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Abstract

In the field of 3D object detection for autonomous driv-
ing, LiDAR-Camera (LC) fusion is the top-performing sen-
sor configuration. Still, LiDAR is relatively high cost, which
hinders adoption of this technology for consumer automo-
biles. Alternatively, camera and radar are commonly de-
ployed on vehicles already on the road today, but perfor-
mance of Camera-Radar (CR) fusion falls behind LC fusion.
In this work, we propose Camera-Radar Knowledge Distil-
lation (CRKD) to bridge the performance gap between LC
and CR detectors with a novel cross-modality KD frame-
work. We use the Bird’s-Eye-View (BEV) representation as
the shared feature space to enable effective knowledge dis-
tillation. To accommodate the unique cross-modality KD
path, we propose four distillation losses to help the stu-
dent learn crucial features from the teacher model. We
present extensive evaluations on the nuScenes dataset to
demonstrate the effectiveness of the proposed CRKD frame-
work. The project page for CRKD is https://song-
jingyu.github.io/CRKD.

1. Introduction
Perception is an important module for achieving safe and
effective autonomous driving [3, 15, 55]. 3D object de-
tection is an essential task in perception as it is of great
significance for subsequent tasks [44, 47, 50, 54]. Among
various perceptual sensors used by autonomous driving re-
searchers, LiDAR, camera and radar are the most common
choices to enable autonomy on the road [50]. Sensor fu-
sion techniques are usually used to improve the detector’s
performance and robustness. LiDAR-Camera (LC) fusion
has been widely demonstrated as the top-performing sensor
configuration for 3D object detection [1, 2, 7, 14, 38, 61].
However, the high cost of LiDAR constrains the wide appli-

*Equal contribution.
†Corresponding author.
This work was supported by a grant from Ford Motor Company via

the Ford-UM Alliance under award N028603.

Teacher: LiDAR-Camera Detector

Student: Camera-Radar Detector

LiDAR Camera

CameraRadar

CRKD: Cross-modality Knowledge Distillation

Distance Measurement

Lateral 
Resolution

Object
Classification

Weather 
Robustness

Velocity

Darkness 
Visibility

LiDAR-Camera
Camera-Radar
CRKD (Ours)

Figure 1. We propose CRKD to conduct a novel cross-modality
knowledge distillation path from a LiDAR-camera teacher to a
camera-radar student. We present a radar chart to illustrate the
complementary nature of these sensing configurations and the im-
provement that CRKD can enable.

cation of this configuration. Though Camera-Only (CO) de-
tectors have demonstrated impressive performance in recent
Bird’s-Eye-View (BEV) based frameworks [16, 17, 33, 34],
the camera’s vulnerability to lighting conditions and lack of
accurate depth measurements motivates researchers to turn
to other sensors such as radar. Radar is robust to varying
weather and lighting conditions and features automotive-
grade design and low cost. Radars are already highly ac-
cessible on most cars equipped with driver assistance fea-
tures. Compared with LiDAR, the radar measurements are
sparse and noisy, which makes designing a Camera-Radar
(CR) detector challenging. Recent CR detectors have lever-
aged the advancement brought by BEV-based Camera-Only
(CO) detectors [16, 17, 33, 34] to achieve further improve-
ment in accuracy and robustness to weather and lighting
changes [28, 70].

Despite the advancement in architecture design, there is
still a distinct performance gap when comparing LiDAR-
Only (LO) and LC detectors against CO and CR detec-
tors. Recent research has focused on applying the Knowl-
edge Distillation (KD) technique to alleviate this gap [12,
13, 26, 52, 68]. Generally, KD features a teacher-student
framework that aims to propagate the informative knowl-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15470



edge from a well-performing teacher model to facilitate the
learning process of the student model. This usually leads to
improved performance compared to simply training the stu-
dent model on the same task. The KD technique has been
employed in either intra-modal [29, 53, 64, 66] or cross-
modal [5, 6, 13, 18, 26, 68] configurations for 3D object
detection. Though many cross-modal methods use a single-
modality detector as the teacher model to leverage the priv-
ileged LiDAR data that is widely available in open-source
datasets, they mainly focus on distilling knowledge to a
LiDAR-based or camera-based student detector. We argue
the importance of designing a distillation path from an LC
teacher detector to a CR student detector, which could bene-
fit from the existing superior design of LC detectors and the
shared point cloud representation between measurements of
LiDAR and radars [59].

Inspired by the above observations, we propose CRKD:
an enhanced Camera-Radar 3D object detector with cross-
modality Knowledge Distillation (Fig. 1) that distills
knowledge from an LC teacher detector to a CR student de-
tector. To our best knowledge, CRKD is the first KD frame-
work that supports a fusion-to-fusion distillation path. As
the LiDAR sensor is used only during training, we empha-
size the value of CRKD as it could facilitate the practical
application of perceptual autonomy with a low-cost and ro-
bust CR sensor configuration.

To summarize, our main contributions are as follows:
• We propose a novel cross-modality KD framework to en-

able LC-to-CR distillation in the BEV feature space. With
the transferred knowledge from an LC teacher detector,
the CR student detector can outperform existing baselines
without additional cost during inference.

• We design four KD modules to address the notable dis-
crepancies between different sensors to realize effective
cross-modality KD. As we operate KD in the BEV space,
the proposed loss designs can be applied to other KD
configurations. Our improvement also includes adding a
gated network to the baseline model for adaptive fusion.

• We conduct extensive evaluation on nuScenes [2] to
demonstrate the effectiveness of CRKD. CRKD can im-
prove the mAP and NDS of student detectors by 3.5%
and 3.2% respectively. As our method focuses on a novel
KD path with a large modality gap, we provide thorough
study and analysis to support our design choices.

2. Related Works
2.1. Multi-modality 3D Object Detection

The multi-modality 3D object detectors generally outper-
form single-modality detectors in accuracy and robustness
as the perceptual sensors (e.g., LiDAR, camera and radar)
can complement each other [50]. Among the common sen-
sor combinations, LC is the best-performing modality con-
figuration on most existing datasets [2, 7, 9, 40]. In gen-

eral, LiDAR and camera are fused in different ways. One
trend is to augment LiDAR points with features from cam-
eras [19, 46, 48, 49, 57], which is usually referred to as
early fusion. Other solutions apply deep feature fusion in
a shared representation space [31, 32, 63]. One trending
choice is to leverage the BEV space to deliver impressive
improvement [36, 38]. There are also methods that fuse
information at a later stage. In [1, 4, 58], features are inde-
pendently extracted and aggregated via proposals or queries
in the detection head, while some methods [42, 43] combine
the output candidates from single-modality detectors.

Nevertheless, the LC configuration is less accessible to
consumer cars due to the high cost of LiDAR. Thus, the
potential for CR detectors stands out due to the robustness
brought by radars and the potential of large-scale deploy-
ment. One of the key challenges facing CR detectors is how
to handle the discrepancy in sensor views and data returns.
CenterFusion [41] applies feature-level fusion by associat-
ing radar points with image features via a frustum-based
method. Following this, more feature-level fusion meth-
ods are proposed in [8, 23, 56, 69]. Recently, as many
camera-based methods [33, 34] have started to leverage the
unified BEV space by transforming camera features from
perspective view (PV), many CR detectors also explore fu-
sion of camera and radar features in the BEV space [22, 25].
Though LiDAR data is not available in real inference and
deployment, its wide appearance in open-source dataset [2]
has motivated researchers to leverage LiDAR data to guide
the feature transformation process [28]. Motivated by the
aforementioned works, CRKD also unifies features in the
BEV space and leverages LiDAR data in a KD-based frame-
work. To our best knowledge, CRKD is the first framework
that improves CR detectors with cross-modality KD from a
top-performing LC teacher detector.

2.2. Cross-modality Knowledge Distillation
The idea of KD is initially proposed in [12] for model com-
pression in an image classification task. It is then extended
to the field of object detection for model compression and
performance improvement [35]. Specifically, in the field
of 3D object detection, a group of KD methods requires
that the teacher and student models use the same modality
such as LO-to-LO (L2L) [21, 51, 53, 60, 66] and CO-to-CO
(C2C) [29, 64, 65]. In contrast, cross-modality KD focuses
on KD with different modality configurations. Typical paths
include LiDAR-to-Camera (L2C) [5, 6, 10, 13, 18, 31, 39]
and Camera-to-LiDAR (C2L) [45, 68]. Recently, new
cross-modality KD paths including a fusion-based modality
have been explored. In UniDistill [68], a universal frame-
work that supports multiple KD paths is proposed. By uni-
fying the features from different modalities to the shared
BEV space, it supports L2C, C2L, LC-to-LO (LC2L) and
LC-to-Camera (LC2C). DistillBEV [52] also supports L2C
and LC2C by leveraging the shared BEV space. X3KD [26]
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Figure 2. An overview of the proposed cross-modality (LC-to-CR) distillation framework CRKD. We narrow down the modality gap by
unifying both the teacher and the student into the BEV space with similar 3D object detector structure. We refine the model design to
enable adaptive fusion and design four novel distillation losses for effective cross-modality KD. During inference, only CR input is needed.

proposes a cross-modal and cross-task KD framework for
L2C KD. It is evaluated on an LO-to-CR (L2CR) KD path
as a supplementary task. However, it lacks specific consid-
eration for the large domain discrepancies with radars and
further experiments and analysis with the L2CR KD path.
Among the existing prior works, we observe the lack of KD
methods that can support a fusion-to-fusion distillation path
and handle domain differences with radars. We argue the
importance of conducting distillation from an LC teacher
to a CR student to leverage the shared BEV feature space of
camera-based detectors and the shared point cloud represen-
tation of LiDAR and radar measurements. According to our
best knowledge, we are the first to investigate a KD frame-
work with a fusion-to-fusion path. We demonstrate that our
novel framework improves the detection performance of CR
detectors comprehensively.

3. Method

We show an overview of CRKD in Fig. 2. We set up
the teacher and student models with a similar BEV-based
encoder-decoder head architecture. Taking advantage of
the shared BEV feature space, we build CRKD based on
the highly optimized BEVFusion [38] codebase. We use
BEVFusion-LC as the teacher model and BEVFusion-CR
as the baseline student model. The detector head in both

models is set as CenterHead [62] for response KD.

To account for the challenging cross-modality fusion-to-
fusion KD, we design several KD modules. We propose
cross-stage radar distillation with a learning-based calibra-
tion module to enable the radar encoder to learn a more ac-
curate scene-level object distribution. A mask-scaling fea-
ture KD is designed for feature imitation on foreground re-
gions while accounting for inaccurate view transformation
to BEV features for objects that are far from the sensor and
dynamic. We apply a relation KD to maintain relation con-
sistency in scene-level geometry. In addition, we improve
the response KD design with class-specific loss weights to
better leverage the CR model’s ability to capture dynamic
objects. Details of the proposed KD modules will be dis-
cussed in the following sections.

3.1. Model Architecture Refinement

We add a gated network [20, 47, 63] to BEVFusion [38] to
enable the model to learn to generate attention weights on
the single-modality feature maps to fuse the complementary
modalities adaptively. Specifically, the gated network learns
the gated features as follows:

F̃M1
= FM1

× σ(ConvM1
(Concat(FM1

, FM2
))), (1)
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F̃M2
= FM2

× σ(ConvM2
(Concat(FM1

, FM2
))), (2)

where F̃M1
and F̃M2

are the gated features for modality M1

and M2, FM1 and FM2 are the input feature maps to the
gated network from the backbone and view transform mod-
ule of modality M1 and M2, respectively, σ denotes the sig-
moid function, and ConvM1 and ConvM2 are two separate
convolution layers for M1 and M2 that could learn channel-
wise attention weights for the input features. The output of
the gated network is further fused by a convolutional fusion
module in BEVFusion [38]. We apply the adaptive gated
network to our teacher and student models to learn the rel-
ative importance between input modalities. This modifica-
tion improves the detection performance of the teacher and
student models, and also makes feature-based distillation
more effective since the gated feature maps encode infor-
mative scene geometry from both input modalities.

In the LC teacher model, we denote the camera feature
map as FT

c ∈ RCT
c ×H×W and the LiDAR feature map as

FT
l ∈ RCT

l ×H×W . Similarly, the camera and radar features
in the student model are denoted as FS

c ∈ RCS
c ×H×W and

FS
r ∈ RCS

r ×H×W , respectively. We denote the fused fea-
ture map in the teacher model and the student model as FT

f

and FS
f . We keep the spatial dimension H ×W consistent

for all feature maps, and also set CT
c = CS

c and CT
l = CS

l

for feature mimicking across the feature dimension.

3.2. Cross-Stage Radar Distillation (CSRD)

Though the measurements of radar and LiDAR are both rep-
resented as point clouds, the physical meaning behind them
are slightly different. Compared with LiDAR, radar points
are much sparser and can be interpreted as a list of object-
level points with velocity measurements [50, 59], while Li-
DAR is denser and captures geometry-level information.
Observing this gap, we argue the common method of di-
rect feature imitation may not work well in this scenario.
Instead, as radar measurements are sparse and represent
scene-level object distribution, we propose a novel Cross-
Stage Radar Distillation (CSRD) method. Specifically, we
design a distillation path between the radar feature map
and the scene-level objectness heatmap predicted by the
LC teacher model, which is denoted as Y T ∈ RK×H×W ,
where K is the number of classes. Since radars are gen-
erally believed to be noisy in the range and azimuth an-
gle measurements, we design a calibration module to learn
to compensate the noise. Specifically, we pass FS

r to
three blocks of convolutional layer, batch normalization and
ReLU activation with kernel size 3×3. We add another 1×1
convolution layer to project the calibrated feature map to
F̂S
r ∈ RH×W . The CSRD loss Lcsrd is formed as follows:

Lcsrd =
1

H ×W

H∑
i

W∑
j

∥Ŷ T
i,j − F̂S

r i,j∥1, (3)

where Ŷ T ∈ RH×W is obtained by taking the mean along
the K dimension of σ(Y T ).

3.3. Mask-Scaling Feature Distillation (MSFD)
We propose feature distillation for aligning the camera fea-
ture maps and the fused feature maps. It has been ac-
knowledged in many works [5, 6, 67, 68] that direct fea-
ture imitation between teacher and student models may not
work effectively in 3D object detection tasks due to the no-
table imbalance between the foreground and background.
Therefore, a common fix to this issue is to generate a mask
M ∈ RH×W to only distill information from the fore-
ground region. Meanwhile, more works have demonstrated
that the boundary region of the foreground can also con-
tribute to effective KD [5, 67]. We follow this finding and
propose Mask-Scaling Feature Distillation (MSFD) that is
aware of object range and movement. For the student CR
model, the detection performance is mainly dependent on
the depth prediction for images and the geometric accura-
cies of radar points. Since the range and object movement
can cause extra challenges for view transformation to BEV
space, we scale up the area of the foreground region to ac-
count for the potential misalignment. We increase the width
and length of the mask by α and β if the objects are in
the range groups [r1, r2] and [r2,∞]. We also increase the
width and length by α and β if the velocities along that axis
are within [v1, v2] and [v2,∞]. In practice, We clip the in-
crease of object size within a pre-defined range to balance
between different sizes of objects. We form the MSFD loss
as follows:

Lmsfd =
1

H ×W

H∑
i

W∑
j

Mi,j∥FT
i,j − FS

i,j∥2, (4)

where FT and FS represent the feature maps in the teacher
and student model, respectively. We compute MSFD loss
for the gated camera feature maps (F̃T

c and F̃S
c ) and the

fused feature maps (FT
f and FS

f ).

3.4. Relation Distillation (RelD)
While the aforementioned CSRD and MSFD can handle
feature-level distillation effectively, we follow MonoDis-
till [6] to highlight the importance of maintaining similar
geometric relations in the scene level between the teacher
and student models. We compute the affinity matrix de-
scribing cosine similarity of the fused feature map. We pro-
pose the RelD loss as follows:

Ci,j =
F⊤
i Fj

∥Fi∥2 · ∥Fj∥2
, (5)
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where Ci,j denotes the cosine similarity value at (i, j) in
the affinity matrix, and Fi and Fj represent the ith and jth

feature map separately. The scene-level information gap be-
tween the student and teacher models can be computed as
the L1 norm between their respective affinity matrices. We
refer to the RelD loss as Lreld, as shown below:

Lreld =
1

H ×W

H∑
i=1

W∑
j=1

∥CT
i,j − CS

i,j∥1, (6)

where H and W represent the BEV spatial size, and CT

and CS denote the affinity matrix of the student and teacher
model, respectively. In CRKD, we compute Lreld between
the fused feature maps of the teacher and student models
since they are the input to the decoder and detector heads.
The refined feature maps with distilled relation information
could improve the detection performance. Moreover, in or-
der to distill the scene-level relation information of different
scales, we apply a downsampling operation and a convolu-
tional block. Then we use these multi-level feature maps to
calculate the multi-scale RelD losses and take the average
value as the final loss term.

3.5. Response Distillation (RespD)

Response Distillation has been proven effective in image
classification [12] and 3D object detection [13, 52, 68]. The
predictions inferred by the teacher are served as the soft la-
bels for the student. The soft labels and the hard labels are
combined to supervise the learning of the student model.
We refer to the RespD design in CMKD [13] and improve
it to be aware of modality strength. Since radar has the
unique advantage of direct velocity measurements due to
the Doppler effect [59, 70], we set larger weights for dy-
namic classes in RespD to allow higher priority for dynamic
objects to leverage the student CR model’s strength. The
loss for dynamic response distillation is denoted as Lresp,
consisting of the classification loss Lcls and the regression
loss Lreg. Lcls is for object categories and is computed
using the Quality Focal Loss (QFL) [30]. Lreg is for 3D
bounding box regression and can be obtained by calculat-
ing the SmoothL1 loss. We compute these two losses as:

Lcls =

K∑
i=1

QFL(PT
Ci
, PS

Ci
)× wi, (7)

Lreg =

K∑
i=1

SmoothL1(PT
Bi
, PS

Bi
)× wi, (8)

where PT
Ci

and PS
Ci

denote the classification predictions of
the ith task generated by the teacher and student model, and
PT
Bi

and PS
Bi

denote the regression predictions in the teacher
and student models. K is the number of tasks in the Center-
head [62], and wi represents the class-specific weights.

3.6. Overall Loss Function

We combine the proposed KD loss and standard 3D object
detection loss Ldet. The overall loss function we apply in
the training stage is:

L = λ1·Lcsrd+λ2·Lmsfd+λ3·Lreld+λ4·Lrespd+λ5·Ldet,
(9)

where λ1 through λ5 are hyperparameters we set for weight-
ing different loss components.

4. Experiments
4.1. Experimental Setup

We evaluate our method on the nuScenes dataset [2] as
the three modalities (i.e., LiDAR, camera and radar) are
all available. We follow the official split that has 700
scenes for training and 150 scenes for validation. We
set [−54m,−54m,−5m] × [54m, 54m, 3m] as the region
to conduct object detection. We use the mean-Average-
Precision (mAP) and NuScenes Detection Score (NDS) [2]
as the main evaluation metrics. We also report the True Pos-
itive (TP) metrics [2] for comprehensive evaluation.

Our implementation is based on the MMDetection3D
codebase [7]. All of our experiments are conducted using
4 NVIDIA A100 GPUs. We set the default BEVFusion-LC
with Centerhead [62] as the teacher model. As mentioned in
Sec. 3.1, we add the adaptive gated network to the baseline
BEVFusion-CR model and denote it as BEVFusion-CR*.
We set BEVFusion-CR* as the student model. We set the
camera backbone as SwinT [37] and image resolution as
256× 704 for both the teacher and student models. We also
test CRKD with a ResNet R50 backbone [11] for compre-
hensive evaluation. The BEV spatial size is set to 180×180.
We use PointPillars [27] as the backbone of the radar branch
in BEVFusion-CR*. We set the same Centerhead [62] as the
detector head for the student model. During distillation, we
freeze the teacher model and train the student model for 20
epochs. We set the batch size as 8 and learning rate as 1e-4.
We include more implementation details and results in the
supplementary material.

4.2. Quantitative Results

We give an overall comparison of CRKD with existing
CO and CR detectors with single-frame image input on
nuScenes [2]. We follow common practices [5, 26, 52, 68]
to show a complete comparison on both the val and test
splits. As shown in Tab. 1, CRKD is the top-performing
model in most metrics on the val set of nuScenes. We also
present the performance of CRKD on the test split. The
results show that CRKD has the best or second best per-
formance on most metrics without using any test-time op-
timization techniques (e.g., test-time augmentation, larger

15474



Set Method Modality Backbone Resolution mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVFormer-S [34] C R101 900× 1600 37.5 44.8 0.725 0.272 0.391 0.802 0.200

BEVDet [17] C R50 256× 704 29.8 37.9 0.725 0.279 0.589 0.860 0.245

RCM-Fusion [22] C+R R101 900× 1600 44.3 52.9 - - - - -
CenterFusion [41] C+R DLA34 450× 800 33.2 45.3 0.649 0.263 0.535 0.540 0.142

CRAFT [24] C+R DLA34 448× 800 41.1 51.7 0.494 0.276 0.454 0.486 0.176
RCBEV [69] C+R SwinT 256× 704 37.7 48.2 0.534 0.271 0.558 0.493 0.209

BEVFusion [38] C+R SwinT 256× 704 43.2 54.1 0.489 0.269 0.512 0.313 0.171

UVTR (L2C) [31] C♢ R101 900× 1600 37.2 45.0 0.735 0.269 0.397 0.761 0.193
BEVDistill (BEVFormer-S) [5] C♢ R50 640× 1600 38.6 45.7 0.693 0.264 0.399 0.802 0.199

UniDistill (LC2C) [68] C♢ R50 256× 704 26.5 37.8 - - - - -
BEVSimDet [67] C♢ SwinT 256× 704 40.4 45.3 0.526 0.275 0.607 0.805 0.273

X3KD (LC2C) [26] C♢ R50 256× 704 39.0 50.5 0.615 0.269 0.471 0.345 0.203
DistillBEV (BEVDet) [52] C♢ R50 256× 704 34.0 41.6 0.704 0.266 0.556 0.815 0.201

X3KD (L2CR) [26] C+R♢ R50 256× 704 42.3 53.8 - - - - -
CRKD C+R♢ R50 256× 704 43.2 54.9 0.450 0.267 0.442 0.339 0.176

val

CRKD C+R♢ SwinT 256× 704 46.7 57.3 0.446 0.263 0.408 0.331 0.162

BEVFormer-S [34] C R101 900× 1600 40.9 46.2 0.650 0.261 0.439 0.925 0.147
BEVDet† [17] C SwinT 640× 1600 42.4 48.2 0.528 0.236 0.395 0.979 0.152

RCM-Fusion [22] C+R R101 900× 1600 49.3 58.0 0.485 0.255 0.386 0.421 0.115
CenterFusion† [41] C+R DLA34 450× 800 32.6 44.9 0.631 0.261 0.516 0.614 0.115

CRAFT† [24] C+R DLA34 448× 800 41.1 52.3 0.467 0.268 0.456 0.519 0.114
RCBEV [69] C+R SwinT 256× 704 40.6 48.6 0.484 0.257 0.587 0.702 0.140

UVTR (L2C) [31] C♢ V2-99 900× 1600 45.2 52.2 0.612 0.256 0.385 0.664 0.125
X3KD (LC2C) [26] C♢ R101 640× 1600 45.6 56.1 0.506 0.253 0.414 0.366 0.131

UniDistill (LC2C) [68] C♢ R50 256× 704 29.6 39.3 0.637 0.257 0.492 1.084 0.167

X3KD (L2CR) [26] C+R♢ R50 256× 704 44.1 55.3 - - - - -

test

CRKD C+R♢ SwinT 256× 704 48.7 58.7 0.404 0.253 0.425 0.376 0.111

Table 1. Comparison on the nuScenes dataset. We group methods based on modality and whether KD is used. We include existing SOTA
works that use single-frame image input for fair comparison. Methods [5, 52, 67] missed in the test split group do not report their results
with single-frame image input. The proposed CRKD outperforms the baseline methods in most metrics. ♢ denotes the distillation-based
methods. † denotes using test time augmentation. The best is bolded and the second best is underlined.

image resolution). Overall, CRKD is the most consistent in
achieving high performance across all of the baselines.

We also show a complete comparison of per-class AP in
Tab. 2 to break down the improvement brought by CRKD.
The results show that CRKD achieves consistent improve-
ment in AP of all the classes. There is an interesting find-
ing that larger gains of CRKD come from dynamic classes,
which indicates that CRKD successfully helps the student
model leverage its strength on dynamic object detection
more effectively due to the availability of direct velocity
measurements from radar.

4.3. Ablation Studies
To further break down the improvement brought from each
module we design, extensive experiments are conducted to
discuss and validate our design choices. We firstly present
the main ablation study in Tab. 3. It can be observed that all
the proposed modules have contributed to the superior per-
formance of CRKD. Among the four proposed KD losses,
we see the most improvement comes from RespD, which
indicates the significance of RespD in cross-modality KD.
The other three losses contribute more to the improvement
of mAP. This finding validates our design objectives in im-
proving object localization as CSRD and MSFD supervise

on the feature maps, and RelD tries to align the scene-level
geometric relation.

We next demonstrate the experiments we conduct to val-
idate the design choices of each module. As mentioned
before, response distillation (RespD) brings the most im-
provement among all the proposed KD modules. Our em-
pirical finding indicates that for other KD modules, the
best-performing design alone may not be the best choice
that works with RespD and other modules. We conjecture
that this inconsistency in performance gain comes from the
considerably large domain discrepancies between LC and
CR. We would like to highlight the importance of RespD
in the cross-modality KD work and use the experiments of
combining different modules with RespD to guide the over-
all design of CRKD. Therefore, for the following ablation
study in Tab. 4, unless otherwise mentioned, we show re-
sults of experiments with using RespD together. All the
ablation study instances are trained using the same setting
as the full model.

4.3.1 Effect of CSRD

We conduct an ablation study to validate the proposed
CSRD module. As mentioned in Sec. 3.2, the radar points
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Model Modality Car Truck Bus Trailer CV Ped Motor Bicycle TC Barrier mAP↑
Teacher L+C 88.4 62.4 73.8 40.6 29.2 78.7 75.3 65.8 74.9 72.3 66.1

Baseline C+R 72.1 37.8 48.9 18.3 12.6 48.4 42.0 33.8 58.8 59.6 43.2
Student C+R 72.2 41.3 51.0 19.2 15.2 49.0 46.2 35.5 59.1 60.1 44.9
CRKD C+R 74.8(+2.7) 44.1(+6.3) 53.6(+4.7) 20.6(+2.3) 16.9(+4.3) 50.6(+2.2) 46.8(+4.8) 38.2(+4.4) 61.5(+2.7) 60.1(+0.5) 46.7(+3.5)

Table 2. Comparison of the per-class AP results of the BEVFusion-LC (teacher), BEVFusion-CR (baseline), BEVFusion-CR* (student)
and CRKD models on the nuScenes val split. We quantitatively show the improvement made by CRKD over the baseline.

Model Gated RespD CSRD MSFD RelD mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
Baseline 43.2 54.1 0.489 0.269 0.512 0.313 0.171

✓ 44.9 55.9 0.464 0.267 0.458 0.304 0.165
✓ ✓ 45.7 56.7 0.448 0.262 0.409 0.330 0.166
✓ ✓ ✓ 46.0 57.0 0.445 0.261 0.407 0.326 0.163
✓ ✓ ✓ ✓ 46.2 57.2 0.439 0.260 0.394 0.332 0.166CRKD

✓ ✓ ✓ ✓ ✓ 46.7 57.3 0.446 0.263 0.408 0.331 0.162

Table 3. Ablation study of the proposed modules in CRKD evaluated on the nuScenes val split. The baseline is the BEVFusion-CR model.

Module LiDAR Heatmap mAP↑ NDS↑
✓ 44.9 56.3CSRD

✓ 46.0 57.0

(a) Ablation study of Cross-stage Radar Distillation (CSRD).

Module Mask Mask-scaling mAP↑ NDS↑
✓ 46.0 56.7MSFD

✓ 46.2 56.9

(b) Ablation study of Mask-scaling Feature Distillation (MSFD).

Module Vanilla Adapt mAP↑ NDS↑
✓ 45.9 56.9RelD

✓ 46.2 57.0

(c) Ablation study of Relation Distillation (RelD).

Module Vanilla Dynamic mAP↑ NDS↑
✓ 45.3 56.7RespD

✓ 45.7 56.7

(d) Ablation study of Response Distillation (RespD).

Table 4. Ablation Study of single distillation modules on the nuScenes val split.

Fuser In Channels Out Channels mAP↑ NDS↑
Conv 80 + 256 256 43.2 54.1

64 + 64 64 44.2 54.3
128 + 128 256 44.4 54.7Gated
80 + 256 256 44.9 55.9

Table 5. Ablation study of fusion module design and number of
channels of the student model on the nuScenes val split.

represent object-level information. Therefore, the common
practice to distill information at the same stage of the net-
work may not work well for radar feature maps. We propose
CSRD to add cross-stage supervision on the object-level
information. We demonstrate the model with CSRD out-
performs that using LiDAR feature maps as the distillation
source in Tab. 4a. The significant improvement from CSRD
validates that the higher-level objectness heatmap provides
more suitable guidance to distill radar features.

4.3.2 Effect of MSFD

We conduct a comparison between the proposed mask-
scaling strategy accounting for object range and velocity

and the common foreground mask of ground truth bounding
boxes. In Tab. 4b, the improvement achieved with the pro-
posed mask-scaling strategy verifies that our mask-scaling
strategy in MSFD helps to achieve more effective KD.

4.3.3 Effect of RelD

We study the effect of applying a convolutional block after
the downsampling operation for the feature maps used in
RelD. We name the instance with the convolution layer as
Adapt and the baseline instance as Vanilla in Tab. 4c. The
results verify our design choice.

4.3.4 Effect of RespD

Though RespD has been a widely used loss term in several
KD works, we are the first to weight the RespD loss dif-
ferently based on different classes. In practice, we set wi

as 2 for the dynamic classes and 1 for static classes. This
design allows the training supervision to prioritize dynamic
classes, which radars are more capable of detecting. In the
vanilla setting we set wi as 1 for all classes. As shown
in Tab. 4d, applying the class-specific weights helps to im-
prove the overall performance of the student detector.
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2a. BEV Overview (Sample 2) 2b. Object missed by teacher 2c. Accurate predictions by CRKD

1a. BEV Overview (Sample 1) 1c. Accurate predictions by CRKD1b. False predictions by student

GT
Student
CRKD

GT
Teacher
CRKD

Figure 3. Qualitative results on nuScenes. We show zoomed-in views in panel b and c for the highlighted regions in panel a, with the border
dash as the correspondence. We show the ground truth annotation in red, teacher prediction in green, student prediction in yellow, CRKD
prediction in blue, and radar points in magenta. In (1a) to (1c), we show an example frame where CRKD has more accurate predictions
and fewer false predictions than the student model. In (2a) to (2c) we show another example frame where CRKD even outperforms the LC
teacher by detecting a missed car and rejecting several false predictions. Best viewed on screen and in color.

4.3.5 Effect of Model Architecture Refinement

We study the effect of adding the adaptive gated network to
the original fusion module in BEVFusion [38] and tuning
the number of channel dimensions. As shown in Tab. 5, the
addition of the gated network brings notable improvement
over the default fusion module in the baseline BEVFusion-
CR model. We also notice that matching the input and
the output channel dimension of the fusion module to the
teacher model (Camera: 80, LiDAR: 256) brings additional
improvement. The following KD operation also gets ben-
efit from the same channel dimension setting between the
teacher and student models since no additional channel-
wise projection is needed for feature-level KD.

4.4. Qualitative Results

We show the visualization of the 3D object detection re-
sults to highlight the effectiveness of CRKD in Fig. 3. With
CRKD, the detector is able to predict fewer false positive
predictions and localize the objects better. We also show an
impressive comparison between the teacher LC model and
CRKD to demonstrate that CRKD can even outperform the
teacher model with the help of radar measurements. This
qualitative example validates the effectiveness of the CRKD

framework and the value of radars for modern perception
for autonomous driving. We will include more qualitative
examples and discussion in the supplementary material.

5. Conclusion

We have proposed CRKD, a novel KD framework that sup-
ports a cross-modality fusion-to-fusion KD path for 3D ob-
ject detection. We leverage the BEV space to design a
novel LC-to-CR KD framework. We design four distilla-
tion losses to address the significant domain gap and fa-
cilitate the distillation process in this cross-modality set-
ting. We also introduce the adaptive gated network to learn
the relative importance between two expert feature maps.
Extensive experiments show the effectiveness of CRKD in
improving the detection performance of CR detectors. We
hope CRKD will inspire future research to leverage our pro-
posed KD framework to further explore the potential of CR
detectors to improve the reliability of this widely accessible
sensor suite. In future work, we plan to extend the proposed
CRKD framework to other perception tasks such as occu-
pancy mapping.
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bust and modular 3d object detector for lidars, cameras and
radars. In IROS, 2022. 2

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 2

[10] Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang, and Hong-
sheng Li. Liga-stereo: Learning lidar geometry aware repre-
sentations for stereo-based 3d detector. In ICCV, 2021. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1, 2, 5

[13] Yu Hong, Hang Dai, and Yong Ding. Cross-modality knowl-
edge distillation network for monocular 3d object detection.
In ECCV, 2022. 1, 2, 5

[14] Haotian Hu, Fanyi Wang, Jingwen Su, Yaonong Wang,
Laifeng Hu, Weiye Fang, Jingwei Xu, and Zhiwang Zhang.
Ea-lss: Edge-aware lift-splat-shot framework for 3d bev ob-
ject detection. arXiv preprint arXiv:2303.17895, 2023. 1

[15] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima,
Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. Planning-oriented autonomous driving. In
CVPR, 2023. 1

[16] Junjie Huang and Guan Huang. Bevdet4d: Exploit tempo-
ral cues in multi-camera 3d object detection. arXiv preprint
arXiv:2203.17054, 2022. 1

[17] Junjie Huang, Guan Huang, Zheng Zhu, Yun Ye, and Dalong
Du. Bevdet: High-performance multi-camera 3d object de-
tection in bird-eye-view. arXiv preprint arXiv:2112.11790,
2021. 1, 6

[18] Peixiang Huang, Li Liu, Renrui Zhang, Song Zhang, Xinli
Xu, Baichao Wang, and Guoyi Liu. Tig-bev: Multi-view bev
3d object detection via target inner-geometry learning. arXiv
preprint arXiv:2212.13979, 2022. 2

[19] Tengteng Huang, Zhe Liu, Xiwu Chen, and Xiang Bai. Ep-
net: Enhancing point features with image semantics for 3d
object detection. In ECCV, 2020. 2

[20] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and
Geoffrey E Hinton. Adaptive mixtures of local experts. In
Neural computation, 1991. 3

[21] Bo Ju, Zhikang Zou, Xiaoqing Ye, Minyue Jiang, Xiao Tan,
Errui Ding, and Jingdong Wang. Paint and distill: Boosting
3d object detection with semantic passing network. In ACM
MM, 2022. 2

[22] Jisong Kim, Minjae Seong, Geonho Bang, Dongsuk Kum,
and Jun Won Choi. Rcm-fusion: Radar-camera multi-
level fusion for 3d object detection. arXiv preprint
arXiv:2307.10249, 2023. 2, 6

[23] Youngseok Kim, Jun Won Choi, and Dongsuk Kum. Grif
net: Gated region of interest fusion network for robust 3d
object detection from radar point cloud and monocular im-
age. In IROS, 2020. 2

[24] Youngseok Kim, Sanmin Kim, Jun Won Choi, and Dongsuk
Kum. Craft: Camera-radar 3d object detection with spatio-
contextual fusion transformer. In AAAI, 2023. 6

[25] Youngseok Kim, Juyeb Shin, Sanmin Kim, In-Jae Lee,
Jun Won Choi, and Dongsuk Kum. Crn: Camera radar net
for accurate, robust, efficient 3d perception. In ICCV, 2023.
2

[26] Marvin Klingner, Shubhankar Borse, Varun Ravi Kumar,
Behnaz Rezaei, Venkatraman Narayanan, Senthil Yogamani,
and Fatih Porikli. X3kd: Knowledge distillation across
modalities, tasks and stages for multi-camera 3d object de-
tection. In CVPR, 2023. 1, 2, 5, 6

[27] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, 2019. 5

[28] Kai Lei, Zhan Chen, Shuman Jia, and Xiaoteng Zhang.
Hvdetfusion: A simple and robust camera-radar fusion
framework. arXiv preprint arXiv:2307.11323, 2023. 1, 2

[29] Jianing Li, Ming Lu, Jiaming Liu, Yandong Guo, Yuan Du,
Li Du, and Shanghang Zhang. Bev-lgkd: A unified lidar-
guided knowledge distillation framework for multi-view bev
3d object detection. In IEEE IV, 2023. 2

[30] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu,
Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss:
Learning qualified and distributed bounding boxes for dense
object detection. In NeurIPS, 2020. 5

[31] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun,
and Jiaya Jia. Unifying voxel-based representation with

15478



transformer for 3d object detection. In NeurIPS, 2022. 2,
6

[32] Yanwei Li, Xiaojuan Qi, Yukang Chen, Liwei Wang, Zeming
Li, Jian Sun, and Jiaya Jia. Voxel field fusion for 3d object
detection. In CVPR, 2022. 2

[33] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
Acquisition of reliable depth for multi-view 3d object detec-
tion. In AAAI, 2023. 1, 2

[34] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer:
Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers. In ECCV, 2022. 1,
2, 6

[35] Zhihui Li, Pengfei Xu, Xiaojun Chang, Luyao Yang,
Yuanyuan Zhang, Lina Yao, and Xiaojiang Chen. When ob-
ject detection meets knowledge distillation: A survey. In
IEEE TPAMI, 2023. 2

[36] Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia,
Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi
Tang. Bevfusion: A simple and robust lidar-camera fusion
framework. In NeurIPS, 2022. 2

[37] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 5

[38] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela L Rus, and Song Han. Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. In ICRA, 2023. 1, 2, 3, 4, 6, 8

[39] Zhe Liu, Xiaoqing Ye, Xiao Tan, Errui Ding, and Xiang Bai.
Stereodistill: Pick the cream from lidar for distilling stereo-
based 3d object detection. In AAAI, 2023. 2

[40] Jieru Mei, Alex Zihao Zhu, Xinchen Yan, Hang Yan, Siyuan
Qiao, Liang-Chieh Chen, and Henrik Kretzschmar. Waymo
open dataset: Panoramic video panoptic segmentation. In
ECCV, 2022. 2

[41] Ramin Nabati and Hairong Qi. Centerfusion: Center-based
radar and camera fusion for 3d object detection. In WACV,
2021. 2, 6

[42] Su Pang, Daniel Morris, and Hayder Radha. Clocs: Camera-
lidar object candidates fusion for 3d object detection. In
IROS, 2020. 2

[43] Su Pang, Daniel Morris, and Hayder Radha. Fast-clocs: Fast
camera-lidar object candidates fusion for 3d object detection.
In WACV, 2022. 2

[44] Ziqi Pang, Jie Li, Pavel Tokmakov, Dian Chen, Sergey
Zagoruyko, and Yu-Xiong Wang. Standing between past and
future: Spatio-temporal modeling for multi-camera 3d multi-
object tracking. In CVPR, 2023. 1

[45] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre
Boulch, Andrei Bursuc, and Renaud Marlet. Image-to-lidar
self-supervised distillation for autonomous driving data. In
CVPR, 2022. 2

[46] Vishwanath A Sindagi, Yin Zhou, and Oncel Tuzel. Mvx-
net: Multimodal voxelnet for 3d object detection. In ICRA,
2019. 2

[47] Jingyu Song, Lingjun Zhao, and Katherine A Skinner. Lira-
fusion: Deep adaptive lidar-radar fusion for 3d object detec-
tion. arXiv preprint arXiv:2402.11735, 2024. 1, 3

[48] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detec-
tion. In CVPR, 2020. 2

[49] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang.
Pointaugmenting: Cross-modal augmentation for 3d object
detection. In CVPR, 2021. 2

[50] Li Wang, Xinyu Zhang, Ziying Song, Jiangfeng Bi, Guoxin
Zhang, Haiyue Wei, Liyao Tang, Lei Yang, Jun Li, Caiyan
Jia, and Lijun Zhao. Multi-modal 3d object detection in au-
tonomous driving: A survey and taxonomy. In IEEE IV,
2023. 1, 2, 4

[51] Yue Wang and Justin M Solomon. Object dgcnn: 3d object
detection using dynamic graphs. In NeurIPS, 2021. 2

[52] Zeyu Wang, Dingwen Li, Chenxu Luo, Cihang Xie, and Xi-
aodong Yang. Distillbev: Boosting multi-camera 3d object
detection with cross-modal knowledge distillation. In ICCV,
2023. 1, 2, 5, 6

[53] Yi Wei, Zibu Wei, Yongming Rao, Jiaxin Li, Jie Zhou, and
Jiwen Lu. Lidar distillation: Bridging the beam-induced do-
main gap for 3d object detection. In ECCV, 2022. 2

[54] Joey Wilson, Jingyu Song, Yuewei Fu, Arthur Zhang, An-
drew Capodieci, Paramsothy Jayakumar, Kira Barton, and
Maani Ghaffari. Motionsc: Data set and network for real-
time semantic mapping in dynamic environments. In IEEE
RAL, 2022. 1

[55] Joey Wilson, Yuewei Fu, Arthur Zhang, Jingyu Song, An-
drew Capodieci, Paramsothy Jayakumar, Kira Barton, and
Maani Ghaffari. Convolutional bayesian kernel inference for
3d semantic mapping. In ICRA, 2023. 1

[56] Zizhang Wu, Guilian Chen, Yuanzhu Gan, Lei Wang, and
Jian Pu. Mvfusion: Multi-view 3d object detection with
semantic-aligned radar and camera fusion. In ICRA, 2023.
2

[57] Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Zhou Bin,
and Liangjun Zhang. Fusionpainting: Multimodal fusion
with adaptive attention for 3d object detection. In IEEE
ITSC, 2021. 2

[58] Junjie Yan, Yingfei Liu, Jianjian Sun, Fan Jia, Shuailin Li,
Tiancai Wang, and Xiangyu Zhang. Cross modal trans-
former: Towards fast and robust 3d object detection. In
ICCV, 2023. 2

[59] Bin Yang, Runsheng Guo, Ming Liang, Sergio Casas, and
Raquel Urtasun. Radarnet: Exploiting radar for robust per-
ception of dynamic objects. In ECCV, 2020. 2, 4, 5

[60] Jihan Yang, Shaoshuai Shi, Runyu Ding, Zhe Wang, and Xi-
aojuan Qi. Towards efficient 3d object detection with knowl-
edge distillation. In NeurIPS, 2022. 2

[61] Zeyu Yang, Jiaqi Chen, Zhenwei Miao, Wei Li, Xiatian Zhu,
and Li Zhang. Deepinteraction: 3d object detection via
modality interaction. In NeurIPS, 2022. 1

[62] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In CVPR, 2021. 3,
5

[63] Jin Hyeok Yoo, Yecheol Kim, Jisong Kim, and Jun Won
Choi. 3d-cvf: Generating joint camera and lidar features us-

15479



ing cross-view spatial feature fusion for 3d object detection.
In ECCV, 2020. 2, 3

[64] Jia Zeng, Li Chen, Hanming Deng, Lewei Lu, Junchi Yan,
Yu Qiao, and Hongyang Li. Distilling focal knowledge from
imperfect expert for 3d object detection. In CVPR, 2023. 2

[65] Linfeng Zhang, Yukang Shi, Hung-Shuo Tai, Zhipeng
Zhang, Yuan He, Ke Wang, and Kaisheng Ma. Structured
knowledge distillation towards efficient and compact multi-
view 3d detection. arXiv preprint arXiv:2211.08398, 2022.
2

[66] Linfeng Zhang, Runpei Dong, Hung-Shuo Tai, and Kaisheng
Ma. Pointdistiller: Structured knowledge distillation towards
efficient and compact 3d detection. In CVPR, 2023. 2

[67] Haimei Zhao, Qiming Zhang, Shanshan Zhao, Jing Zhang,
and Dacheng Tao. Bevsimdet: Simulated multi-modal distil-
lation in bird’s-eye view for multi-view 3d object detection.
arXiv preprint arXiv:2303.16818, 2023. 4, 6

[68] Shengchao Zhou, Weizhou Liu, Chen Hu, Shuchang Zhou,
and Chao Ma. Unidistill: A universal cross-modality knowl-
edge distillation framework for 3d object detection in bird’s-
eye view. In CVPR, 2023. 1, 2, 4, 5, 6

[69] Taohua Zhou, Junjie Chen, Yining Shi, Kun Jiang, Meng-
meng Yang, and Diange Yang. Bridging the view disparity
between radar and camera features for multi-modal fusion 3d
object detection. In IEEE IV, 2023. 2, 6

[70] Yi Zhou, Lulu Liu, Haocheng Zhao, Miguel López-Benı́tez,
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