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Abstract

3D visual grounding plays a crucial role in scene un-
derstanding, with extensive applications in AR/VR. Despite
the significant progress made in recent methods, the re-
quirement of dense textual descriptions for each individ-
ual object, which is time-consuming and costly, hinders
their scalability. To mitigate reliance on text annotations
during training, researchers have explored language-free
training paradigms in the 2D field via explicit text gen-
eration or implicit feature substitution. Nevertheless, un-
like 2D images, the complexity of spatial relations in 3D,
coupled with the absence of robust 3D visual language
pre-trained models, makes it challenging to directly trans-
fer previous strategies. To tackle the above issues, in this
paper, we introduce a language-free training framework
for 3D visual grounding. By utilizing the visual-language
joint embedding in 2D large cross-modality model as a
bridge, we can expediently produce the pseudo-language
features by leveraging the features of 2D images which
are equivalent to that of real textual descriptions. We fur-
ther develop a relation injection scheme, with a Neighbor-
ing Relation-aware Modeling module and a Cross-modality
Relation Consistency module, aiming to enhance and pre-
serve the complex relationships between the 2D and 3D
embedding space. Extensive experiments demonstrate that
our proposed language-free 3D visual grounding approach
can obtain promising performance across three widely used
datasets – ScanRefer, Nr3D and Sr3D. Our codes are avail-
able at https://github.com/xibi777/3DLFVG

1. Introduction
3D Visual Grounding (3DVG) [1, 3–6, 25, 36, 42, 43], also
known as referring 3D object localization, aims to accu-
rately locate and identify specific objects within an input
point cloud based on provided textual descriptions. The ad-
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Figure 1. (a) Comparison of fully-supervised and our language-
free training paradigm. (b) Based on CLIP embedding space,
our language-free training method uses multi-view images corre-
sponding to the scene instead of the textual descriptions.

vancements in visual grounding technology possess the po-
tential to greatly enhance various real-world applications,
including autonomous robots and augmented/virtual real-
ity (AR/VR) systems [27, 38]. However, training current
3DVG models demands sufficient detailed text descriptions
of each object, which are time-consuming and costly to ac-
quire. As a case in point, the ScanRefer [4] collection, in-
volving 1,929 AMT workers over a month, required approx-
imately 4,984 man hours for both description collection and
verification. In light of this, our research pivots towards a
promising language-free training paradigm for 3DVG.

In recent years, language-free training methods have
been widely explored for numerous 2D vision-language
tasks. Early methods typically generate explicit pseudo-
language to replace human-annotated texts during training.
Notably, Nam et al. [28] and Jiang et al. [16] have re-
spectively developed language-free video localization and
image grounding methods. They both utilize off-the-shelf
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detectors [2, 34] and hand-crafted text templates to create
simplified sentences as pseudo-language. Since the gener-
ated sentences are template-based, such kind of approaches
tend to synthesize oversimplified and unnatural language,
leading to model overfitting. With the advent of large
image-language models [15, 20–22, 32, 33], researchers
[19, 26, 45] begin to develop novel implicit language-free
training methods. By leveraging the intrinsic image-text
alignment capability embedded in the pre-trained model
(i.e., CLIP [32]), carefully crafted image features are typ-
ically used in place of text features for training. This ap-
proach circumvents the issues of direct text generation and
yields significant performance improvement.

Although language-free training based on implicit fea-
ture substitution looks promising for various 2D vision-
language tasks, it encounters several specific challenges
when applied to 3D point clouds: (1) Insufficient 3D-
language alignment: given the fact that 3D data (especially
3D-language pairs) is far less abundant than images, there
is a lack of 3D pre-trained models that can provide vision-
language alignment capability equivalent to CLIP; (2) Com-
plexity in 3D relation modeling: different from objects in
2D images, where their positions can be described with sim-
ple texts, the descriptions of 3D objects in point clouds com-
monly include more intricate relational information. How-
ever, existing methods tend to neglect the relation modeling
during pseudo-language feature synthesis.

To address the above issues, we propose a Language-
Free training method for 3D Visual Grounding, named
3DLFVG. As shown in Fig. 1, our key idea is to use multi-
view images which are readily available in existing datasets,
e.g., ScanNet [8], as input to generate pseudo-language fea-
tures in place of manually annotated text samples. With the
assistance of the image-text feature alignment facilitated by
CLIP, our model is trained without language dependency
yet able to ground objects described by texts during infer-
ence. Besides, in order to enhance the 2D-3D consistent re-
lational expression ability of our model, we further propose
a relation injection strategy, which consists of two modules:
Neighboring Relation-aware Modeling (NRM) and Cross-
modality Relation Consistency (CRC). NRM aims to inject
richer relation information among neighboring 2D masks
into the pseudo-language features. Building upon this, CRC
is designed to constrain the alignment between 3D propos-
als and 2D mask relations, thereby endowing 3D models
with relational reasoning capability. To summarize, we uti-
lize multi-view images to construct relation-aware pseudo-
language features, which serve as a bridge between 3D
and language embedding to facilitate language-free 3DVG.
Overall, our contributions can be summarized as follows:
• We introduce a CLIP-driven language-free 3DVG frame-

work, which requires no manually annotated texts to ef-
fectively achieve 3D visual grounding on point clouds.

• We propose a NRM and CRC module, respectively to
enrich the relational context of the pseudo-language fea-
tures and enhance the consistency of the relation between
2D and 3D modality. These two modules collaborate to
introduce multi-modal aligned relation features.

• Compared with several baselines across multiple datasets
(i.e., ScanRefer [4], Nr3D and Sr3D [1]), our approach
achieves promising results for language-free 3D visual
grounding, demonstrating its effectiveness.

2. Related Works
2.1. 3D Visual Grounding

3D visual grounding aims to locate objects within unstruc-
tured point clouds using linguistically formulated queries.
Pioneering works such as “ScanRefer” [4] and “ReferIt3D”
[1] have introduced 3D grounding datasets, wherein dense
object-sentence connections are meticulously annotated on
the point cloud dataset ScanNet [8]. These datasets pave the
way for language-supervised training.

In general, methods for language-supervised training can
be categorized into two main groups. The majority of 3D
visual grounding methods [3, 4, 12, 13, 17, 39, 41, 43]
adhere to a two-stage pipeline. These methods primarily
focus on modeling object positions and relationships. For
instance, 3DVG-Transformer [43] leverages transformer-
based attention mechanism to achieve interactive fusion
between point clouds and language. InstanceRefer [41]
employs pre-segmented instances, thereby interacting with
language, and comprehensively assessing proposals across
three dimensions: attributes, locations, and relationships.
Another type is single-stage methods [14, 36] exemplified
by 3D-SPS [25]. It departs from the conventional two-
stage framework and integrates language for progressive,
point-by-point filtering to localize targets within a single-
stage. Furthermore, EDA [36] explicitly decouples textual
attributes in sentences and conducts a dense alignment be-
tween 3D point clouds and detailed linguistic descriptions,
which is a feasible way to avoid confusion caused by too
many mentioned objects in one sentence.

Nevertheless, all aforementioned methods rely on text
supervision. Given the substantial expense associated with
annotating language for 3D scenes, our proposed model
is dedicated to learning the localization of target objects
within 3D scenes without any reliance on text annotations.

2.2. Language-Free Paradigm

In the training for multi-modal tasks, the acquisition of
high-quality visual-language training samples poses a sig-
nificant challenge. To address this hurdle, certain re-
search endeavors [28, 45] have introduced the concept of
“language-free” training paradigm. This paradigm elim-
inates the necessity for language data in the training of
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Figure 2. The overview of our method. During training, we first encode 3D point cloud and multi-view images with point cloud encoder
and CLIP visual encoder separately. After that, we extract global and local features of the images (Sec. 3.2), and inject them with modeled
neighboring relation by NRM (Sec. 3.3). Then we additionally introduce CRC module (Sec. 3.3) to model the relation of 3D proposals and
enforce a consistency constraint between 2D and 3D. After training, we can perform inference of grounding through the textual description.

visual-language models, offering great convenience.
The most common language-free training approaches

[10, 16, 28] are to generate pseudo texts paired with vi-
sual inputs. For example, Unsupervised Image Captioning
[10] generates a pseudo caption for each image by lever-
aging the visual concept detector, and initializes the image
captioning model using the pseudo image-sentence pairs.
Pseudo-Q [16] uses a pre-trained detector to detect objects
in the image and constructs pseudo language queries based
on the relation among objects. However, it is noteworthy
that the effectiveness of these methods heavily relies on the
quality of designed text templates and pre-trained object
detectors. This could be problematic due to the oversim-
plified language and domain gap between target datasets
and object detector training datasets. Several other meth-
ods [19, 26, 45] leverage the pre-trained visual-language
models, such as CLIP [32]. These methods take into ac-
count that CLIP has acquired the ability of aligning image
and text features within the embedding space. As a result,
they employ CLIP to implicitly generate pseudo text fea-
tures directly from the image. Drawing inspiration from
these approaches, we harness the CLIP embedding space
for the analysis of 3D scenes, enabling the accomplishment
of 3D visual grounding.

3. Methodology
In this section, we detail our proposed method for language-
free training in 3D visual grounding. Sec. 3.1 introduces the
language-free training paradigm, along with an overview of
the proposed framework. Sec. 3.2 discusses how we extract
local-global features from images as pseudo-language fea-
tures. In Sec. 3.3, we describe the methods for augmenting

the pseudo-language features with more neighboring rela-
tion information and the construction of 2D and 3D rela-
tional consistency constraints. Finally, Sec. 3.4 describes
the model’s training and inference process.

3.1. Overview

The overall pipeline of our language-free 3DVG is shown
in Fig. 2. During training phase, the inputs consist of two
parts: a point cloud P ∈ RN×(3+F ) (with 3D coordinates
and F -dimensional auxiliary features) of N points, and cor-
responding multi-view images M = {Ii}NI

i=1, where NI is
the total number of the images. At inference stage, the in-
puts shift to include a point cloud P ∈ RN×(3+F ) and a
sentence query Q ∈ RL designed to describe the target ob-
ject. The objective of our method is to train a model to lo-
calize specified objects without using any language queries
during training, yet capable of identifying targets described
by texts in the inference phase. Similar to the regular 3DVG
methods [3, 4, 12, 13, 17, 39, 41, 43], our model outputs a
3D bounding box B = {c, s} of the referring object, with
center c = (cx, cy, cz) and the size s = (sx, sy, sz).

Our language-free 3DVG training framework comprises
three key modules: Pseudo-Language Feature Generation
(PFG), Neighboring Relation-aware Modeling (NRM), and
Cross-modality Relation Consistency (CRC). The pseudo-
language feature generation module utilizes the shared
image-text embedding space to create visual features that
can replace text features. These features are then fused
with proposal features, produced by 3D Voting and De-
tecting part in [43], to generate object confidence scores.
The neighboring relation-aware modeling module intro-
duces dynamic 2D relations between adjacent masks, echo-
ing the relational intricacies that are often present in textual
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features. It produces mask relation features by facilitating
interactions between the main object and its adjacent ob-
jects. Meanwhile, the cross-modality relation consistency
module strengthens the alignment between 3D proposals
and 2D mask relations, thus ensuring consistent relational
understanding across modalities. It models the relation be-
tween each proposal in the scene and surrounding propos-
als to derive proposal relation features. By comparing these
with the 2D mask relations, relation matching scores can
be computed. Finally, we combine these scores with ob-
ject confidence scores to calculate the final object-matching
scores. Since our method capitalizes on the image-text fea-
ture alignment provided by CLIP, and incorporates extra
modules that enhance the features with relation-aware capa-
bilities. So, it ensures an efficient implementation of 3DVG
given the texts during the inference phase. We will elabo-
rate the each component in the following sections.

3.2. Pseudo Language Feature Generation

To train our language-free 3DVG model effectively, we
need pseudo-language features that mirror the role of an ac-
tual text description by pinpointing the target object and its
environmental context. For example, a typical description
in ScanRefer dataset like “a brown table in the center of the
room”. This inspires us to split our pseudo-language fea-
tures into two parts: the local features that identify “a brown
table” and the global features that describe its surroundings
“in the center of the room”.
Local-Global Feature Generation. Firstly, we begin to
generate Mi = {Mm

i }NM

m=1 class-agnostic masks across
each multi-view image Ii with a pre-trained 2D mask gener-
ator [31, 35, 44], NM is the mask number. We then isolate
and crop the image around each mask, aiming to concen-
trate on the area delineated by the mask. Following this, the
cropped image Cm

i is fed into the CLIP visual encoder [32]
to distill the local features fLpseudo of the object of interest.

Beyond the local features, we also extract the global fea-
tures to include wider context information from the environ-
ment. Building on [40], we modify the CLIP visual encoder
to obtain global features:

fGpseudo = Elater (Eformer(Ii)⊙Mm
i ) , (1)

where Eformer represents the former l layers, and Elater de-
notes the rest layers of CLIP visual encoder. Subsequently,
we calculate the local-global visual features fVpseudo =

αfLpseudo + (1− α)fGpseudo, α is a hyper-parameter that bal-
ances the proportion of local and global features.
Random Noise. So far, we have obtained the local-global
visual features. However, it has been proved that merely
utilizing the visual features might not adequately mimic ac-
tual language characteristics [45]. Consequently, we delib-
erately add random noise to perturb the local-global fea-
tures from the pre-trained visual encoder to get the pseudo-

language features fpseudo ∈ RDc , where Dc is the dimen-
sion of the CLIP encoded features.

Ultimately, we utilize multi-view images and mask pro-
posals to create pseudo-language features for the target ob-
jects. However, considering the pre-trained mask generator
will produce some extremely incomplete objects and prefer
to notice larger entities, We further select the partial masks
that best match the target boxes in the scene to ensure the
representative of pseudo-language features. After that, we
fuse these features with the proposal features derived from
the 3D Voting and Detecting part to compute the final ob-
ject confidence scores. At this point, we have established
the baseline of language-free 3D visual grounding.

3.3. Relation Injection

With the pseudo-language features in hand, we can already
initiate language-free 3DVG training. However, natural tex-
tual descriptions typically convey not just the target object’s
local and global information but also its relation with neigh-
boring objects — take an example from the ScanRefer [4]
dataset, “The trash can sits along the wall in the kitchen
next to the console table under the TV”. Such textual sam-
ple includes detailed descriptions of 3D spatial relation-
ship among objects, which are often missing in 2D pre-
training model like CLIP [32]. To bridge this gap and en-
hance the relation representation ability of our CLIP-driven
pseudo-language features, we further introduce a neighbor-
ing relation-aware module and a cross-modality relation
consistency module.
Neighboring Relation-aware Modeling. Since textual de-
scriptions in 3DVG often detail the relation among the tar-
get object and its neighbors, we first identify the k nearest
mask proposals to each generated mask from Section 3.2.
Due to the limited number of objects and lack of complex
3D position information in a single multi-view image, we
project the 2D mask proposals into 3D space to acquire
more reliable spatial relation. Specifically, we use world-to-
camera extrinsic and camera intrinsic parameters following
[7] to map the center points of the 2D masks from all multi-
view images in one scene to 3D space. Through this step,
we locate the k adjacent instances for each mask proposal.
Subsequently, we extract the local features of the mask pro-
posal along with the features of the k nearest masks. From
the interplay between these local features fLpseudo ∈ RDc

and neighboring features f2Dneigh ∈ Rk×Dc , we derive each
mask’s 2D relational features as follows:

fR2D = Linear
(
CrossAtt

(
fLpseudo, f

2D
neigh

))
. (2)

Since there is no supervision of this relation during our
training process, we introduce the proxy task of predicting
the target object to achieve the optimization of neighboring
relation awareness:

Lcls = CE (fR2D, ycls) , (3)
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where ycls represents the category of the target object.
Cross-modality Relation Consistency. Having integrated
relational information into pseudo-language features, we
then consider a similar enhancement for the 3D feature
space. Through Voting and Detecting module [43], we ob-
tain the proposal features Fproposal = {fpproposal}

Np

p=1 of the
point cloud, Np denotes the number of 3D proposals. Ini-
tially, we assess the confidence score of each 3D proposal as
a potential object center, selecting the most probable ones.
For each chosen proposal, we identify k adjacent proposals
to learn the 3D relational features:

fR3D = Linear
(

CrossAtt
(
fpproposal, f

3D
neigh

))
, (4)

where fpproposal is the feature of one proposal, and f3Dneigh
is its neighboring features. We now have the neighboring
relation features for each 3D objectness proposal. The re-
lational features of the 3D proposal corresponding to the
target object indicated by a 2D mask should align with the
2D mask’s relational features:

Lconsist = − 1

Np

Np∑
k=1

[
log

exp
(
fkR3D · fkR2D/τ

)∑Np

n=1 exp
(
fkR3D · fnR2D/τ

)] .

(5)
Ultimately, by enforcing a consistency constraint on rela-

tional features between modalities, we can more effectively
disambiguate the grounding outcomes.

3.4. Training and Inference

Our language-free 3DVG method follows distinct training
and inference processes as shown in Fig. 2. Here we first de-
tail the network training objectives of learning with pseudo-
language features, and then outline the inference process
using point clouds with authentic language queries.
Training. We train the point cloud encoder with a detection
loss LDet and a matching loss LVG as in [43]. For the proxy
task in Neighboring Relation-aware Modeling, we predict
the target object category using Lcls. We also introduce the
Lconsist to constrain the consistency of the relationship be-
tween 2D and 3D modality.
Inference. Different from the training process, at the in-
ference stage, an input is a point cloud and its correspond-
ing complete sentences from the test set. To minimize the
discrepancy between training and inference, we also utilize
CLIP to extract both local and global text features. Specif-
ically, we employ a pre-trained text parser [11] to identify
the sentence’s target noun for local features encoding with
the CLIP text encoder. Additionally, we process the entire
sentence through CLIP to capture global features. And we
combine the local and global features to derive the compre-
hensive language features. For relation injection during the
inference stage, we diverge from the training approach by
employing the text parser [11] to extract and encode neigh-
boring entities from the text. Note that our training isn’t

tailored to any specific grounding dataset. Instead, we’ve
produced a generalized embedding space, allowing us to in-
fer directly on any grounding dataset without retraining.

4. Experiments
4.1. Datasets

Datasets. To validate the efficacy of our 3DLFVG
method, we conducted evaluations using two widely rec-
ognized datasets: ScanRefer [4] and Nr3D/Sr3D [1] from
the ReferIt3D. Our approach to point cloud-based visual
grounding is unique in that it operates under a language-
free paradigm; thus, textual descriptions were not employed
during training but were utilized solely during testing.
ScanRefer. This dataset comprises 51,583 manually crafted
descriptions for 11,046 objects across 800 scenes from the
ScanNet [8]. On average, each scene features approxi-
mately 13.81 objects, each accompanied by 64.48 annota-
tions. The correctness and distinctiveness of the data are
preserved through the use of skilled annotators and trained
verifiers. We follow the ScanRefer benchmark to divide our
dataset into the train/val/test set with 36,655, 9,508, and
5,410 samples respectively, and utilize val set to evaluate
our framework. The evaluation metrics of the dataset are
Acc@0.25 IoU and Acc@0.5 IoU. These metrics are re-
ported for both unique and multiple object categories.
Nr3D and Sr3D. Nr3D and Sr3D are subsets in ReferIt3D.
Specifically, Nr3D is composed of 41,503 samples obtained
through ReferItGame, while Sr3D encompasses 83,572
samples created using synthetic templates. We take the
standard splits for Nr3D and Sr3D, using only the val sets
for evaluation. Our method is assessed with metrics for
“easy” and “hard” categories, along with “view-dep.” and
“view-indep.” subsets based on the dependency of descrip-
tions on the camera viewpoint.

4.2. Implementation Details

In our practice, we employ the PointNet++ [30] backbone
along with the Object Proposal Generation Module mod-
ule in 3DVG-Transformer [43] to generate 3D proposals
and corresponding bounding boxes. For generating pseudo-
language features, we utilize the CLIP [32] visual encoder
from the ViT-B/16 model. During the training stage, we
initially train our baseline model on the ScanNet [8] dataset
for 200 epochs, followed by a further 50 epochs to train
our NRM and CRC modules. The model is trained with the
AdamW [24] optimizer and a batch size of 8. The learn-
ing rates for proposed Neighboring Relation-aware Mod-
eling and Cross-modality Relation Consistency are empir-
ically set at 2e-3. For the voting & grouping module, de-
tection head, and cross-modal fusion module, the learning
rates are set as 2e-3, 1e-4, and 5e-4, respectively, following
the 3DVG-Transformer [43]. During inference, we use the
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Table 1. Quantitative comparison of language-free (LF) 3DVG on ScanRefer [4] dataset. Results of relevant fully supervised (Fully) meth-
ods are also provided. Accuracy (Acc) under 0.25 and 0.5 IoU thresholds in “Unique”, “Multiple”, and “Overall” is reported respectively.
Without language supervision, our method significantly outperforms previous methods. † indicates our re-implemented method on 3D.

Methods Publication Setting
Unique Multiple Overall

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5
ScanRefer [4] ECCV2020 Fully 76.33 53.51 32.73 21.11 41.19 27.40

3DVG-Transformer [43] ICCV2021 Fully 83.25 61.95 41.20 30.29 49.36 36.43
Random - LF 5.57 3.94 3.58 2.33 3.97 2.65

OpenScene [29] CVPR2023 LF 27.60 - 8.60 - 13.00 5.10
LLM-Grounder [37] arXiv2023 LF 33.60 - 12.10 - 17.10 5.30

Pseudo-Q† [16] CVPR2022 LF 58.07 38.45 19.49 11.82 26.90 16.96
Zero-shot-RIS† [40] CVPR2023 LF 61.12 45.90 18.34 13.85 26.67 20.02

Ours (3DLFVG) - LF 65.80 51.27 22.03 16.94 30.53 23.61

Table 2. Quantitative comparison of language-free 3DVG on Nr3D and Sr3D [1] datasets. We report accuracy (Acc) for the IoU@m
(m ∈ {0.25, 0.5}) metrics in several subsets and “Overall”. “Easy” and “Hard” mean whether there are more than 2 instances from the
same category in the scene. “View-dep.” and “View-indep.” refer to whether the reference expressions are dependent of the camera view.

Method
Easy Hard View-dep. View-indep. Overall

m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5
Nr3D

Random 6.70 2.40 6.34 2.75 6.59 2.91 6.47 2.41 6.51 2.59
Pseudo-Q† [16] 16.70 8.83 10.44 6.12 12.59 6.54 15.00 8.22 14.23 8.07

Zero-shot-RIS† [40] 23.56 16.52 11.57 7.99 14.40 10.19 18.65 13.56 16.99 11.89
Ours (3DLFVG) 22.35 16.53 13.15 8.96 15.10 11.13 19.01 14.02 18.28 13.32

Sr3D
Random 8.81 5.66 7.57 4.97 7.28 4.80 8.65 5.61 8.17 5.30

Pseudo-Q† [16] 12.45 7.31 10.70 7.48 3.36 2.04 12.20 7.56 11.74 7.22
Zero-shot-RIS† [40] 20.13 15.62 12.27 9.09 12.18 10.18 17.51 13.79 17.43 13.47

Ours (3DLFVG) 21.00 16.63 15.16 11.51 11.17 9.92 19.07 14.82 19.25 14.99

same ViT-B/16 model to encode the local and global text
features. The input point number N , the proposal number
Np, and the neighboring objects number k are set to 40000,
256 and 4, respectively. The balance weight α is set to 0.15.
We train and evaluate our model using “xyz + normals +
multiviews” inputs. All experiments are conducted using
PyTorch on a single NVIDIA RTX 3090.

4.3. Compared Methods

Random. With access to all boxes produced by Object Pro-
posal Generation Module, we randomly choose one box to
represent the predicted result.
Pseudo-Q. Pseudo-Q [16] is currently a method that has
achieved good performance in 2D language-free grounding.
We replicated its main idea into a 3D scene as a comparative
experiment. Due to the distinction between the 3D scene
and the image, there are also some differences in reproduc-
tion details. The principal deviation lies in our utilization of

the Group-Free [23] model as the detector for 3D scene ob-
jects. Furthermore, we have incorporated global positional
information into the generation of pseudo-language.

OpenScene. OpenScene [29] propose an open-vocabulary
3D scene understanding method. It aligns multi-view im-
age features with point cloud features at a pixel-point level,
facilitating text query grounding through cosine similarity
between CLIP text embeddings and individual points. To
produce bounding boxes by OpenScene, DBSCAN cluster-
ing [9] can be used on points with high cosine similarity and
draw boxes around them. Given its ability to perform 3DVG
without text-based training, akin to our proposed paradigm,
OpenScene serves as a benchmark for comparison.

LLM-Grounder. LLM-Grounder [37] employs an open-
vocabulary Large Language Model for 3D visual grounding
tasks. It deconstructs complex natural language queries into
their semantic parts using an LLM and then applies visual
grounding techniques, including OpenScene [29] or LERF
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Ground-truth Pseudo-Q [16] OursDescription

(b) The brown couch is in 
between the piano and the 
glass double doors. The 

brown couch is against the 
white wall.

(a) It is a blue desk chair 
with a black base and 

handles. It is positioned in 
the right corner of the room, 

in front of a gray desk.

(d) This is a brown table 
with three computer 

monitors on it. It does not 
have a red chair near it.

(c) A blue table. It is behind 
the blue couch.

Zero-shot-RIS [37]

Figure 3. Qualitative results from Pseudo-Q [16], Zero-shot-RIS [40] and our method. The GT boxes are marked in green. Boxes predicted
by Pseudo-Q, Zero-shot-RIS, and ours are marked in red, yellow, and blue respectively.

[18], to locate objects within a 3D scene. Given its indepen-
dence from textual training data, LLM-Grounder is utilized
as a comparative benchmark to our method.
Zero-shot RIS. Zero-shot RIS [40] proposes a method for
zero-shot referring image segmentation, using pre-trained
cross-modal knowledge. This approach employs CLIP to
encode local-global context features for images and text
descriptions respectively. Then it segments fine-detailed
instance-level groundings by calculating the similarity be-
tween these two features. Due to its capability to capture
both the target object’s attributes and its environmental con-
text, we adapt this method to 3D as a baseline for our study.

4.4. Quantitative Comparison

We show quantitative comparisons of our 3DLFVG and
aforementioned methods on ScanRefer [4] and Nr3D/Sr3D
[1] in Tab. 1 and Tab. 2 respectively. The results reveal
significant improvements in overall accuracy (Acc@0.25
and Acc@0.5) over other baselines. The evaluation anal-
ysis highlights the following key observations: 1) Our
method markedly outperforms the Random approach across
all datasets, even nearly reaching the upper limit of Scan-
Refer. This indicates the efficacy of our framework and
affirms the feasibility of language-free training in the 3D

visual grounding task. 2) The results show that our method
outperforms other well-designed methods by a large margin
under the language-free training setting. It’s worth mention-
ing that our method greatly surpasses other approaches on
the “multiple” subset, which demonstrates our model’s ca-
pability to effectively perceive and model intricate relations
within both 2D and 3D embedding spaces.

4.5. Qualitative Comparison

Fig. 3 visualizes the representative language-free visual
grounding results of the Pseudo-Q [16], Zero-shot-RIS [40]
and our method. These examples demonstrate that our
method achieves more reliable 3D object localization re-
sults than explicit text generation or implicit feature sub-
stitution methods transferred from 2D fields. Taking the
visualization results from the fourth row as an example, the
Pseudo-Q method incorrectly grounds “red chair” instead
of “brown table” mentioned in the text description and the
Zero-shot-RIS wrongly predicts other entities belonging to
the same category “table”. In contrast, our method correctly
identifies the target object. The visualization results demon-
strate that, in response to complex textual descriptions in-
volving multiple objects, our model can accurately perceive
the intricate relationships among objects interwoven in the
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Table 3. Ablation study on main components of our method. We
report the “overall” results in terms of Acc@0.25 and Acc@0.5.

PFG Relation
Acc@0.25 Acc@0.5

LGFG Noise NRM CRC
✓ × × × 26.88 22.30
✓ ✓ × × 28.27 20.62
✓ × ✓ × 28.88 22.81
✓ ✓ ✓ × 29.60 23.02
✓ × ✓ ✓ 30.35 23.44
✓ ✓ ✓ ✓ 30.53 23.61

Table 4. Comparison on different 3D visual grounding baseline
methods. We only report the “overall” results.

Method Baseline Acc@0.25 Acc@0.5

Pseudo-Q [16] 3D-SPS [25] 25.19 17.16
Ours 3D-SPS [25] 26.75 21.03

Random 3DVG-Transformer [43] 3.97 2.65
Pseudo-Q [16] 3DVG-Transformer [43] 26.91 16.94

Ours 3DVG-Transformer [43] 30.53 23.61

3D scene, thus promoting more effective inference.

4.6. Ablation Study

We conducted ablation studies on the ScanRefer dataset to
further evaluate the effectiveness of our proposed method.
Components analysis. We conducted a detailed ablation
study to dissect the impact of various components in our
language-free 3DVG model, with Tab. 3 illustrating the per-
formance of different module combinations. As shown in 3,
Our module can be divided into two parts: PFG and Rela-
tion, where PFG represents the Pseudo-Language Feature
Generation and Relation Injection. Upon further refine-
ment, “LGFG” is the local-global features generation part,
and “Noise” indicates the addition of random perturbations
to the pseudo-language features generated by LGFG. The
first row presents results achieved by merely substituting
text with pseudo-language features during training. Note
that we omit the validation of solely adding CRC module,
as the consistency of neighboring relations between 3D and
2D modalities must be established on the basis of having
already utilized the NRM module to construct 2D neigh-
boring relations. The results reveal consistent performance
improvements with the addition of each component, con-
firming the utility of our proposed modules.
Effects of different 3D baselines. In addition, to assess
the flexibility of our proposed language-free training ap-
proach, we implemented it across various 3DVG baseline
models. Our experimental setup involved the use of 3DVG-
Transformer and 3D-SPS as the representative models for
two-stage and single-stage methods, respectively. As shown

Table 5. Ablation study on different numbers (k) of neighboring
objects in the NRM module. Here A refers to Acc.

k
Unique Multiple Overall

A@0.25 A@0.5 A@0.25 A@0.5 A@0.25 A@0.5
0 64.38 50.54 20.76 15.93 29.22 22.62
2 63.90 49.65 21.32 16.46 29.58 22.90
4 65.80 51.57 22.03 16.94 30.53 23.61
6 65.50 51.06 21.60 16.78 30.12 23.43

in Tab. 4, our model performs better than the Pseudo-Q [16]
on different baselines. This performance superiority not
only demonstrates the robustness of our method but also its
adaptability in enhancing different types of 3DVG models.
Numbers of neighboring objects in NRM. The influence
of neighboring object numbers in NRM is analyzed by set-
ting different k ∈ {0, 2, 4, 6}. As illustrated in Tab. 5, we
find that selecting 4 neighbor objects yields the most effec-
tive results in relation modeling, which indicates the opti-
mal number of neighbors to aggregate sufficient relational
information. When too few neighboring objects, such as
0 or 2, are considered, the model may not capture enough
contextual details to accurately understand the complex re-
lationships present in the 3D point cloud. Conversely, since
referring descriptions seldom mention too many (e.g., 6)
surrounding objects in one single sentence, a much higher
value of k might introduce discrepancies between image
and text relation modeling.

5. Conclusion
This paper presents a novel language-free training frame-
work for 3DVG, eliminating the need for text annotations.
This approach addresses the practical challenges of labor-
intensive and time-consuming annotations. Our framework
leverages the joint embedding capabilities of CLIP, using
it as a bridge to generate pseudo-language features from
multi-view images that closely mimic real text descriptions.
To enhance the understanding of spatial relationships, we
incorporate a Neighboring Relation-aware Modeling mod-
ule and a Cross-modality Relation Consistency module.
These modules are designed to effectively enhance and pre-
serve relations between 2D and 3D modalities. Extensive
experiments conducted on mainstream datasets demonstrate
the robustness and efficiency of our approach.
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