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Figure 1. In this paper, we explore singularities theoretically and propose a plug-and-play module SingDiffusion to address the sampling
challenge at the initial singular time step. By integrating this module into existing pre-trained models, our approach effectively tackles the
difficulties of generating both dark and bright images, and further enhancing overall image quality as confirmed by quantitative analysis.

Abstract

Most diffusion models assume that the reverse process
adheres to a Gaussian distribution. However, this approxi-
mation has not been rigorously validated, especially at sin-
gularities, where t = 0 and t = 1. Improperly dealing
with such singularities leads to an average brightness is-
sue in applications, and limits the generation of images
with extreme brightness or darkness. We primarily focus
on tackling singularities from both theoretical and practi-
cal perspectives. Initially, we establish the error bounds for
the reverse process approximation, and showcase its Gaus-
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sian characteristics at singularity time steps. Based on this
theoretical insight, we confirm the singularity at t = 1 is
conditionally removable while it at t = 0 is an inherent
property. Upon these significant conclusions, we propose a
novel plug-and-play method SingDiffusion to address the
initial singular time step sampling, which not only effec-
tively resolves the average brightness issue for a wide range
of diffusion models without extra training efforts, but also
enhances their generation capability in achieving notable
lower FID scores.

1. Introduction

Diffusion models, generating samples from initial noise by
learning a reverse diffusion process, have achieved remark-
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able success in multi-modality content generation, such as
image generation [4, 5, 26, 30, 35, 46], audio generation
[18, 26, 28], and video generation [14]. These achieve-
ments owe much to several fundamental theoretical re-
search, namely Denoising Diffusion Probabilistic Modeling
(DDPM) [13, 38], Stochastic Differential Equations (SDE)
[40], and Ordinary Differential Equations (ODE) [39, 40].
These approaches are all based on the assumption that the
reverse diffusion process shares the same functional form as
the forward process. Although an indirect validation of this
assumption is given by Song et al. [40], it heavily relies on
the existence of solutions to the Kolmogorov forward and
backward equations [1], which encounters singularities at
the endpoints of time intervals where t = 0 and t = 1.

The singularity issue is not only a gap in the theoreti-
cal formulation of current diffusion models, but also affects
the quality of the content they generate. Current applica-
tions simply ignore singularity points in their implementa-
tion [27, 31, 42] and restrict the time interval to [ε1, 1−ε2].
As a result, the average brightness of the generated images
typically hovers around 0 [9, 19] (normalizing brightness
to [−1, 1]). For example, as shown in Fig. 1, existing pre-
trained diffusion models, such as Stable Diffusion 1.5 (SD-
1.5) [31] and Stable Diffusion 2.0-base (SD-2.0-base), fail
in generating images with pure white or black backgrounds.
To address this challenge, Guttenberg et al. [9] add extra
offset noise during the training process to allow the network
could learn the overall brightness changes of the image. Un-
fortunately, the offset noise usually disrupts the pre-defined
marginal probability distribution and further invalidates the
original sampling formula. Lin et al. [19] re-scales the noise
schedule to enforce a zero terminal signal-to-noise ratio,
and employ the v-prediction technique [36] to circumvent
the issue of division by zero at t = 1. However, this method
only supports models in v-prediction manner and requires
substantial training to fine-tune the entire model. Therefore,
it is advantageous to devise a plug-and-play method which
effectively deals with the singularity issue for any practica-
ble diffusion model without extra training efforts.

In this paper, we begin with a theoretical exploration of
the singularity issue at the endpoints of time intervals in dif-
fusion model, and then devise a novel plug-and-play mod-
ule to address the accompanying average brightness prob-
lem in image generation. Through establishing mathemati-
cal error bounds rigorously, we first prove the approximate
Gaussian characteristics of the reverse diffusion process at
all sampling time steps, especially where the singularity is-
sue appears. Following this, we conduct a thorough analy-
sis of this approximation in the vicinity of singularities, and
arrive at two significant conclusions: 1) by computing the
limit of ‘zero divided by zero’ at t = 1, we confirm the cor-
responding initial singularity is removable; 2) the singular-
ity at t = 0 is an inherent property of diffusion models, thus

we should adhere to this form rather than simply avoiding
the singularity. Following the aforementioned theoretical
analysis, we propose the SingDiffusion method, specifically
tailored to address the challenge of sampling during the ini-
tial singularity. Especially, this method can seamlessly in-
tegrate into existing sampling processes in a plug-and-play
manner without requiring additional training efforts.

As demonstrated in Fig. 1 and experiments in the ap-
pendix, our novel plug-and-play initial sampling step can
effectively resolve the average brightness issue. It can be
easily applied to a wide range of diffusion models, includ-
ing the SD-1.5 and SD-2.0-base with ϵ-prediction, SD-2.0
with v-prediction, and various pre-trained models avail-
able on the CIVITAI website1, thanks to its one-time train-
ing strategy. Furthermore, our method can generally en-
hance the generative capabilities of these pre-trained diffu-
sion models in notably improving the FID [11] scores at the
same CLIP [29] level on the COCO dataset [20].

2. Related Work
2.1. Reverse process approximation

Denoising Diffusion Probability Models (DDPM) [13, 38]
establish a hand-designed forward Markov chain in discrete
time, and model the distribution of data in the reverse pro-
cess. In contrast, Song et al. [40] establish the diffusion
model in continuous time, framed as a Stochastic Differen-
tial Equation (SDE). Moreover, they reveal an Ordinary Dif-
ferential Equation (ODE) termed ‘probability flow’, sharing
the same single-time marginal distribution as the original
SDE. Notably, ODE also has discrete counterparts known
as Denoising Diffusion Implicit Models (DDIM) [39].

The assumption that the reversal of the diffusion pro-
cess has an identical functional form to the forward pro-
cess is fundamental in the aforementioned methods. Sev-
eral studies aim to prove this assumption. Song et al. [40]
indirectly substantiate this in continuous time by introduc-
ing a reverse SDE. Nevertheless, they do not provide error
bounds in discrete-time cases, leaving this assumption un-
verified at discrete-time steps. Additionally, the treatment
of singularities at t = 0 and t = 1 is not addressed in their
work. McAllester et al. [24] provide proof in discrete time,
showing the density of the reverse process as a mixture of
Gaussian distributions. Despite this, it doesn’t qualify as a
pure Gaussian distribution. In contrast, to fill this theoreti-
cal gap, our approach directly substantiates this assumption
by establishing error bounds for the reverse process approx-
imation at both non-singular and singular time steps.

2.2. Singularities in diffusion model

Several studies have focused on investigating the singular-
ity occurring at t = 0. Song et al. [40] attempt to bypass

1https://civitai.com/

6946



this singularity by initiating their analysis at t = ε > 0
instead of t = 0. Therefore, this approach didn’t effec-
tively address the core singularity problem. Dockhorn et al.
[6] propose a diffusion model on the product space of posi-
tion and velocity, and avoid the singularity through hybrid
score matching. Nevertheless, this approach lacks compati-
bility with DDPM, SDE and ODE due to the incorporation
of the velocity space. Lu et al. [22] employ the x-prediction
method to mitigate singularity during training, but did not
address the singularity issue during the sampling process.

Therefore, a comprehensive solution to the singularity at
t = 0 is still pending. Moreover, the singularity at t = 1
remains unexplored. To tackle these issues, we thoroughly
investigate the sampling process at both t = 0 and t = 1,
and offer theoretical solutions.

2.3. Average brightness issue

Diffusion models have shown significant comprehensive
quality and controllability in computer vision, including
text-to-image generation [5, 12, 26, 30, 31, 35], image
editing [3, 10, 16, 25, 33, 43], image-to-image transla-
tion [34, 41, 44], surpassing previous generative models
[7, 8, 23, 45]. However, most existing diffusion models ig-
nore the sampling at the initial singular time step, resulting
in the inability to generate bright and dark images, i.e., the
average brightness issue. Adding offset noise [9] and em-
ploying v-prediction [19, 36] are two ways to tackle this
problem. However, these methods require fine-tuning for
each existing model, consuming a substantial amount of
time and limiting their applicability. In contrast, we propose
a novel plug-and-play solution targeting the core of the av-
erage brightness issue, i.e., the singularity at the initial time
step. Our method not only empowers the majority of exist-
ing pre-trained models to effectively generate images with
the desired brightness level, but also significantly enhances
their generative capabilities.

3. Method
To facilitate the clarity of our exploration into singularities
from theoretical and practical angles, this section is orga-
nized as follows: 1) We start by introducing background
and symbols in the Preliminaries. 2) Next, we derive error
bounds for the reverse process approximation, confirming
its Gaussian characteristics at both regular and singular time
steps. 3) We then theoretically analyze and handle the sam-
pling at singular time steps, i.e., t = 0 and t = 1. 4) Lastly,
based on our previous analysis, we propose a plug-and-play
method to address initial singularity time step sampling, ef-
fectively resolving the average brightness issue.

3.1. Preliminaries

In the realm of generative models, we are consistently pro-
vided with a set of training samples denoted as {yi ∈

Rd}Ni=1, which are inherently characterized by a distribu-
tion given by [15]:

p(x, t = 0) =
1

N

N∑
i=1

δ(x− yi), (1)

where δ(x) denotes the Dirac delta function.
Consider a continuous-time Gaussian diffusion process

within the interval 0 ≤ t ≤ 1. Following [17], the dis-
tribution of xt conditioned on x0 is written by p(xt|x0) =
N (αtx0, σ

2
t I), where αt and σt are positive scalar func-

tions of t satisfying α2
t + σ2

t = 1, and αt decreases
monotonically from 1 to 0 over time t; the distribution
of xt conditioned on xs is represented as p(xt|xs) =
N (αt|sxs, σ

2
t|sI), where 0 ≤ s < t ≤ 1, αt|s = αt/αs,

σ2
t|s = 1 − α2

t|s. Consequently, the forward process is de-
rived as follows:

xt = αt|sxs +
√

1− α2
t|szs, (2)

where the set {zt}1t=0 comprises independent standard
Gaussian random variables.

For a discrete-time diffusion process with T steps, the
time i ∈ {0, 1, ...T} corresponds to t in the continuous case
as i = t × T . Defining β̂i = 1 − α̂2

i|i−1, where α̂i|i−1 =
αi/T |(i−1)/T , and ‘ˆ ’ denotes the symbol in the discrete-
time process, the forward process in Eq. 2 can be rewritten
as:

x̂i =

√
1− β̂ix̂i−1 +

√
β̂iẑi−1, (3)

which is equivalent to the forward process outlined in [13].
Taking into account the initial distribution (Eq. 1), the

single-time marginal distribution of xt is given by:

p(xt, t) =
1

N

∑
i

(2πσ2
t )

− d
2 exp(− (xt − αtyi)

2

2σ2
t

), (4)

where d is the dimension of the training samples. As a re-
sult, the reverse process can be derived using Bayes’ rule:

p(xs|xt) = p(xt|xs)
p(xs, s)

p(xt, t)
= (2πσs|t)

− d
2

∑
i

exp(− 1

2σ2
s|t

(xs −
αt|sσ

2
sxt

σ2
t

−
αsσ

2
t|syi

σ2
t

)2)wi(xt, t),

(5)

where σ2
s|t = σ2

t|s
σ2
s

σ2
t

, and wi(xt, t) =
exp(− (xt−αtyi)

2

2σ2
t

)∑
j exp(−

(xt−αtyj)
2

2σ2
t

)
.

3.2. Error bound estimation

Existing diffusion models, such as [13, 38] are based on an
assumption that the reverse process in Eq. 5 can be approxi-
mated by a Gaussian distribution, when β̂i is small, as given
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by:

p̃(xs|xt) = (2πσ2
s|t)

− d
2

exp(− 1

2σ2
s|t

(xs −
αt|sσ

2
sxt

σ2
t

−
αsσ

2
t|sȳ(xt, t)

σ2
t

)2),

(6)
where ȳ(xt, t) =

∑
i wi(xt, t)yi. However, these studies

did not furnish the error bounds to support this assumption.
To address this theoretical gap, we estimate the error bound
as follows.

Proposition 1 (Error Bound Estimated by σs|t). ∀s ∈
(0, 1), ∃τ ∈ (s, 1) and C > 0, such that ∀t ∈ (s, τ ],∫
Rd |p(xs|xt)− p̃(xs|xt)|dxs < C

√
σs|t.

Proposition 1 demonstrates that when σs|t is small, the
forward and reverse processes share the same form, i.e.,
Gaussian distribution. Since β̂i =

σi/T

σ(i−1)/T
σ(i−1)/T |i/T

features a term in the σs|t form, also supports the infer-
ence that this assumption remains valid when β̂i is small,
as highlighted in [13, 38]. It is worth noting that this error
is bounded by σs|t instead of β̂i strictly.

However, the error bound estimated by σs|t in Proposi-
tion 1 is not sufficient to prove the assumption at the singu-
larity time step t = 1. The reason is that when t = 1, σs|t
approaches 1 as s → 1, which is not a small value. Conse-
quently, the error bound at t = 1 in Proposition 1 remains
non-negligible.

To tackle this issue, we instead utilize αs to bound the
error at time step t = 1, and present a new proposition:

Proposition 2 (Error Bound Estimated by αs). ∃ν ∈
(0, 1) and C > 0, such that ∀ν ≤ s < t ≤ 1,∫
Rd |p(xs|xt)− p̃(xs|xt)|dxs < C

√
αs.

According to Proposition 2, setting t = 1, it has αs → 0
as s → 1. As a result, the error bound at t = 1 assures
a small value, affirming the validation of the Gaussian ap-
proximation assumption at t = 1.

In sum, through Proposition 1 and 2, we have established
that the reverse process of the diffusion model can be ap-
proximated by Gaussian distribution across all time steps.

3.3. Tackling the singularities

With the theoretical foundation provided in Section 3.2, we
can delve into the analysis of singular time steps using Eq.
6. It is worth noting that this section will mainly focus on
addressing the singularities present in the discrete-time dif-
fusion model [13], while the treatment of the continuous
case [40] will be deferred to the appendix.

3.3.1 The singularities at t = 1

Drawing from Eq. 6, a straightforward way is to train
a neural network ȳθ(xt, t) for estimating ȳ(xt, t), known

as x-prediction. This approach ensures that the approxi-
mated reverse process avoids encountering a singularity at
t = 1. However, for stable training [38], the mainstream
choice among current diffusion models is ϵ-prediction. It
utilizes a neural network ϵθ(xt, t) for estimating ϵ(xt, t) =
xt−αtȳ(xt,t)

σt
, which will encounter singularity. More specif-

ically, substituting ϵ(xt, t) for ȳ(xt, t) yields the equation:

xs =
αt|sσ

2
s

σ2
t

xt +
αsσ

2
t|s

σ2
t

xt − σtϵ(xt, t)

αt
+ σs|tzt. (7)

At t = 1, the denominator αt becomes 0, resulting in a
division-by-zero singularity. Theoretically, this singularity
is removable because the limit exists:

lim
t→1−

xt − σtϵ(xt, t)

αt
= lim

t→1−
ȳ(xt, t) =

1

N

∑
i

yi. (8)

Regrettably, computing this limit during inference is un-
feasible, since ϵ(x1, 1) = x1 loses all information of the
correct sampling direction. Conversely, ȳ(xt, t) retains the
correct sampling direction for all t ∈ [0, 1]. Particularly
at t = 1, ȳ(x1, 1) = 1

N

∑
i yi encapsulates the informa-

tion for the initial inference step. Therefore, leveraging x-
prediction at the initial time step proves more advantageous
than ϵ-prediction.

3.3.2 The singularities at t = 0

When s = 0 and t is small, the distribution in Eq. 6 degen-
erates into a singular distribution, i.e., a Gaussian with zero
variance, resembling a Dirac delta:

p̃(x0|xt) = δ(x0 − yj0), (9)

where j0 = argmin
j

|xt − αtyj |. This singularity di-

rects the sampling process to converge at the correct point
yj0 = ȳ(x0, 0). Therefore, the singularity at t = 0 is
an inherent characteristic of diffusion models that do not
require avoidance as long we use suitable sampling tech-
niques. For instance, in the final step of the original DDPM
sampling method, it has x0 = ȳ(xt, t). When t is small,
ȳ(xt, t) ≈ ȳ(x0, 0), making this process equivalent to Eq.
9. Thus, there is no need to avoid the singularity.

Besides, we also arrived at this conclusion within the
continuous diffusion model, i.e., SDE. More detailed elab-
oration on this topic can be found in the appendix.

3.4. SingDiffusion

In addition to theoretical issues, the singular sampling is-
sue can also cause average brightness issue in applications,
as depicted in Fig. 2. This is mainly because most of the
existing method sample images starting at time step 1 − ε
using a standard Gaussian distribution, which significantly
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Figure 2. Illusion of the gap between the sampling from x1−ε

and x1. Due to the lack of consideration of singular time step
sampling in most of the existing methods, they will encounter the
average brightness issue. To tackle this, we propose a plug-and-
play SingDiffusion method (highlighted in red) to bridge this gap.

diverges from the true distribution p(x1−ε, 1 − ε). To vali-
date this, we select two images (a black dog against a black
background and a white dog against a white background).
Then we diffuse them for a time period of 1 − ε respec-
tively, and calculate the mean value of their latent code. It
can be seen that the mean of these two latent codes are -
0.14 and +0.28, which are significantly different from the
samples obtained from the standard Gaussian distribution.
Moreover, as evident from the visualization in Fig. 2, the
latent code (x1−ε) of the black dog and white dog are no-
tably darker and brighter compared to x1 from the Gaussian
distribution respectively. Under such distributional differ-
ences, according to Proposition 3, employing a Gaussian
distribution at t = 1 − ϵ is equivalent to generating images
towards an average brightness of 0 at t = 1 (with grayscale
ranging from [-1, 1]). Consequently, current methods en-
counter challenges in generating dark or bright images.

Proposition 3. Setting x1−ϵ ∼ N (0, I) is equivalent to
sampling the value from standard Gaussian as ȳ(x1, 1) at
t = 1.

Based on our analysis of sampling at singular time steps
in Section 3.3.1, we propose a novel plug-and-play method
SingDiffusion to fill the gap at t = 1, thus solving the prob-
lem of average brightness issue. Considering a pre-trained
model ϵθ(xt, t) afflicted by the singularity due to division
by zero, we proceed to train a model using x-prediction at
t = 1. The algorithm of our training and sampling pro-
cess are shown in Algorithm 1 and Algorithm 2. Firstly, for
image-prompt data pairs (x0, c) in the training process, we
use a U-net [32] ȳθ to fit ȳ(x1, t = 1, c), where ȳ(xt, t, c)

Algorithm 1 Training process of SingDiffusion
1: repeat
2: x0, c ∼ p(x0, c), x1 ∼ N (0, I)

3: Take gradient descent step on ∇θ ∥ȳθ(x1, c)− x0∥2
4: until converged

Algorithm 2 Sampling process of SingDiffusion
1: x1 ∼ N (0, I)
2: ε = 1/T
3: x1−ε = α1−εȳθ(x1, c) + σ1−εx1

4: for t = 1− ε, . . . , ε do
5: Calculate xt−ε using existing sampling algorithms
6: end for
7: return x0

is the extension of ȳ(xt, t) defined in Section 3.2 under the
condition c. The loss function can be written as:

L = Ex0,c∼p(x0,c),x1∼N (0,I)||ȳθ(x1, c)− x0||2. (10)

As our model is only amortized with respect to text embed-
dings and not the time step, we omit the variable t for ȳθ,
and the U-net does not necessitate a complex architecture.

In the sampling process, we use the new model ȳθ in the
initial time-step with a DDIM scheduler:

x1−ε = α1−εȳθ(x1, c) + σ1−εx1. (11)

This equation guarantees x1−ε adheres to the distribution
p(x1−ε, 1 − ε). Following this, we utilize the existing
pre-trained model ϵθ(xt, t, c)/vθ(xt, t, c) in ϵ-prediction/v-
prediction manner to perform the subsequent sampling
steps until it generates x0. It’s worth noting that our method
is solely involved in the sampling at t = 1, independent
of the subsequent sampling process. Consequently, our ap-
proach can be once-trained and seamlessly integrated into
the majority of diffusion models.

For further improving matching between generated im-
ages and input prompts, existing diffusion models typically
incorporate classifier-free techniques [26]:

oguidance = oneg + w × (opos − oneg), (12)

where w ≥ 1 represents the guidance scale, o signifies the
output of the diffusion model which can be either ȳθ, ϵθ
or vθ, ‘pos’ and ‘neg’ refer to the outputs corresponding to
positive and negative prompts respectively. Nevertheless,
we notice that when applying this technique at the initial
singular time step, the influence of the guidance scale w
predominates the results due to the greater directional dif-
ference between the negative and positive outputs. To tackle
this challenge, we implement a straightforward yet highly
effective normalization method:

ȳθguidance
= [ȳθneg

+ w × (ȳθpos − ȳθneg
)]/w. (13)
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Figure 3. Comparison of stable diffusion models and SingDiffusion on average brightness issue.
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4. Experiment

4.1. Implement details

To create a versatile plug-and-play model, our model is
trained on the Laion2B-en dataset [37], including 2.32 bil-
lion text-image pairs. The images are center-cropped to 512
× 512. Our ȳθ follows the U-net structure similar to stable
diffusion models but with reduced parameters, totaling 140
million. We utilize the AdamW optimizer [21] with a learn-
ing rate of 1e-4 to train our ȳθ. The training is executed
across 64 Nvidia V100 chips with a batch size of 3072, and
completes after 180K steps.

During the testing process, all steps, including our initial
sampling, are carried out using the default guidance scale of
w = 7.5. After our initial sampling at the singular time step,
all existing pre-trained diffusion models generate images in
the DDIM pipeline, executing 50 steps to produce images
following a schedule with a total time of T = 1000.

4.2. Average brightness issue

To validate the effectiveness of SingDiffusion in address-
ing the average brightness issue, we select four extreme
prompts, including “Solid white/black background”, and
“Monochrome line-art logo on a white/black background”.

Table 1. Comparison of average brightness of 100 generated
images between stable diffusion models and our SingDiffusion
under different prompt conditions. For ’white’/’black’ prompts,
higher/lower average brightness is better.

Model ”Solid white
background”

”Solid black
background”

”Monochrome
line-art logo on a

white background”
”Monochrome

line-art logo on a
black background”

SD-1.5 141.43 83.09 137.95 113.66
+ Ours 212.59 3.04 223.68 11.52

SD-2.0-base 150.52 99.67 136.13 104.45
+ Ours 227.43 0.29 228.68 10.87

For each prompt, we generate 100 images using SD-1.5,
SD-2.0-base and SingDiffusion methods, and then calcu-
late their average brightness. The results are shown in Table
1. It is remarkably clear that the stable diffusion methods,
whether using prompts with ‘black’ or ‘white’ descriptors,
tend to generate images with average brightness. However,
SingDiffusion, implementing initial singularity sampling,
effectively corrects the average brightness of the generated
images. For example, under the prompt “solid black back-
ground,” our method notably lowers the average brightness
from 99.67 to 0.29 for images generated by SD-2.0-base.
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Figure 5. Our method can be trained once and seamlessly integrated into the pre-trained models on CIVITAI in a plug-and-play fashion.

Table 2. Comparison of stable diffusion model and SingDiffusion
on FID score and CLIP score without classifier guidance.

Model
SD-1.5 SD-2.0-base

FID ↓ CLIP ↑ FID ↓ CLIP ↑
Original 31.86 26.70 25.17 27.48

+ SingDiffusion 21.09 27.71 18.01 28.23

Moreover, we also provide visualization results for these
prompts in Fig. 3. It can be seen that images generated
by stable diffusion methods predominantly exhibit a gray
tone. In contrast, our SingDiffusion method successfully
overcomes this issue, and is capable of generating both dark
and bright images.

4.3. Improvement on image quality

To validate our improvements in general image quality, fol-
lowing [35], we randomly select 30k prompts from the
COCO dataset [20] as the test set. We employ two met-
rics for evaluation, including the FID score and CLIP score.
Specifically, Fréchet Inception Distance (FID) [11] calcu-
lates the Fréchet distance between the real data and the gen-
erated data. A lower FID implies more realistic generated
data. While the Contrastive Language-Image Pre-training
(CLIP) [29] score measures the similarity between the gen-
erated images and the given prompts. A higher CLIP score
means the generated images better match the input prompts.

First of all, we compare SingDiffusion with SD-1.5 and

SD-2.0-base in Table 2 to gauge the model’s inherent fitting
capability, without using guidance-free techniques. It is ev-
ident that SingDiffusion significantly outperforms the exist-
ing stable diffusion methods in both FID and CLIP scores.
These results highlight the yet-to-be-utilized fitting poten-
tial in current stable diffusion models, emphasizing the sig-
nificance of sampling at the initial singular time step.

Furthermore, inspired by Imagen [35], we plot CLIP
v.s. FID Pareto curves by varying guidance values within
the range [1.5, 2, 3, 4, 5, 6, 7, 8] in Fig. 4. SingDif-
fusion exhibits substantial improvements over stable dif-
fusion models, especially noticeable with smaller guidance
scales. As the guidance scale increases, SingDiffusion con-
sistently maintains a lower FID compared to stable diffu-
sion for achieving a similar CLIP score. This emphasizes
that our approach not only enhances image realism but also
ensures better adherence to the input prompts.

4.4. Plug-and-play on other pre-trained models

Since our method is extensively trained on the Laion
dataset, it can be easily integrated into the majority of exist-
ing diffusion models. To validate this, we download several
pre-trained models from the CIVITAI website, each spe-
cializing in different image domains like anime, animals,
clothing, and so on. To facilitate the application of SingDif-
fusion to these models, we integrate SingDiffusion into the
popular Stable Diffusion Web UI [2] system, and sample
images with the Euler ancient method after using our ini-
tial singularity sampling process. The outcomes, displayed
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Figure 7. Visualization of ȳθ for various prompts.

in Fig. 1 and Fig. 5, showcase SingDiffusion effectively re-
solving the average brightness issue across all models while
preserving their original generative capacities. This demon-
strates the adaptability and practicality of our approach.

4.5. Effect on classifier guidance normalization

We conduct an ablation study on the guidance normaliza-
tion operation (Eq. 13), and represent the CLIP v.s. FID
Pareto curves in Fig. 6. It can be seen that the method with-
out normalization exhibits inferior results compared with
the full method. As the guidance scale increases, the gap
in FID between these two methods gradually widens. This
phenomenon primarily arises from significant disparities
between ȳθpos and ȳθneg

. According to Eq. 13, larger guid-
ance scales may lead to overflow issues. In contrast, nor-
malizing the results with the guidance scale helps keep the
outputs within a typical range, thus restoring the FID score.

4.6. Visualization of the ȳθ

According to Eq. 10, our main goal with ȳθ is to model
the average image corresponding to each prompt. To con-
firm this, we employ the prompts presented in Fig. 1 and
visualize their corresponding ȳθ. As demonstrated in Fig.
7, it is clear that ȳθ does indeed represent a smoothed av-
erage image. For instance, the first four images of the
second row resemble average faces, aligning with the in-
put prompt for generating celebrities. Additionally, we no-
tice that ȳθ adapts to the prompt’s brightness suggestion,
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Figure 8. SingDiffusion integrates seamlessly with ControlNet.

appearing brighter or darker accordingly. This highlights
our method’s ability to effectively capture pertinent lighting
conditions, and underscores the significance of the initial
singular time step sampling.

4.7. Application on ControlNet

Our model can seamlessly integrate with existing diffu-
sion model plugins, such as ControlNet [44]. Since our
ȳθ is structurally different from ControlNet, ControlNet is
adopted after our initial sampling step. The results in Fig. 8
demonstrate that our method is fully compatible with Con-
trolNet and effectively resolves its average brightness issue.

5. Conclusion
In this study, we delve into the singularities of time intervals
in diffusion models, exploring both theoretical and practical
aspects. Firstly, we demonstrate that at both regular and sin-
gular time steps, the reverse process can be approximated
by a Gaussian distribution. Leveraging these theoretical in-
sights, we conduct an in-depth analysis of singular time step
sampling and propose a theoretical solution. Finally, we in-
troduce a novel plug-and-play method SingDiffusion, ad-
dressing the initial time-step sampling challenge. Remark-
ably, this module substantially mitigates the average bright-
ness issue prevalent in most current diffusion models, and
also enhances their generative capabilities.
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