho et al. [8] proposed a solution for
cameras with spatial offsets. Zhang et al. [49] proposes to
generalize the deblurring ability to various spatial resolu-
tions and blur levels. Some works [22, 28, 33, 37, 42, 48]
combine the motion deblurring and frame interpolation
guided by events. However, most studies assume that scenes
captured by the event camera and the traditional camera are
entirely identical, i.e. two camera coordinates coincide per-
fectly along the spatial axis and events have the same center
and duration as the exposure time of blurred images on the
temporal axis. Our study aims to address motion deblurring
in real scenes unknown of the alignment between cameras
in both time and space.

3. Method
3.1. Problem Analysis

We mainly focus on dealing with the motion deblurring in
high-speed scenarios guided by a spike camera while not
knowing the alignment between the RGB camera and spike
camera on both the spatial axis and temporal axis. In this

section, we give a specific analysis of how to utilize spike
data for deburring spatiotemporal unaligned RGB frames.

An RGB camera outputs discrete RGB blurry frames
B = {Bi|i ∈ N} with the exposure time of TB , which
is a shorter duration than the time duration between succes-
sive frames TF ( the frame rate f = 1

TF
). A spike camera

outputs the spike stream S with the rate of 20000Hz. Each
pixel (x, y) of a spike camera on the HS × WS plane in-
dependently receives coming photons continuously at any
timestamps t, converts the light signals into electrical cur-
rent Ix,y(t), and accumulates the voltage Vx,y . Whenever
the voltage reaches the preset threshold Θ, the pixel fires a
spike and resets the voltage to 0. The spike signals are read
out with a very short interval (τ = 1

20000Hz = 50µs). The
process can be formulated as follows:

Sx,y(c) =

{
1, if ∃t ∈ ((c− 1)τ, cτ ], Vx,y(t) = 0,

0, otherwise,
(1)

V +
x,y(t) =

{
V −
x,y(t) + Ix,y(t), if V −

x,y(t) < Θ,

0, otherwise,
(2)

where V −
x,y(t) and V +

x,y(t) denotes the voltage before and
after receiving the electric current Ix,y(t), c ∈ R. The spike
stream S is output with the size of H×W ×C after C times
readout during T µs (C = T

τ ).
For a blurred image Bi, it can be represented as the av-

erage of the clear images {L} over the exposure time, i.e.:

Bi =
1

TB

∫ Ti+TB/2

Ti−TB/2

L(t)dt, (3)

where Ti is the center of exposure time and Li at Ti.
Why spike cameras hold potential on image deblur-

ring. The deblurring process can be formulated as:

argmin
θM

∥L̂i − Li∥,where L̂i = F(Bi : θM ), (4)
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Figure 3. The architecture of the proposed Unaligned Spike-guided Deblur Net (UaSDN).

where θ is the optimized parameters of the model M and
L̂i is the predicted clear image. The θ is hard to optimize
when Bi holds extreme blur. Neglecting color information
and differences in spatial resolution, when the spike camera
and RGB camera are perfectly aligned, the clear image Li

can also be approximated using spikes:

L̃i ≃ FMS2I
({S(t)|t ∈ [Ti −

TB

2
, Ti +

TB

2
]} : θS2I),

(5)
where MS2I is the model for reconstructing spikes to the
approximated image L̃i. Many existing models [47, 52] are
able to reconstruct high-quality L̃i. Despite that L̃i lacks
color information and has lower spatial resolution compared
to Bi, its clear texture effectively provides deblurring clues
for Bi as shown in Fig. 2, which is proved by our exper-
iments in Sec. 4.5. When not knowing the alignment be-
tween the RGB camera and spike camera on both spatial
and temporal axis, we cannot get the accurate spikes {S(t)}
in Eq. (5). Thus textures in L̃i are not aligned with Li,
which raises challenges for spikes to guide the deblurring.

How to deal with unknown alignment? We set the
situation of the unknown alignment as follows: (1) Spa-
tial axis. There are blind plane displacements ∆P between
two cameras. Generally, we set the ∆P not a constant but
a variable parameter. (2) Temporal axis. Spike stream
is continuous while RGB frames are discrete. When two
streams cannot be precisely synchronized, in real situations,
we can roughly fetch a segment of spikes Sk around the cor-
responding exposure window Ti of image Bi. The temporal
center of Sk is unknown. In this case, we aim to build the
model learning the aligning process adaptively.

3.2. Overall Architecture

For not knowing the alignment, accurately matching the
textures between the blurred image and spikes is challeng-
ing, requiring the model to have the ability for adaptive

feature matching. However, on one hand, the texture of
the blurred image B suffers from significant information
loss. On the other hand, the irregular spike data cannot di-
rectly express scene textures like images. Therefore, we aim
to progressively optimize the motion deblurring, gradually
restoring clear textures of the blurred image and spikes. To
achieve this, we propose a three-stage model named Un-
aligned Spike-guided Deblur Net (UaSDN). The network
architecture of UaSDN is illustrated in Fig. 3.

UaSDN consists of three deblurring stages. (1) First
Stage: Basic Image Deblurring Unclear texture in blurred
images B makes it difficult to match with features in spikes.
We employ a simple network M1 to learn basic deblur-
ring for B. The network takes the blurred image B as in-
put and outputs the predicted image L̂1 (2) Second Stage:
Bi-Deformable Aligning Enhancement. The texture of B
is enhanced after the stage 1. In this stage, we design a
module M2 based on deformable convolution to achieve
basic alignment between spike features and blurred image
features. Besides, to restore scene textures in spikes, we
use shallow convolutional layers MS2I to input spikes and
quickly infer the rough light intensity. We randomly sample
K segments of spikes {Sk|k ∈ [1, 2, ..K]} as guidance in-
put to M2, which outputs the enhanced image L̂2. (3) Third
Stage: Flow-guided Dense Fusion. In this stage, we aim
to utilize optical flows vS2I from spikes S to the image L̂2

as guidance for precise alignment. To achieve this, we de-
sign the multi-scale flow-guided deblurring module, which
takes the sampled K spike segments as input and predicts
the final clear image L̂3. The process can be formulated as:

L̂1 = FM1
(B : θM1

), (6)

L̂2 = FM2(L̂1, {Sk|k ∈ [1, 2, . . . ,K]} : θM2), (7)

L̂3 = FM3
(L̂2, {Sk|k ∈ [1, 2, . . . ,K]} : θM3

). (8)

25050



DC DC

Figure 4. The architecture of the proposed Bi-directional De-
formable Modal Aligning (BiDMA) module.

3.3. Stage 1: Basic Image Deblurring

In the first stage, we employed one of the current state-of-
the-art image restoration networks, NAFNet [5], as the ba-
sic deblurring module M1. We aim to use M1 to lighten the
blurring effect and enhance the texture of the blurred image
B, as shown in Fig. 3. Specifically, NAFNet is a U-shaped
multi-scale network. B undergoes 4 times down-sampling
during feature extraction, followed by up-sampling. In the
up-sampling process, features from each scale are fused,
and the network finally outputs L̂1. To reduce parameter
count and accelerate inference speed, the overall network
channel number is halved. Detailed architectures are pro-
vided in the supplementary material.

3.4. Stage 2: Bi-Deformable Aligning Enhancement

At this stage, spikes are introduced. As in Eq. (5), if two
cameras are perfectly aligned in space and time, spikes can
be optimized to obtain a clear grayscale image L̃S with-
out color information and at a lower resolution. The recon-
structed gray-scale image can effectively aid in deblurring
the RGB image. Our goal is to learn an adaptive pixel align-
ment relationship between modalities through learning. We
first pass the sampled spike fragments through a shallow
convolutional module MS2I to quickly estimate the corre-
sponding rough grayscale intensity L̃S. MS2I consists of
only 4 convolutional layers, which is formulated as:

L̃S = FMS2I
(S : θMS2I

), (9)

In addition, we designed the bi-directional deformable
modal align (BiDMA) module, as illustrated in Fig. 4.
The spike and image features are extracted with downsam-
pling, denoted as FS = {Fh

S } and FL = {Fh
L}, where

h ∈ [1, 2, ...,H] is the number of scales. A deformable con-
volution network(DCN) [10] FDCN can align two kinds of
features, the principle can be denoted as:

F (p) =

Q∑
q=1

wq · F (p+ pq +∆pq) ·∆mq, (10)

where p = (x, y) is the coordinate of the center pixel, Q de-
notes pixel numbers in the neighbor of p, pq is the fixed off-
set from p, wq denotes the weight, ∆mq denotes the modu-
lation scalar. ∆pq is the learnable offset, which is predicted

by two modal features with a module F∆ consisting of sev-
eral convolution layers. In each h-level, we consider the
bi-directional deformable aligning: 1) align Fh

L of image to
Fh
S of spikes and get the F̄h

L ; 2) fuse the F̄h
L and Fh

S , and get
F̄h
S ; 3) align the F̄h

S back to Fh
L , and get ¯̄Fh

S . The process
can be formulated as:

∆Ph
I2S = F∆([F

h
L , F

h
S ],∆Ph+1

I2S ),

F̄h
L = F⊕(FDCN (Fh

L ,∆Ph
I2S),Up(F̄h+1

L )),

F̄h
S = F⊕(F̄

h
L , F

h
S ),

(11)

∆Ph
S2I = F∆([F̄

h
S , F

h
L ],∆Ph+1

S2I ),

¯̄Fh
S = F⊕(FDCN (F̄h

S ,∆Ph
S2I),Up( ¯̄Fh+1

S )),

Falign = F⊕(
¯̄F 1
S , F

1
L),

(12)

where FDCN is the DCN network as in Eq. (10), F⊕ is
the feature fusion function with simple Conv layers, Up(·)
is the upsampling operation. Eq. (11) describe the align
process from images to spikes, and Eq. (12) describe the
align process from spikes back to images. In this way, at
the 1-level, the aligned feature Falign is fused by F⊕ with
several Conv layers. As described in Sec. 3.1, we sample K
segments of spikes for alignment with the image. Thus the
output L̂2 of stage 2 is formulated as:

L̂2 = Fpred([Falign,1, Falign,2, ..., Falign,K ]). (13)

3.5. Stage 3: Flow-guided Dense Fusion

After the alignment in stage 2, textures of L̂2 are further
enhanced by spikes. In this stage, we aim to achieve pre-
cise alignment of spike features through optical flow guid-
ance, improving the deblurring effect by supplementing de-
tailed textures from features in the spike. Thus, we build
a flow-guided dense fusion network for the final refine-
ment. as illustrated in Fig. 3. Firstly, K coarse light in-
tensity estimation {L̃Sk

|k ∈ [1, 2, . . . ,K]} are predicted as
Eq. (9) described from the sampled spike segments {Sk|k ∈
[1, 2, . . . ,K]}. Then, we compute the optical flows VSk→L̂2

between the L̂2 and each L̃Sk
, then warp the L̃Sk

to L̃w
Sk

ac-
cording to the VSk→L̂2

. The process is formulated as:

VSk→L̂2
= Fflow(L̃Sk

, L̂2),

L̃w
Sk

= G(L̃Sk
, VSk→L̂2

),
(14)

where Fflow is the pretrained image-based flow estima-
tion network [35], and G denotes the feature warp operator.
Then, we concatenate {L̃w

Sk
|k ∈ [1, 2, . . . ,K]} and L̂2, and

get the tiled image L̂tile. The U-shape network contains
the encoder and decoder. In the encoder, the image fea-
tures of L̂tile are extracted with downsampling, denoted as
FL̂tile

= {Fh
L̂tile

}, h = [1, 2, ...,H]. The feature Fh
L̂tile

at
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Figure 5. The proposed Attention-base Dense Block (ADB).

level h doubles the channel number of Fh−1

L̂tile
at level h− 1.

In the decoder, features from the previous layer are upsam-
pled through convolution layers and a pixel shuffle opera-
tion, then fuse with features at the current level. Each en-
coder and decoder at each level is an attention-base dense
block(ADB) consisting of a channel attention layer (CA)
and a residual dense block (RDB) [50], as in Fig. 5. The
CA fuses two features from two modalities and the RDB
aims to extract features effectively. In this way, the final de-
blurred image L̂3 is predicted with the sum of the output of
several convolutional layers and the input L̂2.

3.6. Loss functions

We train the three stages separately, for each stage, we use
the L1 loss to optimize the network. For the coarse light
intensity estimation module MS2I , L1 loss is adopted too.

Li
deblur = |L̂i

1 − Lrgb|,where i = 1, 2, 3,

Li
MS2I

= |L̃S − Lgray|,
(15)

where i is the stage index, Lrgb is the ground-truth clear
RGB image, and Lgray is the clear gray image with equal
spatial resolution as spikes.

4. Experiment
4.1. Datasets and Training Settings

To train the network, we utilize datasets containing high-
speed RGB images as the base and simulate the principle
of a spike camera to generate continuous spike streams.
Specifically, we conduct training and testing on two large
datasets: the X4k1000FPS [30] and the REDS dataset [25].
The X4K1000FPS dataset includes high-definition 1000fps
videos, while REDS comprises 1000fps videos, along with
real or synthesized blurred images. To generate spike data,
we employ the state-of-the-art video interpolation algorithm
EMA-VFI [46] to increase the frame rate by 8 times for
the image sequences in both datasets, resulting in ultra-high
frame rate videos. Ultra-high frame rate videos can approx-
imate the continuous changes in scene lighting, allowing us
to use the working principle of a spike camera to generate
corresponding spike streams as shown in Eq. (1). Addi-
tionally, since the X4K1000FPS dataset does not include
blurred images, we simulate the blurry images using an av-
erage of 33 frames. In X4K1000FPS and REDS, the equiv-

Method Input Data PSNR ↑ SSIM ↑

HINet [4] Image 33.74 0.935
NAFNet [5] Image 34.13 0.937
EFNet [32] Image+Spike 33.28 0.928
REFID [33] Image+Spike 34.22 0.939

SpkDeblurNet [7] Image+Spike 34.47 0.941
UaSDN(Ours) Image+Spike 35.78 0.964

Table 1. Comparison of various motion deblurring methods on
X4K1000FPS [30].

Method Input Data PSNR ↑ SSIM ↑

HINet [4] Image 31.10 0.902
NAFNet [5] Image 30.73 0.894
EFNet [32] Image+Spike 31.74 0.912
REFID [33] Image+Spike 31.23 0.904

SpkDeblurNet [7] Image+Spike 31.16 0.911
UaSDN(Ours) Image+Spike 33.61 0.942

Table 2. Comparison of various motion deblurring methods on
REDS [25].

alent exposure time for the blurred images is 1/120 and 1/24
seconds, respectively.

How do we set the unknown spatiotemporal align-
ment between RGB frames and spikes? In the training
set, along the spatial axis, we introduce random offsets in
up, down, left, and right directions for the spikes compared
to the blurred image, with a maximum offset of 10%. Along
the temporal axis, the center timestamp of the sampled spike
segments compared to the blurred image was set with ran-
dom offsets in forward and backward directions, with a
maximum offset of 25%. For testing, we set the above off-
set scheme as a fixed uniform distribution to ensure that all
methods use the same test data in evaluation. Details of the
dataset and training are in supplementary materials.

4.2. Results on X4K1000FPS

To demonstrate the deblurring capability of our proposed
model UaSDN, under modality misalignment, we compare
it with five methods: two image-based networks, HINet [4]
and NAFNet [5], two state-of-the-art event-based networks,
EFNet [32] and REFID [33], and the spike-based SpkDe-
blurNet [7]. To ensure fairness in the experiments, we mod-
ify the inputs of EFNet and REFID to be the blurred images
and spikes, with the spike length matching that of UaSDN.
We transform the spikes to the input representation used by
EFNet and REFID.

As in Tab. 1, our method achieves 35.78dB in PSNR and
0.964 in SSIM, demonstrating a significant performance
improvement compared to other methods. Compared to
methods that only take the image as input, our approach

25052



UaSDN(Ours)REFID Ground TruthEFNetNAFNetHINetBlur Image
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26.60dB
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Figure 6. Visualized results of our method (UaSDN) on X4K1000FPS compared with HINet, NAFNet, EFNet, REFID and SpkDeblurNet.

UaSDN(Ours)REFID Ground TruthEFNetNAFNetHINetBlur Image

29.18dB 28.84dB 29.84dB 29.56dB 33.28dB

33.33dB 32.80dB 34.09dB 33.14dB 36.18dB

26.73dB 26.89dB 27.12dB 26.78dB 31.65dB

30.03dB

33.61dB

28.38dB

SpkDeblurNet

Figure 7. Visualized results of our method (UaSDN) on REDS dataset compared with HINet, NAFNet, EFNet, REFID and SpkDeblurNet.

outperforms HINet and NAFNet by 2.04dB and 1.65dB in
PSNR, respectively. It indicates the effectiveness of utiliz-
ing spikes as guidance for deblurring. Furthermore, com-
pared to the other two event-based networks that take spikes
as input, our approach surpasses EFNet and REFID by
2.50dB and 1.56dB in PSNR. It strongly validates the ef-
fectiveness of our model in aligning the two modal data in
both time and space. As in Fig. 6, the visual results demon-
strate that our method effectively obtains fine textures. For
example, in the first row, our method successfully enhances
the blurred textures without introducing any shape distor-
tion, while other methods fail to address such extreme blur-
riness and result in shape distortions. It proves the precise
spatiotemporal feature alignment achieved by our method.

4.3. Results on REDS

On the REDS dataset, as shown in Tab. 2, our method
achieves a PSNR of 33.61dB and an SSIM of 0.942. Com-

pared to the image-based methods HINet and NAFNet, our
method surpasses them by 2.51dB and 2.88dB, respectively.
Compared to the event-based methods EFNet and REFID,
our method outperforms them by 1.87dB and 2.38dB. As
illustrated in Fig. 7, our method can significantly enhance
deblurring performance in the presence of complex textures,
such as text on license plates, text on ships, and details in
faces. Through the comparison of the REDS dataset, we
further demonstrate the deblurring capability of the model
and its generalization ability to different datasets.

4.4. Results on Real World Spikes

To assess the deblurring capability of our method in real-
world scenarios, we set up a simple unaligned spike-RGB
hybrid camera system. Fig. 8 shows real-world test cases,
including fast-moving objects at close range and outdoor
driving scenarios with rapid motion. As shown in Fig. 8,
our method significantly outperforms other approaches in
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Figure 8. Visualized results on real-world data captured with an
RGB camera and a spike camera.

Stage1 Stage2 Stage3 PSNR ↑ SSIM ↑
✓ × × 32.30 0.914
✓ ✓ × 32.90 0.923
✓ ✓ ✓ 35.78 0.964

Table 3. Experiments on the performance of the model stage.

motion deblurring. We also observed that due to the high
dynamic information contained in the spike stream, our
method excels of deblurring in scenes with overexposure.

4.5. Ablation Studies

A. Performance Increases at each stage. To demonstrate
the effectiveness of multi-stage model design, we conduct
ablation experiments on the deblurring effects at each stage.
As shown in Tab. 3, when performing the first stage train-
ing, the model possesses basic deblurring capabilities. With
the introduction of the bi-directional deformable alignment
in the second stage, the model shows a noticeable improve-
ment of 0.6dB and 0.01 in PSNR and SSIM, respectively.
The addition of the flow-guided feature fusion network in
the third stage further increases the PSNR to the highest
value of 35.78 dB. These experimental results indicate that
through progressive training, clear texture information from
the spike stream can effectively be introduced into the im-
age domain, guiding the deblurring process.
B. Deblurring Potentials under Precise Alignment. The
above experiments demonstrate that our method effec-
tively removes blur when spikes and images are unknownly
aligned in both time and space. To further validate the
potential of our method, we modify the X4k1000FPS and
REDS datasets to strictly align spikes and images and test
the model’s performance under the condition of complete
spatiotemporal alignment between modalities. As shown
in Tab. 4, the results on the X4K1000FPS dataset include
the quantitative results of two other methods, EFNET and
REFID, which also take spikes as guiding input. The re-
sults show that our method achieves a PSNR of 36.92dB,
surpassing the other two methods by 0.56dB and 0.62dB.
We also test the performance improvement on REDS. The
experiment shows that our method improves from 33.61dB

Method Input Data PSNR ↑ SSIM ↑
EFNet [32] Image+Spike 36.36 0.960
REFID [33] Image+Spike 36.30 0.962

UaSDN(Ours) Image+Spike 36.92 0.969

Table 4. Comparison of various motion deblurring methods on
X4K1000FPS [30] when spikes and images are precise aligned.
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Figure 9. Influence of border areas when sampled spikes are totally
not involved in the exposure of the image.

to 34.60dB on REDS, indicating that our method has great
potential for application in spike-guided deblurring. Visu-
alized results are shown in the supplementary materials.
C. How the border areas are handled from spatial and
temporal perspectives. Generally, the motion near the bor-
der is similar. The model learns motion clues in spikes that
supplement textures. Besides, our image-based stage-1 in
UaSDN performs basic deblurring without spikes. In Fig. 9,
the image that is spatiotemporal unaligned with spikes is
recovered well by UaSDN. The quality is close to the de-
blurred one with perfect alignment (28.58 dB). The curve
shows the model maintains acceptable results though the
PSNR declines when spikes are not involved in the image
exposure time at all.

5. Conclusion
We first explore the motion deblurring guided by a spike
camera under unknown spatiotemporal alignment between
two modalities. We believe the proposed method pos-
sesses potential in the real world. The proposed three-stage
UaSDN contains a bi-directional deformable alignment and
a flow-based fusion module. Results prove that UaSDN out-
performs other methods on unaligned deblurring.
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