
Versatile Navigation under Partial Observability via Value-guided Diffusion Policy

Gengyu Zhang1 Hao Tang2 Yan Yan1,†

1Department of Computer Science, Illinois Institute of Technology, USA
2Robotics Institute, Carnegie Mellon University, USA

gzhang32@hawk.iit.edu, bjdxtanghao@gmail.com, yyan34@iit.edu

Abstract

Route planning for navigation under partial observability

plays a crucial role in modern robotics and autonomous

driving. Existing route planning approaches can be catego-

rized into two main classes: traditional autoregressive and

diffusion-based methods. The former often fails due to its my-

opic nature, while the latter either assumes full observability

or struggles to adapt to unfamiliar scenarios, due to strong

couplings with behavior cloning from experts. To address

these deficiencies, we propose a versatile diffusion-based

approach for both 2D and 3D route planning under partial

observability. Specifically, our value-guided diffusion pol-

icy first generates plans to predict actions across various

timesteps, providing ample foresight to the planning. It then

employs a differentiable planner with state estimations to

derive a value function, directing the agent’s exploration and

goal-seeking behaviors without seeking experts while explic-

itly addressing partial observability. During inference, our

policy is further enhanced by a best-plan-selection strategy,

substantially boosting the planning success rate. Moreover,

we propose projecting point clouds, derived from RGB-D

inputs, onto 2D grid-based bird-eye-view maps via semantic

segmentation, generalizing to 3D environments. This simple

yet effective adaption enables zero-shot transfer from 2D-

trained policy to 3D, cutting across the laborious training for

3D policy, and thus certifying our versatility. Experimental

results demonstrate our superior performance, particularly

in navigating situations beyond expert demonstrations, sur-

passing state-of-the-art autoregressive and diffusion-based

baselines for both 2D and 3D scenarios.

1. Introduction

Navigation is a critical component in mobile robotics and

autonomous driving dependent on sequential planning, a

process of evaluating and selecting an action sequence that

most effectively achieves a specific goal. However, tradi-

tional autoregressive planning methods for navigation, as

†Corresponding author

value-guided diffusion policy

...

obstacles

observed

agent

unobserved

output sequence

input sequence

Figure 1. Our value-guided diffusion policy under partial observ-

ability. It processes local partial observations to generate action

sequences adaptable for both 2D and 3D scenarios.

mentioned in [11, 14, 31], face two significant limitations.

First, they select actions sequentially, where each decision

is based on the previous one and the consequent state transi-

tions. This step-by-step approach is not well-suited for tasks

with longer horizons, as it lacks foresight. The problem

worsens in partially observable settings, where increased un-

certainty introduces greater computational demands to solve

complex mathematical frameworks [13, 28]. Additionally,

the necessity for instantaneous decision-making in real-time

navigation can be at odds with the once-per-step inference

rate of traditional planning methods. Second, these methods

often require a substantial volume of data to learn effective

policies for 3D navigation. In practice, however, gather-

ing large datasets can be impractical due to environmental,

logistical, or equipment constraints, resulting in a limited

set of offline data. When faced with such data deficiency,

traditional methods tend to yield suboptimal performance.

To overcome the limitations carried by autoregressive

planning, we explore trajectory-level behavior synthesis.

This novel approach capitalizes on the capabilities of gen-

erative models, particularly diffusion models [1, 4, 12, 17,

19, 24]. Unlike autoregressive methods that generate ac-

tions sequentially, diffusion-based approaches synthesize

entire action trajectories simultaneously, enhancing multi-

step planning efficiency during inference. However, to our

best knowledge, no existing work of this class has actively

explored their effectiveness under partial observability. Thus,

through a significant modification, we adapt this concept for

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17943

use in partially observable environments. We model the nav-

igation with an approximated partially observable Markov

decision process (POMDP). This involves embedding a state

estimation module in training a differentiable planner, which

learns a value function to guide the agent’s policy planning.

This value function is derived by estimating the underlying

decision model of expert demonstrations during training and

iteratively computing optimal values during inference. Fig. 1

illustrates the plan generation module, in which the diffu-

sion policy generates a plan for certain future timesteps in

a closed-loop manner conditioned on the observed partial

environment map. A plan in this context is essentially an

action trajectory — a series of temporally sequential actions

derived from a specific policy and state transition dynam-

ics. The value function demonstrated in Fig. 3 and Fig. 4

ensures that the generated plans lead to at least near-optimal

outcomes through trajectory optimization.

To overcome the challenge of data scarcity in 3D real-

istic navigation scenes, we propose adapting inputs into a

format amenable to models trained on 2D data, allowing us

to apply policies learned from the 2D domain to navigate

in 3D environments. This is predicated on the abundance

of 2D data, which ensures that a robust policy for the 2D

domain can be learned. By constructing a point cloud from

first-person-view (FPV) RGB-D inputs and transforming it

to meet 2D standards, we can preserve the performance of

the 2D policy in the 3D navigation. This transformation

involves semantic segmentation of the point cloud using

pre-trained models [5, 35], followed by projecting it onto a

bird-eye view (BEV) grid map based on the result of segmen-

tation. Consequently, the high-dimensional RGB-D inputs

are converted into grid maps, serving as the basis for our

diffusion policy to generate action plans. The 2D policy,

already trained, can then infer actions for 3D scenes.

We evaluate the efficacy of our method with two estab-

lished frameworks: an autoregressive planner, CALVIN [11],

and a diffusion-based behavior cloner, Diffusion Policy [4].

Extensive experiments demonstrate the superiority of our

method over these baselines in 2D mazes and real-world

3D indoor navigation scenes. Notably, the policy trained on

2D mazes is directly applicable to 3D settings by project-

ing the point cloud to 2D BEV plane, showing impressive

scalability without additional training while still maintaining

performance on par with the baselines. Further enhance-

ments include training the model with both BEV grid maps

converted from point cloud and egocentric RGB images,

with supervision from a limited set of expert demonstrations

in point cloud navigation. This dual-conditioning approach

has been shown to boost the effectiveness of the policy.

2. Related Work and Preliminary

Differentiable planning. The concept of deep differentiable

planning, a method that facilitates online plan generation

and backpropagation of errors through these plans to train

transition and reward estimators, was initially introduced by

Value Iteration Networks (VINs) [22, 26, 31]. This approach

is often employed in offline reinforcement learning [16] and

imitation learning where data is limited. Subsequent works

adapted VINs to partially observable scenarios, assuming

a complete environmental map for localization tasks [14],

and substituted the max pooling operation, which in VINs

realizes the maximization in the Bellman equation of MDPs,

with an LSTM structure. A recent enhancement to VINs

introduced an additional mask for the explicit exclusion of

invalid actions, thereby preventing collisions and allowing

for more effective long-horizon navigation [11].

Diffusion models and diffusion policies. Diffusion models,

as a prominent class of generative models, formulate the data

creation process as an iterative denoising procedure [9, 27].

This approach can be interpreted as the parameterization of

the gradients of data distribution [15, 29, 30], thereby link-

ing diffusion models with score matching [10] and Energy-

Based Models (EBMs) [7, 23]. The iterative, gradient-based

sampling is particularly conducive to flexible conditioning

[6, 21] and compositionality [8]. This led to the emergence

of a promising new category of methods that harness the po-

tential of diffusion models to extract effective behaviors from

heterogeneous datasets and plan for unobserved scenarios

during the training phase. Some of these approaches focus

on the practical application of diffusion models for control

policy behavioral cloning [4] or diffusion policy analysis

in simulated environments [24]. Others explore the use of

diffusion models in planning contexts, integrating a value

function to facilitate planning for unseen tasks [2, 12, 33].

Researchers also utilize diffusion models in robot learning

in conjunction with physics-augmented simulations. This

approach is instrumental in designing and developing varied

and functional soft robot systems, with an emphasis on their

morphology and control mechanisms [32].

Diffusion models posit data generation as an iterative

denoising process, pθ(xi−1|xi), reversing the forward dif-

fusion process q(xi|xi−1) which consistently adds noise to

the original data sample. This process is also known as

Stochastic Langevin Dynamics [34]. Here, xi in the dif-

fusion (forward) and reverse processes denotes the noisy

data at the diffusion step i. The target data distribution that

DPMs aim to recover from Gaussian noise, along with the

corresponding denoising process, are as follows:

pθ(x0:N) = p(xN)
N∏

i=1

pθ(xi−1|xi),

pθ(xi−1|xi) = N (xi−1;µθ(xi, i),Σθ(xi, i)),

(1)

where N signifies a Gaussian distribution with mean

µθ(xi, i) and variance Σθ(xi, i)), each is a function of the

data sample xi and step i. We adopt the notation used in [12]

that denotes the number of diffusion steps with N and each

17944

step with i, distinguishing from T and t used for planning

timesteps. The iterative sampling process of diffusion mod-

els facilitates flexible conditioning, allowing auxiliary guides

to adjust the sampling procedure to retrieve trajectories with

high returns or satisfy specific constraints. Incorporating

trajectory optimization into the modeling process permits

diffusion policies to enhance the performance of learned

models in decision-making tasks.

Planning under partial observability. POMDP is a

widely recognized mathematical framework for modeling

decision-making scenarios with imperfect observation. In

such contexts, an agent lacks direct access to the com-

plete information necessary to fully describe the state of

the system. A POMDP is formally defined as the tuple

(S,A,Ω, T ,R,O, γ), where S, A, and Ω are the discrete

state, action, and observation spaces, respectively. The state-

transition function, T : S × A × S → [0, 1], denotes the

probability of transitioning from state s to s′. The reward

function, R : S ×A → R, quantifies the immediate reward

gained by executing action a in state s. The observation

function, O : S×A×Ω → [0, 1], specifies the likelihood of

receiving observation o in state s by taking action a. Lastly,

γ is the discount factor used in the Bellman equation for

iterative optimal value derivation.

Under partial observability, since the agent cannot directly

observe the underlying physical state, it instead maintains a

probability distribution over S , namely the belief state, that

indicates its confidence about which state it is in. Over time,

the belief state is updated in a Bayesian manner following

Eq. (2), where it is first updated by action a and transition

dynamics T , and then corrected by observation o′ and ob-

servation function O. η is the normalization factor. This

procedure is also called the state estimation.

b(s′) = ηO(s′, a, o′)
∑

s∈S
T (s′|s, a)b(s), (2)

However, this presents a significant computational challenge

for the optimal policy derivation of POMDPs. Consider a

system with n physical states; the policy π must be defined

across a (n− 1)-dimensional continuous belief space, mak-

ing it prohibitively expensive to solve by standard value or

policy iteration. This challenge, known as the curse of dimen-

sionality, is one of the two primary factors that contribute

to the computational intractability of solving POMDPs ex-

actly [25]. The other factor, termed the curse of history,

arises from the exponential growth in the number of dis-

tinct action-observation histories to be evaluated for policy

optimization as the planning horizon extends.

To mitigate these challenges, we adopt QMDP [18, 25],

a heuristic that offers an approximate solution to POMDPs,

effectively addressing both the curse of dimensionality and

the curse of history. QMDP employs a simplified model that

considers partial observability at the current planning step

but assumes full observations for subsequent steps, which

reduces computational complexity while still accounting for

the uncertainty, thus offering a computationally efficient,

approximate solution scaling to larger problems.

QMDP obtains the optimal Q function by solving the cor-

responding fully observable MDP via iterating the following

Bellman equation until convergence.

Qk+1(s, a) = R(s, a)+γ
∑

s′
T (s′|s, a)max

a′

Qk(s′, a′), (3)

where k ∈ [1,K] denotes the current iteration round. Finally,

we obtain the QMDP policy by:

π(b) = argmax
a

∑
s
QK(s, a)b(s). (4)

3. Methodology

This section introduces our novel navigation framework,

which harnesses diffusion models for generating action tra-

jectories in complex, partially observable environments. This

framework comprises 1) the diffusion policy module and 2)

the value network. The diffusion policy module, outlined

in Sec. 3.2, lies in generating plans based on partial envi-

ronment maps, enhancing the agent’s decision-making as it

gathers more environmental data. Our closed-loop planning

process, underpinned by receding horizon control, ensures

a smooth and coherent action trajectory formulation. To

address the limitations of behavioral cloning in dynamic

settings, we incorporate the value guidance as detailed in

Sec. 3.3. This enhancement, critical in complex environ-

ments, drives the agent away from obstacles and dead ends.

Our method integrates state estimation with QMDP to ap-

proximate the optimal value function and reinforce the pol-

icy’s efficacy. We train these two modules separately and

incorporate them for inference. A unique aspect of our ap-

proach, described in Sec. 3.4, involves adapting our robust

2D policy for 3D environments. We transform 3D RGB-D

inputs into 2D BEV maps, allowing for a seamless transfer

of 2D navigation policy to 3D scenarios. This method over-

comes the challenges posed by the deficiency of real-world

3D data, thus facilitating efficient and accurate navigation in

various settings.

3.1. Problem Formulation

We aim to address a trajectory optimization problem similar

to that in [12] but under partial observability. In a discrete-

time control system, where the dynamics are defined as

st+1 = f(st, at) at state st and given action at, we seek to

search for a plan, in the form of an action sequence, a∗
0:T ,

that maximizes an objective function J . This objective

function is factorized over per-timestep Q values, Qt(bt, at):

J (b0,a0:T) =

T∑

t=0

Qt(bt, at) =

T∑

t=0

Qt(st, at)bt(st),

a
∗
0:T = argmax

a0:T

J (b0,a0:T).

(5)

17945

diffusion policy

...

obstacles observedagent unobserved execution
horizon

prediction
horizon

obsv.
horizon

Figure 2. The architecture of diffusion-model-based plan generator.

The top sequence represents local observations over time. The grids

in the middle form the sequence of cumulative partial maps, which

sufficiently encapsulate the agent’s long-term memory and environ-

ment features. The bottom sequence represents the generated plan

in the form of action trajectories. During training, the input of the

framework at timestep t consists of the partial map, e(t), and expert

action trajectory, τa(t); during inference, the input comprises e(t)

and a Gaussian noise of the same shape as τa(t).

In our model, the belief bt is updated according to Eq. (2)

throughout the planning horizon T . We define the action

trajectory at time t as τa,(t) = (at, at+1, . . . , at+T−1),
which the diffusion model generates, conditioned on the

partially observed environment e(t). This environment

map, e(t), compiles the trajectory of local observations

from timestep 0 to t. Given a previously obtained map

e(t−To), we have e(t) = (e(t−To), τo,(t)), where τo,(t) =
(ot−To+1, ot−To+2, . . . , ot) and To represent the observation

horizon, as illustrated in Fig. 2. In our framework, To aligns

with Ta, the horizon for action execution, which is further

detailed in Sec. 3.2.

3.2. Diffusion­model­based Plan Generation

As depicted in Fig. 2, our framework utilizes a diffusion

model to generate action trajectories from timestep t. These

trajectories are conditioned on the partial environment map,

e(t), which aggregates information observed up to t. As a

result, as the agent continues to explore its surroundings,

its understanding of the overall environment gradually en-

hances, facilitating more rational decision-making.

The process of plan generation in our framework operates

in a closed-loop manner. In each iteration, we input the

partial environment map into the diffusion model. This map,

which encapsulates sufficient statistics of the observation his-

tory, acts as the key condition, steering the diffusion model’s

conditional generation process. In a partially observable

scenario, the agent uncovers new areas incrementally, gradu-

ally removing the mist and enriching the existing map with

additional world information. To encourage the temporal

coherence and smoothness of formulating action trajectories

during planning, we adopt the receding horizon control strat-

egy [20]. In practice, at each timestep t, the policy processes

encoder

action logits
valid actions

action threshold

~valid actions

R_valid

R_invalid

reward function

Figure 3. Reward function conditioned on the partial environmen-

tal map. The model learns a valid action mask that filters out invalid

actions using soft thresholding. This learned embedding is subse-

quently used to construct the reward function.

the current partial environment map, et, forecasts actions

for the next Th steps (the prediction horizon), and then im-

plements the initial Ta steps (the execution horizon) before

the next planning cycle, thereby streamlining the decision-

making process.

We train a diffusion model to learn a robust policy that

captures the conditional distribution p(τa,(t)|e(t)). We for-

malize the denoising diffusion process, theoretically in the

form of τ i−1
a,(t) ∼ pθ(τ

i−1
a,(t)|τ

i
a,(t)) as

τ
i−1
a,(t) = δ(τ i

a,(t)−αϵθ(e(t), τ
i
a,(t), i)+ϵ

i),where ϵ
i ∼ N (0, I)

(6)

Here, δ denotes the step size, α represents the learning rate,

and i is the diffusion step. We employ a mean squared error

to account for the loss function:

LMSE(θ) = Ei,ϵ[∥ϵ
i − ϵθ(e(t), τ

0
a,(t) + ϵ

i, i)∥2]. (7)

3.3. Value­guided Exploration­safe Planning

Employing only the diffusion plan generator is essentially

behavioral cloning [4, 24] under partial observability. This

adaptation, however, retains inherent weaknesses in navi-

gating complex and dynamic environments. A notable chal-

lenge arises when a policy conditioned on limited environ-

mental data inadvertently leads the agent to a dead end. Since

expert demonstrations do not cover such circumstances, the

agent might struggle to backtrack and seek alternate paths.

This exposes a common downside to diffusion-model-based

behavioral cloning methods: a lack of deep environmental

understanding.

Incorporating value guidance to direct the agent to the

goal while avoiding obstacles presents an effective solution

to this challenge. Several studies [2, 12, 33] have explored

implementing value guidance in fully observable settings

to enhance diffusion policies. To tackle partial observabil-

ity, we augment one of our baselines [11] by integrating a

state estimation module, utilizing QMDP to approximate the

optimal value function under partially observable conditions.

Value function with state estimation. The state estimation

module implements a Bayesian filter that maps a belief, an

action, and an observation to the subsequent belief according

to Eq. (2). This module comprises two components: 1) a

17946

reward function Q function

Belief

max

along

Trans_fn

state value function

Q function

iterations

along

action
values

Figure 4. QMDP value iteration module. The learned reward func-

tion undergoes K rounds of iterations, consisting of alternating

maximization over actions and convolution with the transition func-

tion T̂m. The outcome, soft-indexed by the current belief, derives

the final action values of this QMDP planner.

prediction module that learns a state transition function that

predicts the next belief in a translation-invariant manner for

each action, and 2) a belief correction module that weights

the updated belief by a jointly learned observation function.

For the value function module (Fig. 3), we first train an action

validity estimator to explicitly recognize valid and invalid

actions for each state. To achieve this, our framework learns

the logarithmic probability of each action, Âlogit(s, a), and

an action threshold function, Âthresh(s), both conditioned on

the partial environment map. Specifically, Âlogit and Âthresh

are part of the same learned embedding, comprising |A|+ 1
channels, where |A| denotes the size of the action space. The

first |A| channels form Âlogit, while the last channel serves

as Âthresh. Thus, we derive the valid action, Â, by applying

a soft-threshold to Âlogit(s, a) using Âthresh(s):

Â(s, a) = σ(Âlogit(s, a)− Âthresh(s)),

where σ is the Sigmoid function. Once we acquire Â and

its negation, ∼Â, we construct the final reward function by

merging them with the separately learned reward parameters:

R̂m for valid actions and R̂f for invalid ones. In this reward

learning framework, R̂f is typically assigned large negative

values, effectively reducing collisions during navigation. We

formally define our new reward function as follows:

R(s, a) = R̂f (1− Â(s, a))+

Â(s, a)
∑

s′
T̂m(s′|s, a)R̂m(s, a, s′),

(8)

where T̂m estimates the subsection of true state transition

pertaining to valid actions. Given this enhanced reward func-

tion, the subsequent value iteration module, used to compute

the optimal value function, adopts the design as depicted in

Fig. 4. After K iterations, the resulting Q function is soft

indexed by current belief to derive the approximated QMDP

optimal value function, which we use to guide the diffusion

policy in inference.

Value-guided plan selection. We use a well-learned value

function to guide the diffusion policy. The stochastic nature

of diffusion models, stemming from noise sampling, enables

us to generate diverse plans given the same conditions. By

calculating the sum of action values along each plan, we

determine the values of a set of action sequences and se-

Algorithm 1 Best Plan Candidate Backtracking

Require: value function Q(t)(s, a; θ), diffusion policy ϵθ , best

plan memory C, best plan τ̂
∗
a,(t)

1: τ̂
∗
a,(t′) ← empty, C ← ∅

2: for t = 0, 1, . . . , T do

3: C ← ϵθ(e(t), τ
N
a,(t), N) executed for L times

4: if τ̂a,(t′) is not empty then

5: C ← C ∪ {τ̂ ∗
a,(t′)}

6: end if

7: τ̂
∗
a,(t) ← argmax

τ∈C
1
|τ |

∑|τ |−1
i=0 Q(t)(sτi

, aτi
; θ)b(t+i)(sτi

)
{Eq. (9)}

8: ∆t← min(Ta, |τ̂
∗
a,(t)|)

9: Execute first ∆t actions of τ̂ ∗
a,(t)

10: Remove first ∆t actions from τ̂
∗
a,(t)

11: τ̂a,(t′) ← τ̂
∗
a,(t)

12: end for

lect the one with the highest value to execute. This design

substantially enhances the navigation’s success rate.

However, while the receding horizon control (Sec. 3.2)

used in the diffusion plan generation encourages temporal

coherence of predicted multi-step plans and strengthens their

robustness against latency, it can lead to suboptimal plans.

Specifically, when the policy predicts Th steps of actions

and executes the first Ta steps, a left-behind but optimal

action a might be overwritten by some suboptimal a′ in the

re-planning starting from the end of the execution sequence.

This issue occurs due to a covariate shift of testing observa-

tions from expert demonstration and the diffusion process’s

stochasticity. To cope with this issue, we propose maintain-

ing a buffer to backtrack the best action trajectory candidates

from the past, preserving optimal actions in at least one

candidate to avoid inevitable failure. Eq. (9) demonstrates

the criterion of selecting the optimal plan at timestep t. In

this equation, τ̂ ∗
a,(t) represents the predicted optimal action

trajectory selected from a set of trajectories C, τ̂ ∗
a,(t′) is the

best plan candidate selected last time with executed actions

removed, where t′ is the last timestep a plan is selected. Q(t)

refers to the learned Q function at the current timestep. The

pseudocode for the backtracking process is provided in Al-

gorithm 1, where N is the total number of diffusion steps

for plan generation, and L is the number of candidates to

generate each time. Note that we only apply backtracking

during inference. Hence, the refined policy becomes:

τ̂
∗
a,(t) = argmax

τ∈C∪{τ̂∗

a,(t′)
}

1

|τ |

|τ |−1∑

i=0

Q(t)(sτi
, aτi

; θ)b(t+i)(sτi
). (9)

3.4. 2D to 3D Policy Transfer

3D data scarcity poses a significant challenge due to con-

straints in the real world. Training models on such sparse

datasets often leads to overfitting, compromising the abil-

ity to generalize to new environments. To circumvent this,

we leverage the robust policy developed for the 2D domain,

17947

Figure 5. An illustration of constructing a point cloud for a given

scene and its subsequent projection onto a BEV map. In this specific

example, objects such as the table, chair, and various other furniture

pieces in the kitchen, the two sofas and television cabinets in the

living room, and the surrounding walls are identified as obstacles on

the BEV map. Conversely, areas of the floor that remain uncovered

by any objects are designated as free space.

aiming for a zero-shot application to 3D environments. This

necessitates transforming 3D inputs into a format compatible

with our established 2D policy. In the context of 3D embod-

ied navigation, the agent processes first-person-view RGB-D

images. To convert these into 2D BEV maps, we first con-

struct a point cloud from accumulated RGB-D data and then

apply pre-trained semantic segmentation models [35] to cat-

egorize various elements (Fig. 5). Key labels for crafting the

2D grid map include floors, indicating traversable areas, and

walls or furniture, representing obstacles.

We follow a multi-step process to project these segmented

components onto a BEV plane. Initially, we trim the point

cloud along the Z-axis, which is absent in the BEV repre-

sentation, to a fixed proportion and perform downsampling.

Subsequently, we project the points onto a grid. Whether

each cell is classified as free space or an obstacle hinges on

the prevalence of points identified as the floor within it. This

method allows us to replicate a 2D grid map analogous to

those used in our 2D maze experiments, effectively bridging

the gap between route planning of 2D and 3D navigation.

4. Experiments

4.1. Task Setups

GridMaze2D. This classic domain provides diverse syn-

thetic environments and tasks for evaluating our method. In

this domain, the agent is expected to explore an arbitrary

partially observable maze, find the goal, and execute a termi-

nation action, Done, to finish the current task. If the agent

terminates the task at the end of the goal, it successfully

completes the mission. Otherwise, running into an obstacle,

executing Done in the wrong state, or failing to terminate

the task all lead to failure. Each environment of this domain

corresponds to a unique 2D maze map that presents a BEV

of that environment. The observed partial maps are part of

the maze map. Please see the Appendix for more details

about the composition and generation of partial maps.

The valid action space contains eight directional move-

ments and a termination action, all of which are categorical.

Hence, we use the bit encoding technique [3] to convert them

into bit arrays for easy retrieval from Gaussian noise. During

inference, we decode the sampled action trajectory back into

categorical form. Please refer to the Appendix for technical

details. The state space consists of the maze’s full (X,Y)

coordinates.

We simulate navigation in randomly generated mazes to

collect expert trajectories. During each simulation, we record

the agent’s actions, positional coordinates (physical states),

and partial environment maps (observation history) at each

timestep throughout the trajectory. The expert, equipped

with prior knowledge of the goal location, employs an in-

formed search strategy like A∗ to navigate toward the goal.

Upon gathering sufficient expert trajectories, we partition

them into training and validation sets, ensuring that the envi-

ronments in the validation data remain unseen while training.

Active Vision Dataset. This dataset for 3D embodied naviga-

tion enables interactive navigation using real image streams,

as opposed to synthetic rendering. AVD consists of 19 indoor

environments, densely captured by a robot navigating on a

30cm grid with 30◦ rotational increments. The comprehen-

sive image set from each scene allows for the simulation of

various trajectories with a certain degree of spatial granular-

ity. Additionally, AVD provides bounding box annotations

for object instances, a feature we utilize to assess semantic

navigation performance. In this domain, the agent’s objec-

tive is to navigate an indoor environment to locate and reach

a specified object.

The action setup is similar to that in the GridMaze2D

domain, where the agent has the option to move in any of

eight directions. Upon identifying and reaching the target

object, the agent must actively execute Done command to

terminate the current task. This time, we define the state

space as the cell coordinates of the BEV map corresponding

to each scene. A key difference from the GridMaze2D setup

is that actions that lead to collisions with obstacles do not

cause instant failure. Instead, the agent remains at the point

until it navigates a clear path.

To assess the effectiveness of zero-shot policy transfer

from GridMaze2D to the AVD domain, facilitated by point

cloud projection, we chose 8 out of the 19 scenes containing

a Coca-Cola glass bottle as our validation set. To evalu-

ate CALVIN and our retrained policy with additional RGB

inputs, we adopt cross-validation, using one scene for vali-

dation and the others for training.

4.2. Result Analysis

For the GridMaze2D domain, we train our model on 15×15

mazes with view range 2. To evaluate robustness against dif-

ferent observability levels, we test the learned policy across

three view range settings. To evaluate the generalization

capability, we test our model across unseen 15×15, 20×20,

and 30×30 mazes. We compare our approach regarding

the success rate of completing the navigation task with two

17948

CALVIN [11] Diffusion Policy [4] Ours

15×15 (vr=1) 0.832±0.030 0.024±0.015 0.886±0.011

15×15 (vr=2) 0.855±0.030 0.060±0.022 0.906±0.010

15×15 (vr=3) 0.900±0.026 0.110±0.031 0.911±0.013

20×20 (vr=2) 0.658±0.016 0.012±0.010 0.713±0.020

30×30 (vr=2) 0.326±0.030 0.000±0.000 0.624±0.032

Table 1. For each method, we train the model on 15×15 mazes with

a view range equal to 2 and evaluate in three different maze sizes

with three different view range settings. The results demonstrate

their scalability to unseen and larger environments. Overall, our

approach has better performance.

baseline methods: 1) CALVIN [11], an autoregressive dif-

ferentiable planner, and 2) Diffusion Policy [4], a diffusion-

based behavioral cloner. The results represent the mean

and standard deviation across five trials, each encompassing

500 distinct maze simulations. For the AVD, we redeploy a

model trained on 30×30 mazes and then transform the input

RGB-D images into a point cloud. It is then projected onto a

2D partial environment map in each planning step. To evalu-

ate the pre-trained model’s zero-shot transfer to real-world

scenes, we only feed it with the partial map, the same as in

2D mazes. To assess the model retrained with RGB-D in-

puts, we first feed the FPV images into the additional feature

extraction module and then concatenate the output embed-

ding with the partial map as the final input to the model. In

this setup, we compare our method with CALVIN and its

variant that employs our 2D-to-3D policy transfer technique,

deriving the mean and standard deviation of 5 trials, each

comprising 50 simulations per scene.

We first analyze the overall performance of each method-

ology regarding success rate in different domains. The nu-

merical results shown in Tab. 1 reveal that CALVIN achieves

solid performance with a mean success rate of 0.855 on

15×15 mazes with view range 2 (standard setup), imply-

ing that it learns a proficient value function and identifies a

near-optimal policy based on it. However, when scaling to

larger mazes, the performance of both two variants notice-

ably declines. The method achieves the best performance in

only one test scene. This is likely due to the increased plan-

ning horizon. In more expansive environments, the planning

horizon extends, requiring more rounds of value iteration

to adapt effectively. Nevertheless, since the function ap-

proximation deprives the value iteration of its monotonic

improvement property, simply applying the model inference

for additional iterations does not always work in larger envi-

ronments. CALVIN’s performance in embodied indoor navi-

gation (Tab. 2) is restricted by the small size of the dataset.

The policy learned in scenes belonging to the training set is

hard to generalize to unseen scenes in the validation set.

Diffusion Policy, equivalent to our framework without

value guidance, attains a far lower success rate in Grid-

Maze2D. This behavioral cloning approach hinges solely

on conditional diffusion for policy derivation, neglecting

the value function’s role. As the maze expands, diffusion

Scene CALVIN-2D CALVIN-3D Ours (Zero-shot) Ours (Retrain)

Home_001_1 0.692±0.037 0.720±0.052 0.769±0.038 0.776±0.028

Home_001_2 0.627±0.037 0.640±0.048 0.655±0.033 0.732±0.030

Home_002_1 0.735±0.035 0.740±0.048 0.728±0.034 0.755±0.027

Home_003_1 0.606±0.042 0.642±0.060 0.638±0.041 0.686±0.031

Home_003_2 0.558±0.033 0.590±0.043 0.603±0.033 0.622±0.030

Home_004_1 0.647±0.040 0.680±0.050 0.684±0.042 0.695±0.036

Home_007_1 0.587±0.038 0.610±0.045 0.584±0.039 0.601±0.035

Home_010_1 0.728±0.033 0.736±0.043 0.769±0.032 0.781±0.028

Mean succ. rate 0.635±0.032 0.682±0.047 0.679±0.040 0.706±0.032

Table 2. Performance of CALVIN and our method in AVD’s em-

bodied navigation and object searching tasks, where the goal is to

locate a Coca-Cola glass bottle in an indoor scene. It presents the

agent’s success rates across various scenes. Our method, which

achieves comparable results to CALVIN in zero-shot policy transfer

from the 2D domain, surpasses CALVIN in scenarios retrained with

additional RGB inputs, with an exception in one scene.

policy’s effectiveness further diminishes, failing all navi-

gation tasks in 30×30 mazes. This trend underscores the

significance of value guidance in partially observable nav-

igation, particularly when the target’s location is unknown

beforehand. Given the inferior performance, we exclude the

diffusion policy from the comparative analysis in the more

intricate AVD domain.

Our approach demonstrates a strong success rate of

0.906 in the standard setup of GridMaze2D, outperform-

ing CALVIN and setting new state-of-the-art performance.

Despite a performance dip in larger environments, the de-

cline is gradual, underscoring our work’s superior scalability.

This success is largely due to the incorporation of multi-step

action values in our value-guided plan selection for trajec-

tory optimization (Eq. (9)) instead of focusing solely on the

next step. This approach effectively mitigates potential colli-

sions or repetitions during navigation. In the AVD domain,

the superiority of our approach becomes more evident. In-

dependent of limited scenes for policy learning, our policy

transferred from GridMaze2D backed by extensive train-

ing data demonstrates improved generality and robustness,

leading to better performance as shown in Tab. 2.

Fig. 6 illustrates a scenario where the three methods navi-

gate the same maze. CALVIN falls into an indefinite loop

due to the opposite actions suggested by the learned policy

for observations of two consecutive steps. This is due to a

combination of suboptimal modeling of the decision process

and autoregressive single-step planning. Diffusion Policy

fails early, especially after reaching a dead end, mainly due

to two aspects. First, since the expert has full observation

of the environment and is optimal, its demonstration for

training never involves situations of encountering dead ends.

Second, the behavior cloning essence of the Diffusion Pol-

icy is known to be effective in goal-conditioned planning.

However, the agent cannot access the goal under partial

observability until it is detected, significantly dropping the

method’s performance. On the contrary, our approach avoids

loops by multi-step action prediction. It circumvents obsta-

17949

initial point

target

agent's traj. till termination

traj. back from a deadend

observed area

unobserved area

expert demo.

Diffusion Policy CALVIN Ours

Figure 6. A scenario where three methods navigate the same maze.

Diffusion Policy (left) collides with an obstacle after encountering

a dead end, while CALVIN (middle) gets trapped in a repeating

loop at a corner. Our approach (right), however, successfully back-

tracks from a dead end and identifies an alternate path to the goal,

demonstrating its superior performance. Please note that the ex-

pert demonstration is gathered under full observability, with prior

knowledge of the target’s location. The heat maps illustrate the

value learned at each spatial location by CALVIN and our frame-

work, respectively, with brighter colors indicating higher values.

cles and safely backtracks from dead ends via effectively

learned value guidance. This helps generalize the policy to

unseen situations. Using the value as a guide also eliminates

the need for access to the goal.

We then evaluate the robustness of the presented meth-

ods for different observability levels. As shown in Tab. 1, a

smaller view range, indicating a lower observability level,

generally leads to performance degradation. Among the

three methods, ours exhibits superior performance and adapt-

ability. As the view range increases from vr=1 to vr=3, our

method consistently outperforms the others and is the least

sensitive to the variation. CALVIN also shows good robust-

ness and scalability, though it does not match our approach’s

performance. The Diffusion Policy struggles significantly in

comparison, showing the least robustness and lowest perfor-

mance across all observabilities. This analysis underscores

the effectiveness and reliability of our method.

4.3. Ablation Study

We conduct a series of ablation studies to assess the contri-

bution of each core component of our framework to perfor-

mance in 15×15 grid mazes, and AVD embodied naviga-

tion. The full version can be represented as multi-samp.+val.

guidance+best-plan memo.

Effect of multi-sampling. The Diffusion Policy [4], em-

ploys single-sampling. In contrast, our approach samples

multiple times for each planning. The inherent stochasticity

of diffusion sampling generates varied outputs, from which

we choose the most frequent outcome for execution using

a voting mechanism. This strategy modestly increases the

success rate, underscoring the advantages of leveraging dif-

fusion models for multiple rounds of sampling.

Effect of value guidance. Leveraging multi-sampling, we re-

Ablation GridMaze2D AVD

Full version 0.906±0.010 0.776±0.028

single-samp. 0.060±0.022 0.024±0.012

multi-samp.+voting 0.114±0.025 0.082±0.026

multi-samp.+val. guidance 0.538±0.010 0.542±0.031

w/o PC to BEV projector N/A 0.486±0.036

Table 3. Ablation experiments on navigation success rate in 15×15

GridMaze2D and Home_001_1 scene of AVD.

place the voting mechanism for plan selection with a learned

value function. Instead of choosing the most frequently sam-

pled plan, we select the one with the highest multi-step Q

value, as determined by the value function. This change

markedly enhances performance, elevating success rates

from 0.114 and 0.082 to 0.538 and 0.542 for GridMaze2D

and AVD, respectively. This highlights the essential role of

value-based guidance in our model’s effectiveness.

Effect of best plan memory. We explore the significance

of backtracking the past best plan, based on multi-sampling

and value guidance. This mechanism is responsible for the

performance gap between multi-samp.+val. guidance and

the full version. The best plan memory addresses the issue of

an optimal plan being replaced by a suboptimal one during

re-planning in the context of receding horizon control. This

underscores its crucial role in our methodology.

Effect of point cloud to BEV projector. Eliminating the

semantic-segmentation-based projector hinders our frame-

work’s ability to apply the pre-trained policy for 2D domain

to 3D navigation, necessitating the development of a new 3D-

specific policy. To maintain the backbone of the diffusion-

based plan generator, we adopt the lattice point net (LPN)

used in CALVIN-3D for end-to-end policy learning. The

complexity of this network alteration, coupled with the lack

of ground-truth 2D maps for supervised projector training,

leads to training difficulties, which causes a drop in success

rate from 0.776 to 0.486. This emphasizes the importance of

the semantic-segmentation-based projector in enabling the

2D policy’s zero-shot transfer to 3D navigation.

5. Conclusion

This paper introduces a novel value-guided diffusion ap-

proach for trajectory-level plan generation, adept at navigat-

ing complex, long-horizon challenges under partial observ-

ability. Our approach exhibits remarkable versatility in both

2D and 3D environments and outperforms state-of-the-art

methods. Extensive ablations underscore the importance of

key constituents. Notably, our method effectively addresses

the uncertainties inherent in partially observable environ-

ments, which is promising for real-world applications.

Acknowledgments: The first author especially thanks Bin

Duan for his support during both submission and rebuttal.

This research is supported by NSF IIS-2309073 and ECCS-

212352101. This article solely reflects the opinions and

conclusions of its authors and not the funding agencies.

17950

References

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum,

Tommi S. Jaakkola, and Pulkit Agrawal. Is conditional gener-

ative modeling all you need for decision making? In ICLR,

2023. 1

[2] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and

Jun Zhu. Offline reinforcement learning via high-fidelity

generative behavior modeling. In ICLR, 2023. 2, 4

[3] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog

bits: Generating discrete data using diffusion models with

self-conditioning. arXiv:2208.04202, 2022. 6

[4] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric

Cousineau, Benjamin Burchfiel, and Shuran Song. Diffu-

sion policy: Visuomotor policy learning via action diffusion.

In RSS, 2023. 1, 2, 4, 7, 8

[5] Xin Deng, Wenyu Zhang, Qing Ding, and Xinming Zhang.

Pointvector: A vector representation in point cloud analysis.

In CVPR, 2023. 2

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models

beat gans on image synthesis. In NeurIPS, 2021. 2

[7] Yilun Du and Igor Mordatch. Implicit generation and gener-

alization in energy-based models. arXiv:1903.08689, 2019.

2

[8] Yilun Du, Shuang Li, and Igor Mordatch. Compositional

visual generation with energy based models. In NeurIPS,

2020. 2

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. In NeurIPS, 2020. 2

[10] Aapo Hyvärinen and Peter Dayan. Estimation of non-

normalized statistical models by score matching. JMLR, 6(4):

695–709, 2005. 2

[11] Shu Ishida and João F. Henriques. Towards real-world navi-

gation with deep differentiable planners. In CVPR, 2022. 1,

2, 4, 7

[12] Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey

Levine. Planning with diffusion for flexible behavior synthe-

sis. In ICML, 2022. 1, 2, 3, 4

[13] Leslie Pack Kaelbling, Michael L Littman, and Anthony R

Cassandra. Planning and acting in partially observable

stochastic domains. Artificial intelligence, 101(1-2):99–134,

1998. 1

[14] Peter Karkus, David Hsu, and Wee Lee. Qmdp-net: Deep

learning for planning under partial observability. In NeurIPS,

2017. 1, 2

[15] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.

Elucidating the design space of diffusion-based generative

models. In NeurIPS, 2022. 2

[16] Sergey Levine, Aviral Kumar, George Tucker, and Justin

Fu. Offline reinforcement learning: Tutorial, review, and

perspectives on open problems. arXiv:2005.01643, 2020. 2

[17] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi

Tomizuka, and Ping Luo. Adaptdiffuser: Diffusion models as

adaptive self-evolving planners. In ICML, 2023. 1

[18] Michael L Littman, Anthony R Cassandra, and Leslie Pack

Kaelbling. Learning policies for partially observable environ-

ments: Scaling up. In ICML, 1995. 3

[19] Gabriel B. Margolis and Pulkit Agrawal. Walk these ways:

Tuning robot control for generalization with multiplicity of

behavior. In CoRL, 2022. 1

[20] David Q Mayne and Hannah Michalska. Receding horizon

control of nonlinear systems. In CDC, 1988. 4

[21] Alexander Quinn Nichol and Prafulla Dhariwal. Improved

denoising diffusion probabilistic models. In ICML, 2021. 2

[22] Buqing Nie, Yue Gao, Yidong Mei, and Feng Gao. Capability

iteration network for robot path planning. IJRA, 37(3):266–

272, 2022. 2

[23] Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian

Wu. Learning non-convergent non-persistent short-run mcmc

toward energy-based model. In NeurIPS, 2019. 2

[24] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell,

Mingfei Sun, Raluca Georgescu, Sergio Valcarcel Macua,

Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al.

Imitating human behaviour with diffusion models. In ICLR,

2023. 1, 2, 4

[25] Joelle Pineau. Tractable planning under uncertainty: exploit-

ing structure. Carnegie Mellon University, 2004. 3

[26] Daniel Schleich, Tobias Klamt, and Sven Behnke. Value

iteration networks on multiple levels of abstraction. In RSS,

2019. 2

[27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In ICML, 2015. 2

[28] Edward J Sondik. The optimal control of partially observable

markov decision processes. PhD thesis, Stanford University,

1971. 1

[29] Yang Song and Stefano Ermon. Generative modeling by

estimating gradients of the data distribution. In NeurIPS,

2019. 2

[30] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-

hishek Kumar, Stefano Ermon, and Ben Poole. Score-based

generative modeling through stochastic differential equations.

In ICLR, 2021. 2

[31] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and

Pieter Abbeel. Value iteration networks. In NeurIPS, 2016.

1, 2

[32] Tsun-Hsuan Wang, Juntian Zheng, Pingchuan Ma, Yilun Du,

Byungchul Kim, Andrew Everett Spielberg, Joshua B. Tenen-

baum, Chuang Gan, and Daniela Rus. Diffusebot: Breeding

soft robots with physics-augmented generative diffusion mod-

els. In NeurIPS, 2023. 2

[33] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Dif-

fusion policies as an expressive policy class for offline rein-

forcement learning. In ICLR, 2023. 2, 4

[34] Max Welling and Yee W Teh. Bayesian learning via stochastic

gradient langevin dynamics. In ICML, 2011. 2

[35] Yu-Qi Yang, Yu-Xiao Guo, Jian-Yu Xiong, Yang Liu, Hao

Pan, Peng-Shuai Wang, Xin Tong, and Baining Guo. Swin3d:

A pretrained transformer backbone for 3d indoor scene under-

standing. arXiv:2304.06906, 2023. 2, 6

17951

