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Abstract

While pre-trained large-scale vision models have shown

significant promise for semantic correspondence, their fea-

tures often struggle to grasp the geometry and orientation

of instances. This paper identifies the importance of being

geometry-aware for semantic correspondence and reveals

a limitation of the features of current foundation models

under simple post-processing. We show that incorporat-

ing this information can markedly enhance semantic corre-

spondence performance with simple but effective solutions

in both zero-shot and supervised settings. We also construct

a new challenging benchmark for semantic correspondence

built from an existing animal pose estimation dataset, for

both pre-training validating models. Our method achieves a

PCK@0.10 score of 65.4 (zero-shot) and 85.6 (supervised)

on the challenging SPair-71k dataset, surpassing the state

of the art by 5.5p and 11.0p absolute gains, respectively.

Our code and datasets are publicly available at: https:

//telling-left-from-right.github.io.

1. Introduction

Since the advent of high fidelity text-to-image (T2I) gen-

erative models [40, 41] and large vision foundation mod-

els [36], there has been significant interest in understand-

ing both what these models are learning and what they are

not. Numerous works show that these models have power-

ful feature embeddings that can be used for many computer

vision tasks including depth estimation [36, 62], seman-

tic segmentation [49, 56], and semantic correspondences

[2, 10, 14, 18, 30, 35, 61]. While many works have shown

their strengths, less analysis has been done on their weak-

nesses; in particular, what do these features struggle with?

We propose using semantic correspondence as a promis-

ing test bed. Semantic correspondence, the establishment of

pixel-level matches between two images with semantically

similar objects, is an important Computer Vision problem

with a variety of downstream applications, e.g., image edit-

ing [10, 34, 35, 61] and style transfer [9, 24]. It also has

*Equal contribution.

(a) The state-of-the-art method [61] fails at matching keypoints with ge-

ometric ambiguity, or, “telling left from right” (red solid lines).
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(b) The performance gap between geometry-aware set (Geo.) and

standard set (Std.) of state-of-the-art methods. The geometry-aware

set accounts for 59.6% and 45.7% of the total keypoint pairs on SPair-

71k [32] and AP-10K [60], respectively.

Figure 1. Illustration of geometry-aware correspondence.

many difficult challenges, e.g., from large intra-class varia-

tions to different backgrounds, lighting, or viewpoints.

Despite these challenges, the large foundation model fea-

tures currently achieve state-of-the-art performance [61].

However, a closer examination shows that this performance

is inconsistent across all challenges. In particular, we find

that these foundation model’s features significantly under-

perform on “geometry-aware”1 semantic correspondences:

correspondences which share semantic properties but have

different relations to the overall geometry of the object, e.g.,

the “left” paw vs. the “right” paw as shown in Fig. 1a.

Motivated by this, we conduct an in-depth analysis of

these correspondences (Fig. 1b). We find that surprisingly,

such cases account for a significant portion of the bench-

mark datasets (nearly 60% in SPair71k), and state-of-the-art

methods with the deep features perform considerably worse

on this challenging subset (up to 30% worse, Fig. 1b).

1We use the term geometry in the loose sense and do not refer to 3D

geometric properties, such as shape and surface normal.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Are these problems an innate failing of these features,

or can they be alleviated through better post-processing?

Based on the above observations, we propose several meth-

ods that resolve the geometric ambiguity during matching.

First, we introduce a test-time viewpoint alignment strat-

egy that approximately aligns viewpoints of instances to

make the problem easier. Then we train a lightweight post-

processing module that improves geometric awareness of

features from visual foundation models [36, 40], by using a

soft-argmax based dense training objective with given anno-

tated sparse keypoints. We further introduce a pose-variant

augmentation strategy as well as a window soft-argmax

module. These not only significantly improve performance

on standard benchmarks by 15% while costing only 0.32%
of extra runtime.

For more advanced analysis, we create a new benchmark

dataset using existing annotations from the AP-10K [60] an-

imal pose estimation dataset. Compared to the largest exist-

ing benchmark [32], our new benchmark dataset includes 5

times more training pairs and also evaluates cross-species

and cross-families semantic correspondence in addition to

intra-species correspondence. We also demonstrate that this

benchmark can serve as a valuable pre-training resource for

improving geometry-aware semantic correspondence.

To summarize, we make the following contributions:

• We identify the problem of geometry-aware semantic cor-

respondence and show that pre-trained features of foun-

dation models (SD [40] and DINOv2 [36]) struggle with

geometric information.

• We propose to improve geometric awareness of the fea-

tures in both unsupervised and supervised manners.

• We introduce a large-scale and challenging benchmark,

AP-10K, for both training and evaluation.

• Our method boosts the overall performance on multiple

benchmark datasets, especially on the geometry-aware

correspondence subset. It achieves an 85.6 PCK@0.10

score on SPair-71k, outperforming the state-of-the-art

method by more than 15%.

2. Related Work

Semantic correspondence. Conventional approaches to

semantic correspondence estimation follow a common

pipeline that consists of i) feature extraction [1, 8, 13,

27, 29, 44]), ii) cost volume computation [6, 15, 23, 33],

and iii) matching field regression [21, 50–53]. To handle

challenging intra-class variations between images, previous

work have presented various approaches such as matching

uniqueness prior [26], parameterized spatial prior [16, 20,

38, 39, 42, 57], or end-to-end regression [6, 7, 16, 25, 51].

A few previous work have also explored semantic corre-

spondence under unsupervised [10, 35, 43, 48] and weakly

supervised [17, 37, 54] setting, by densely image align-

ing [10, 35, 37, 48] or automatic label generation [17, 43].

Figure 2. Generated samples from SD-2-1 with the prompt (left)

“A cat holding up its left front paw” and (right) “A car with the

right front door open”. SD has difficulty generating images that

require understanding the intrinsic geometry of instances.

However, due to the limited capacity of their features or

the usage of strong spatial prior, they still exhibit difficul-

ties handling challenging intra-class variations such as large

pose changes or non-rigid deformation.

Recently, visual foundation models (e.g. DINO [5, 36]

and SD [40]) demonstrate that their pretrained features,

learned by self-supervised learning or generative tasks [2,

14, 30, 46, 61], can serve as powerful descriptors for seman-

tic matching by surpassing prior arts specifically designed

for semantic matching. Yet, we reveal that such models still

show limitations [10] in comprehending the intrinsic geom-

etry of instances (e.g., Fig. 2) and formally investigate this

issue, termed “geometry-aware” semantic correspondence.

Benchmark datasets. Recent advances in semantic corre-

spondence have continuously revealed limitations of exist-

ing benchmark datasets. For example, widely used datasets

(PF-Pascal [11], PF-Willow [12], CUB-200-2011 [55], and

TSS [47]) provide image pairs with only limited view-

points or pose variations, making it hard to evaluate meth-

ods on handling large object viewpoint changes. The CUB

dataset [55] provides images of a single object class, bird,

only. SPair-71k [32] introduces a more challenging bench-

mark dataset that consists of 1,800 images across 18 ob-

ject categories with substantial intra-class variations. Re-

cently, Aygün and Mac Aodha [3] leveraged an animal pose

dataset, Awa-Pose [4], to create 10k image pairs for evaluat-

ing the inter-class semantic correspondence. While existing

methods [3, 7, 30, 61] have low performance on the SPair-

71k and Awa-Pose, these benchmarks are still small-scale.

To address these shortcomings, we introduce a new, large-

scale, and challenging benchmark using the animal pose es-

timation dataset, AP-10K [60]. This new benchmark further

facilitates comprehensive evaluations of geometric aware-

ness and provides annotations for training models.

3. Geometric Awareness of Deep Features

In this section, we first provide the clear problem definition

of “geometry-aware semantic correspondence” as challeng-

ing cases of semantic correspondence, which requires an

understanding of relations of similar semantic parts. Then

we provide comprehensive analyses on the performance of

pretrained features of foundation models on the problem

and what geometric information those features possess.
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Figure 3. Annotations of geometry-aware semantic correspon-

dence (yellow) and standard semantic correspondence (blue).

3.1. GeometryAware Semantic Correspondence

We define geometry-aware semantic correspondence as a

challenging case of semantic correspondence, where there

exist geometry-ambiguous matching cases, and thus it re-

quires an understanding of instances’ orientations or ge-

ometry. Fig. 1a illustrates the exemplar cases that require

proper understanding of both semantic parts (i.e. paws) and

their associations (i.e. left paw or right paw) with the orien-

tation of instances.

As a formal definition, for each instance category, we

first cluster keypoints into subgroups Gparts by their se-

mantic parts. Each subgroup Gparts consists of a set of

keypoints p(parts, index) that fall into the same subgroup

but position in different part locations according to their

orientations. For the cat category as an example, the

subgroups are Gparts with parts = {ears, paws, ... },

and Gpaws = {p(paws, front left), p(paws, front right), p(paws, rear left),

p(paws, rear right)}.

Then, give a source Is and a target image It that con-

tains the same/similar instance category with their keypoint

correspondence annotations, the correspondence ⟨ps
i ,p

t
i⟩

is considered as a “geometry-aware” correspondence if the

two conditions are met. First, two keypoints ps
i and pt

i be-

long to the same subgroup, ps
i ∈ Gs

part and pt
i ∈ Gt

part.

Second, there are other visible keypoint(s) belonging to

same subgroup in the target image, ∃ j ̸= i s.t. pt
j ∈ Gt

part.

As illustrated in Fig. 3, the front right paw (ps
i ) of the cat

in the source image has several semantically similar corre-

spondences, such as (pt
j) and (pt

i), which requires proper

understanding of geometry to find the correct match.

3.2. Evaluation on the Geometryaware Subset

We evaluate the state-of-the-art methods on geometry-

aware semantic correspondence to see if their features are

geometry-aware and how well they perform on this chal-

lenging task. From the challenging SPair-71k [32] datasets,

we first cluster keypoint subgroups Gparts for each cate-

gory and gather geometry-aware correspondence cases as

the “geometry-aware subset”. Surprisingly such cases ac-

count for a substantial portion, 82.4% of total image pairs

and 59.6% of matching keypoints, of the dataset. (Please

refer to Supp. C for more details.)
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Figure 4. Per-category evaluation of state-of-the-art methods

on SPair-71k geometry-aware subset (Geo.) and standard set.

While the geometry-aware subset accounts for 60% of the total

matching keypoints, we observe a substantial performance gap be-

tween the two sets for all the methods.

0.0

0.2

0.4

0.6

0.8

1.0

Boat Cow Dog Person

R
el

a
ti

v
e 

P
e
rf

o
rm

a
n

ce
 D

if
f.

 

SD+DINO-Geo. SD+DINO SD+DINO (S)-Geo. SD+DINO (S)

MotorbikePlane Avg.

Figure 5. Evaluation of the sensitivity to pose variations. The

y-axis shows the normalized difference between the best and the

worst performance among 5 different azimuth-variation subsets.

We report the results of the unsupervised and supervised methods

on both the geometry-aware (Geo.) and standard set. The larger

the value, the more sensitive the performance is to pose variation.

Fig. 4 shows the performance of the state-of-the-arts

on the subset (in both zero-shot and supervised (S)). For

all methods, there exists a substantial performance gap

between the geometry-aware subset and the standard set,

around 20% for zero-shot methods and still 10% for super-

vised methods. This reveals the weakness of current meth-

ods in matching keypoints where the geometry ambiguity is

involved and the limitation on geometric awareness.

3.3. Sensitivity to Pose Variation

For certain categories, however, where the pose variation of

the pair images is small (e.g., potted plant and TV in SPair-

71k), performance gaps on both the standard and geometry-

aware sets are nearly marginal. This suggests that the pose

variation is one of the key factors that affect the accuracy

of geometry-aware correspondence. To delve deeper into it,

we divide image pairs in SPair-71k into 5 subsets, based on

their annotated azimuth differences, ranging from 0 (identi-

cal poses) to 4 (completely opposing directions). For each

category, we then again evaluate the performance on these

5 subsets, A = {a0,a1, . . . ,a4} and define the normalized

relative difference, d= max(A)−min(A)
max(A) , which measures the

sensitivity to pose variations. As shown in Fig. 5, the per-

formance on the geometry-aware subset is more sensitive to

the pose variation than the standard set across all categories,

indicating that the pose variation affects the performance on

geometry-aware semantic correspondence.
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Figure 6. Rough pose prediction with feature distance. By com-

puting the instance matching distance (IMD) of the source image

to the generated pose templates, we can utilize the feature maps

to predict rough pose and evaluate the global pose awareness of

current deep features. We only show one template set for brevity.

3.4. Global Pose Awareness of Deep Features

We further analyze if deep features are aware of high-level

pose (or viewpoint) information of an instance in an image.

We explore this pose awareness by a template-matching ap-

proach in the feature space.

Instance matching distance (IMD). We introduce this

metric to examine pose prediction accuracy. Given a source

Is and target image It, their normalized feature maps Fs

and Ft, and a source instance mask Ms, we define the IMD

metric as:

IMD(Is, It,Ms)=
∑

p∈Ms

∥Fs(p)−NN(Fs(p),Ft)∥2, (1)

where p denotes a pixel within the source instance mask,

Fs(p) is the feature vector at p, and NN(Fs(p),Ft) rep-

resents the nearest-neighboring feature vector in the target

feature map. IMD measures the similarity of two images

via the average feature distance of corresponding pixels.

Pose prediction via IMD. With the IMD metric, we can

evaluate the global pose awareness of features from existing

methods via pose prediction. We start by generating multi-

ple pose template sets (in Fig. 6). We then compute the IMD

between the input and template images for each set and pre-

dict the pose whose IMD is the smallest. A collective vote

across all sets determines the final pose estimate.

We manually annotated 100 cat images from SPair-71k

with pose labels {left, right, front, and back} and evaluate

the pose prediction performance of the following deep fea-

tures: DINOv2 [36], SD [40], and fused SD+DINO [61].

Due to some ambiguous cases for annotations, we also

report the performance of binary classification into {left,

right} or {front, back}. As in Tab. 1, DINOv2 struggles

Table 1. Zero-shot rough pose prediction result with IDM

(Eq. (1)). We report the accuracy of predicting left or right (L/R),

front or back (F/B), the former two cases (L/R or F/B), and one of

the four directions (L/R/F/B).

Feature L/R F/B L/R or F/B L/R/F/B

DINOv2 63.8 100.0 75.0 51.0

SD 95.7 96.8 96.0 78.0

SD+DINO 98.6 100.0 99.0 84.0

𝐈𝐌𝐃ori 𝐈𝐌𝐃flipAlign Viewpoint

Source Image Target Image Augmented Pose

Compare

Figure 7. Adaptive pose alignment. By comparing the matching

distance between the target image and augments of the source im-

age, we can reduce the pose variation of pair images at test time

for better correspondence.

with left/right (L/R) distinction [10] but excels in front/back

(F/B) prediction; SD performs well in both distinguish-

ing L/R and F/B; and SD+DINO surpass both in all cases,

achieving near-perfect results. This suggests that the deep

features are aware of global pose information.

4. Improving Geo-Aware Correspondence

We propose several techniques that improve geometric

awareness during matching, in both zero-shot and super-

vised settings. We first introduce an adaptive pose align-

ment strategy that runs at test time without any training in-

volved. Then, we further introduce a post-processing mod-

ule with various training strategies that can improve the ge-

ometry awareness of deep features.

4.1. Testtime Adaptive Pose Alignment

In Sec. 3.3, we find that pose variations can largely affect

the performance of geometry-aware semantic correspon-

dence. To address this, we introduce a very simple test-time

pose alignment strategy that utilizes the global pose infor-

mation inherent in deep features (Sec. 3.4) and improves

correspondence accuracy.

As in Fig. 7, we first augment the source image by us-

ing a set of pose-variant augmentations (e.g., flip, rotations

etc.), calculate the IMD (Eq. (1)) between the augmented

source images and the target image, and choose the opti-

mal pose with the minimum IMD distance.2 As in Fig. 9,

this simple pose alignment can drastically improve the cor-

respondence accuracy in a test-time, unsupervised manner.

2Refer to Supp. E.1 for alternative metrics that does not require mask.
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Figure 8. (Left) previous supervised methods [30, 61] with a sparse training objective. (Right) an overview of our supervised method. Only

the lightweight post-processor is updated during training. Both the pair augmentation and feature space Dropout are for training only.

Figure 9. (Left) original image pairs. (Right) image pairs with the

test-time aligned pose. The reduced pose variation improves the

correspondence accuracy.

4.2. Dense Training Objective

Let F represent the raw feature map and f(·) be the post-

processing model that outputs the refined feature map F̃ =
f(F), illustrated in Fig. 8. Given a set of annotated key-

point pairs from source images Ps = {ps
1,p

s
2, . . . ,p

s
n}

and target images Pt = {pt
1,p

t
2, . . . ,p

t
n}, previous works

with pretrained foundation model features [30, 61] adopt a

CLIP-style symmetric contrastive loss CL(·, ·) to train the

post-processing model:

Lsparse = CL(F̃s(Ps), F̃t(Pt)), (2)

where F̃s and F̃t are the post-processed source and target

features. However, the loss is applied only to features with

sparsely annotated keypoints, which potentially neglects ad-

ditional informative features.

Instead, we employ the soft-argmax operator [19, 23, 58]

so that gradients calculated from sparse annotations can

be back-propagated to all spatial locations. Specifically,

we compute the similarity map Si = F̃s(ps
i )

T
F̃t be-

tween the normalized query keypoint descriptor F̃s(ps
i )

and the target feature map F̃t. Then, we take soft-argmax

over the similarity map to get the predicted position p̂t
i =

SoftArgmax(Si). The L2 norm penalizes the distance be-

tween the predicted position and the target position p̂t
i:

Ldense =
∑

i

∥p̂t
i − (pt

i + ϵ)∥2, (3)

To prevent overfitting, we also apply Dropout at the input

feature map F and Gaussian noise ϵ that perturbs the ground

truth keypoint positions pt
i. We empirically find that com-

bining the two objectives achieves better performance; thus

our final training objective is L = Ldense + Lsparse.

4.3. Posevariant Augmentation

Standard data augmentation schemes (e.g., random crop-

ping, color jittering, etc.) have been generally used to aug-

ment the limited number of annotated data. However, such

standard augmentations show two shortcomings in naively

adopting them to our approach. Diverse augmentations on

input images require our model to process the feature map

of each augmented image using visual foundation models,

which linearly increases the computational cost along with

the number of augmentation schemes used. Besides, such

augmentations (e.g., cropping, scaling, or photometric aug-

mentations) do not augment images with different poses or

viewpoints, which might not bring additional effective su-

pervision signals for geometric awareness.

Instead, we introduce a set of pose-varying augmentation

schemes tailored to our approach, which needs to process

only one feature map from a single additional augmented

image (horizontal flipped) yet can utilize the feature in mul-

tiple ways. The motivation is that the deep features are

aware of the global pose; thus, the processed feature map

of the flipped image can add an additional signal; compared

to simply flipping the feature map. We introduce the fol-

lowing three augmentation settings: 1) double flip: flipped

source image and flipped target image; 2) single flip: flipped

source image and original target image; and 3) self flip:

source image and flipped source image. For setting 2 and

3, keypoint annotations are correspondingly flipped to pre-

serve the inherent geometric concept, e.g., the left paw in

the flipped image should be the right paw of the original im-

age. The keypoint flipping in self flip also ensures that the

model learns to discern concepts rather than simply match-

ing keypoints based on appearances.

4.4. Window Soft Argmax

At test time, current methods [30, 61] use the argmax oper-

ation on the similarity map to infer correspondence. How-
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Table 2. Evaluation on SPair-71k. Per-class and average PCK@0.10 on test split. The methods are categorized into two types: supervised

(S) and unsupervised (U). †: index is used to flip source keypoints at test time. ∗: fine-tuned backbone. We report per point PCK result for

the (U) methods, following [10, 35], and per image result for the (S) methods, following [7, 16, 25, 26]. The highest PCK are highlighted

in bold, while the second highest are underlined. Both our zero-shot and supervised methods outperform prior arts across all categories.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All

U ASIC [10] 57.9 25.2 68.1 24.7 35.4 28.4 30.9 54.8 21.6 45.0 47.2 39.9 26.2 48.8 14.5 24.5 49.0 24.6 36.9

DINOv2+NN [36, 61] 72.7 62.0 85.2 41.3 40.4 52.3 51.5 71.1 36.2 67.1 64.6 67.6 61.0 68.2 30.7 62.0 54.3 24.2 55.6

DIFT [46] 63.5 54.5 80.8 34.5 46.2 52.7 48.3 77.7 39.0 76.0 54.9 61.3 53.3 46.0 57.8 57.1 71.1 63.4 57.7

SD+DINO [61] 73.0 64.1 86.4 40.7 52.9 55.0 53.8 78.6 45.5 77.3 64.7 69.7 63.3 69.2 58.4 67.6 66.2 53.5 64.0

U† NeuCongeal† [35] - 29.1 - - - - - 53.3 - - 35.2 - - - - - - - -

Ours-Zero-Shot† 78.0 66.4 90.2 44.5 60.1 66.6 60.8 82.7 53.2 82.3 69.5 75.1 66.1 71.7 58.9 71.6 83.8 55.5 69.6

S SCOT [26] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6

PMNC∗ [25] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4

SCorrSAN∗ [16] 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3

CATs++∗ [7] 60.6 46.9 82.5 41.6 56.8 64.9 50.4 72.8 29.2 75.8 65.4 62.5 50.9 56.1 54.8 48.2 80.9 74.9 59.8

DHF [30] 74.0 61.0 87.2 40.7 47.8 70.0 74.4 80.9 38.5 76.1 60.9 66.8 66.6 70.3 58.0 54.3 87.4 60.3 64.9

SD+DINO (S) [61] 81.2 66.9 91.6 61.4 57.4 85.3 83.1 90.8 54.5 88.5 75.1 80.2 71.9 77.9 60.7 68.9 92.4 65.8 74.6

Ours 87.0 73.7 95.4 69.0 66.1 91.6 86.9 90.7 68.6 93.6 85.2 84.6 78.7 86.9 79.7 79.0 96.9 84.3 82.9

Ours (Adapt. Pose)† 87.6 74.1 95.5 70.1 66.7 92.0 87.4 91.4 68.0 93.2 85.5 84.7 79.9 87.8 79.9 78.9 96.9 84.8 83.2

Ours (AP-10K P.T.) 92.0 76.1 97.2 70.4 70.5 91.4 89.7 92.7 73.4 95.0 90.5 87.7 81.8 91.6 82.3 83.4 96.5 85.3 85.6

ever, it shows two major limitations: argmax is limited to

discrete pixel coordinates without sub-pixel reasoning, and

it does not incorporate any spatial context with neighboring

pixels when determining correspondence. One could use

soft-argmax at time time too, but our study shows in Tab. 5

that it does not improve the performance on all metrics,

probably due to its nature of incorporating similarities from

all pixels with possible noisy response.

To complement the weaknesses of both, we propose a

window soft argmax technique for both supervised and un-

supervised settings. First, we determine the target center

location using the argmax operation and apply soft-argmax

on the pre-defined window, as illustrated in Fig. 8. This

hybrid approach naturally enables sub-pixel reasoning but

also prevents it from being affected by any noisy response

in the similarity map. Tab. 5 shows that the usage of win-

dow soft argmax substantially improves the correspondence

performance on all metrics.

5. Experimental Results

Implementation details. We follow [61] to resize the in-

put image to 9602 and 8402 to extract the SD and DINOv2

features, respectively, yielding a feature map at a resolution

of 60 × 60. The post-processor on top of the fused fea-

tures is four bottleneck layers [13] with 5M parameters in

total. The model is trained with the AdamW optimizer [28]

of weight decay rate 0.001 and the one-cycle scheduler [45]

of 1.25 × 10−3 learning rate and 0.3 percentage for the in-

creasing cycle. We train all our models on one NVIDIA

RTX3090 GPU. Refer to Supp. A for more details.

Datasets. We evaluate our methods on two widely-used

benchmarks, namely PF-Pascal and SPair-71k, and our new

proposed benchmark. PF-Pascal [11] consists of 2941

training, 308 validation, and 299 testing image pairs with

similar viewpoints and instance pose. The images span

across 20 categories of objects. SPair-71k [32] is a more

challenging and larger-scale dataset with 53, 340 training

pairs, 5, 384 validation pairs, and 12, 234 testing pairs

across 18 categories, with large intra-class variation.

AP-10K benchmark. To further validate and improve our

method in an in-the-wild setting, we build a new large-scale,

challenging semantic correspondence benchmark with an

existing animal pose estimation dataset. The AP-10K

dataset [60] consists of 10,015 images across 23 families

and 54 species. All the images share the same keypoint an-

notation of 17 keypoints. After manually filtering images

with multiple instances and images with less than three vis-

ible keypoints, we construct a benchmark with 261k train-

ing, 17k validation, and 36k testing image pairs. The vali-

dation and testing image pairs span three settings: the main

intra-species set, the cross-species set, and the cross-family

set. It is 5× larger than the largest existing benchmark [32].

Please refer to Supp. B for more details.

Evaluation metrics. We follow the common practice and

use the Percentage of Correct Keypoints (PCK) [59] to eval-

uate the correspondence accuracy. The PCK is computed

within a threshold of α · max(h,w) where α is a positive

decimal (e.g., 0.10) and (h,w) denotes the dimensions of

the bounding box of an instance in SPair-71k and AP-10K,

and the dimensions of the images in PF-Pascal, respectively.

5.1. Quantitative Analysis

Overall semantic correspondence. The per-category eval-

uation results, presented in Tab. 2, demonstrate the efficacy
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Table 3. Evaluation on SPair-71k, AP-10K, and PF-Pascal datasets at different PCK levels. We report the performance of the AP-10K

intra-species (I.S.), cross-species (C.S.), and cross-family (C.F.) test sets. †: index is used to flip source keypoints at test time. ∗: fine-tuned

backbone. We report the per image PCK results (hence the (U) results are different from Tab. 2). The highest and second PCK among each

category is bold and underlined, respectively. Both our zero-shot and supervised methods outperform all previous methods significantly.

SPair-71k AP-10K-I.S. AP-10K-C.S. AP-10K-C.F. PF-Pascal

Method 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.05 0.10 0.15

U DINOv2+NN [36, 61] 6.3 38.4 53.9 6.4 41.0 60.9 5.3 37.0 57.3 4.4 29.4 47.4 63.0 79.2 85.1

DIFT [46] 7.2 39.7 52.9 6.2 34.8 50.3 5.1 30.8 46.0 3.7 22.4 35.0 66.0 81.1 87.2

SD+DINO [61] 7.9 44.7 59.9 7.6 43.5 62.9 6.4 39.7 59.3 5.2 30.8 48.3 71.5 85.8 90.6

U† Ours-Zero-Shot† 9.9 49.1 65.4 11.3 49.8 68.7 9.3 44.9 64.6 7.4 34.9 52.7 74.0 86.2 90.7

S SCorrSAN∗ [16] 3.6 36.3 55.3 - - - - - - - - - 81.5 93.3 96.6

CATs++∗ [7] 4.3 40.7 59.8 - - - - - - - - - 84.9 93.8 96.8

DHF [30] 8.7 50.2 64.9 8.0 45.8 62.7 6.8 42.4 60.0 5.0 32.7 47.8 78.0 90.4 94.1

SD+DINO (S) [61] 9.6 57.7 74.6 9.9 57.0 77.0 8.8 53.9 74.0 6.9 46.2 65.8 80.9 93.6 96.9

Ours 21.6 72.6 82.9 23.1 73.0 87.5 21.7 70.2 85.8 18.4 63.1 78.4 85.5 95.1 97.4

Ours (Adapt. Pose)† 21.7 72.8 83.2 23.2 73.2 87.7 21.7 70.3 85.9 18.3 63.2 78.5 85.3 95.0 97.4

Ours (AP-10K P.T.) 22.0 75.3 85.6 - - - - - - - - - 85.9 95.7 98.0

Table 4. Evaluation on the geometry-aware subset. We report

the results on both SPair-71k and AP-10K intra-species test sets

across three PCK levels. The best performances are bold.

SPair-71k AP-10K-I.S.

Method 0.01 0.05 0.10 0.01 0.05 0.10

U DINOv2+NN [36, 61] 3.4 28.2 42.0 2.1 26.8 48.6

DIFT [46] 4.6 30.0 42.5 1.8 18.9 34.6

SD+DINO [61] 5.3 34.5 49.3 2.5 28.0 49.5

U† Ours-Zero-Shot† 6.9 39.5 56.8 3.5 35.9 57.8

S SCorrSAN∗ [16] 2.8 30.0 49.4 - - -

CATs++∗ [7] 3.2 33.1 53.0 - - -

DHF [30] 6.8 42.1 56.7 2.5 30.0 50.7

SD+DINO (S) [61] 7.5 50.3 67.6 4.0 43.7 69.3

Ours 18.2 66.0 77.4 10.4 64.8 82.8

Ours (Adapt. Pose)† 18.3 66.3 78.0 10.5 65.0 83.2

Ours (AP-10K P.T.) 20.1 71.0 82.3 - - -

of our methods. Our zero-shot approach, despite its sim-

plicity, achieves considerable gains over SD+DINO, high-

lighting the significance of pose alignment in semantic cor-

respondence. In the supervised category, our methods out-

perform existing works across all 18 categories, registering

a substantial improvement of 11.0p (from 74.6 to 85.6). No-

tably, pre-training on the AP-10K dataset contributes a gain

of 2.7p, underscoring the untapped potential of animal pose

datasets in this domain.

Further comparisons across different datasets and three

PCK levels are in Tab. 3. Our methods exhibit significant

improvements across most metrics, particularly with no-

table gains in the more strict thresholds (e.g., PCK@0.05

and PCK@0.01), especially considering that SD+DINO

uses the same raw feature maps as our model. Despite the

methods being trained only on AP-10K intra-species sets,

the robust performance on cross-species and cross-family

test sets showcases the generalizability of our approach.

Geometry-aware semantic correspondence. Our meth-

ods achieve even more significant improvements in the

Table 5. Ablation study on SPair-71k. We report the PCK@αbbox

results for both standard set (Std.) and geometry-aware set (Geo.).

The best performances are bold. Our default method is underlined.

SPair-71k (Std.) SPair-71k (Geo.)

Model Variants 0.01 0.05 0.10 0.01 0.05 0.10

Baseline 9.6 57.7 74.6 7.5 50.3 67.6

+ Dense Training Objective 13.0 65.2 78.3 11.1 58.8 71.9

+ Pose-variant Augmentation 13.8 66.7 80.0 11.4 60.5 73.9

+ Perturbation & Dropout 15.1 69.3 81.3 13.5 63.3 75.4

+

Soft Argmax Inference 20.5 69.6 81.0 16.9 61.9 75.0

Window Soft Argmax (5) 22.3 72.1 82.0 19.8 66.0 76.5

Window Soft Argmax (9) 22.0 72.7 82.5 19.2 66.3 77.1

Window Soft Argmax (15) 21.6 72.6 82.9 18.2 66.0 77.4

geometry-aware subset, as reported in Tab. 4. We reduce

the relative gap from 9.38% (SD+DINO (S)) to 3.86% on

the SPair-71k PCK@0.10 metric. Notably, the proposed

adaptive viewpoint alignment brings more substantial gain

on the geometry-aware subset for both zero-shot and super-

vised settings, suggesting its effectiveness in improving the

geometric ambiguity by mitigating the pose variation. Be-

sides, pre-training on the AP-10K dataset brings even a gain

of 4.3p on the geo-aware subset.

Ablation studies. Further ablation studies are in Tab. 5.

Each element of our designs brings about moderate im-

provements. The dense training objective, pose-variant aug-

mentation, and window soft argmax notably enhance results

in the geometry-aware subset, while ground truth pertur-

bation and feature map Dropout improve the overall cor-

respondence (as shown in the similar gain on both sets).

Regarding the window soft argmax, varying window sizes

have different effects across three thresholds. We set the

window size to 15× 15 and 11× 11 for the supervised and

unsupervised setting respectively, for the optimal balance.

In the Supp. D.4, we also provide a leave-one-out ab-

lation study with the breakdown evaluation protocol intro-

duced in [3], to evaluate the detailed effect of each of our

proposed module. In short, all our designs expect pertuba-
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SD+DINO SD+DINO (S) Ours

Figure 10. Qualitative comparison. Green lines indicate correct matches and red incorrect. Our method can build geometrically correct

semantic correspondence even at extreme view variation, while both versions of SD+DINO struggle with geometric ambiguity (e.g., ear

and hands in the person example, corners in the bus example). Please refer to Supp. E.2 and E.3 for more results.

SD+DINO SD+DINO (S) OursSource Image 

Figure 11. Visualization of the similarity map. For the red query point, SD+DINO matches appearance-similar points (wooden desk,

floor); SD+DINO (S) returns a noisy similarity map due to the query point being out of supervision. Our method locates both semantically

and geometrically correct points. The keypoint supervision of “chair” category is in blue, though these images are not in the training set.

tion&dropout notably improves the geometry-aware (e.g.,

left/right) confusion, while the dense training objective also

reduces mismatches to the image background.

5.2. Qualitative Analysis

We qualitatively compare our methods against both zero-

shot and supervised versions of SD+DINO. As shown

in Fig. 10, our approach significantly enhances seman-

tic correspondence under the extreme view-variation cases.

While additional supervision in SD+DINO does aid in

keypoint localization to some extent, both versions of

SD+DINO struggle with geometric ambiguity.

We further investigate cases where the query point lacks

meaning and without direct supervision. As the visualiza-

tion of the similarity map shown in the Fig. 11, SD+DINO

highlights the regions with similar appearance (wooden ma-

terials) but fails to locate the chair; SD+DINO (S) generates

noisy similarity maps (all regions are highlighted) when the

query point is out of supervision, due to the sparse training

objective; Our method locates the points both semantically

and geometrically correct. Despite all methods sharing the

same raw feature maps and our approach using the same

feature post-processor as SD+DINO (S), the improvements

in our method underscore the effectiveness of our design.

Limitations. As shown in Fig. 12 (top), small instances

may be challenging for our method due to the resolution

limits of raw feature maps. Our method may fail on extreme

Source Image Predicted Points G.T. Points

Figure 12. Limitations. Top: small instance. Bottom: scenarios

combining both large pose variation and severe deformation.

pose variations with severe deformation (see Fig. 12, bot-

tom). Future work may address these complex scenarios by

advanced reasoning mechanisms or geometry prior, such as

the spherical constraint proposed in concurrent work [31].

6. Conclusion

We identified the problem of geometry ambiguity in se-

mantic correspondence and introduced simple and effec-

tive techniques to improve current methods. We also devel-

oped a new benchmark to train and validate existing meth-

ods. Extensive experiments demonstrate that our method

not only significantly improves the overall semantic corre-

spondence but also narrows the gap between the geometry-

aware sub-set and the standard set, thereby benefiting var-

ious downstream tasks and providing another angle to un-

derstand the internal representation of foundation models.
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