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Abstract

While Multi-modal Language Models (MLMs) demon-
strate impressive multimodal ability, they still struggle on
providing factual and precise responses for tasks like vi-
sual question answering (VQA). In this paper, we address
this challenge from the perspective of contextual informa-
tion. We propose Causal Context Generation, Causal-CoG,
which is a prompting strategy that engages contextual infor-
mation to enhance precise VOQA during inference. Specifi-
cally, we prompt MLMs to generate contexts, i.e, text de-
scription of an image, and engage the generated contexts
for question answering. Moreover, we investigate the ad-
vantage of contexts on VQA from a causality perspective,
introducing causality filtering to select samples for which
contextual information is helpful. To show the effective-
ness of Causal-CoG, we run extensive experiments on 10
multimodal benchmarks and show consistent improvements,
e.g., +6.30% on POPE, +13.69% on Vizwiz and +6.43%
on VQAv2 compared to direct decoding, surpassing exist-
ing methods. We hope Casual-CoG inspires explorations of
context knowledge in multimodal models, and serves as a
plug-and-play strategy for MLM decoding. '

1. Introduction

Owing to the widespread adoption of Large Language Mod-
els (LLM) [31, 32], there has been a proliferation of re-
search endeavors aimed at integrating visual ability into
language models to build Multi-modal Language Models
(MLM) [8, 23, 39]. Representative works, e.g., LLaVA [23]
and MiniGPT-4 [39], incorporates a pretrained visual en-
coder and a lightweight alignment module to align visual
features into LLMs. Leveraging the intrinsic power of
LLM, these models exhibit great capability in following
user instructions and show good performance across var-
ious multimodal benchmarks, underscoring their potential
in multimodal understanding.

*Corresponding author: ywang@cee.ecnu.edu.cn
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Figure 1. Contextual information helps VQA. In this example, the
monitors in the image are too small to see, so the multi-modal
language model (MLM) incorrectly predicts “no” for the question
“Is there a monitor in this image?”. However, if contextual infor-
mation is provided, describing that this is an airport baggage hall,
MLM can predict the right answer, since there are usually moni-
tors in the baggage hall.

However, similar to LLMs, MLMs grapple with issues
related to hallucination® [19]. The models may predict in-
correct responses when inquired with misleading queries
like the existence of an object in the image, and may strug-
gle to grasp complex relationships among multiple objects
in an image [21]. As the example shown in Fig. 1, when
asked the question “is there a monitor in the image” for an
image containing small monitors that can hardly be seen,
current MLM incorrectly predicts the answer as “no”. This
inability to provide factual answers based on the visual con-
tent is commonly observed in MLMs, due to possible rea-

2Hallucination is referred to “the generated content is nonsensical or
unfaithful to the provided source content” [13]
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Figure 2. The framework of Causal-CoG: (1) Prompt a multi-modal language model to generate a descriptional context of the image; (2)
Repeat this procedure, generating multiple candidates. Calculating and comparing the NDE and TIE of this sample using the generated
candidates’ answers likelihood distribution, to determine whether to apply CoG on the final answer. (3) For samples determined appropriate
for using CoG, aggregate the candidates’ answers based on the TIE® value of each candidate.

sons like shortcuts and noise in the training data, lack of
modeling capacity for effective alignment of two modali-
ties, etc.

There have been explorations boosting the off-the-
shelf LLMs in the language community, e.g., chain-of-
thought [14], tree-of-thought [35] and retrieval-augmented
generation [15], efc. Meanwhile, existing works in the
vision-language community improves multimodal models
through shortcut debiasing [27] or better alignment of
the vision and language modality by various loss func-
tions [2, 17, 36]. However, these works require training,
thus cannot be easily applied to the off-the-shelf MLMs.

In this work, we improve MLM inference from the per-
spective of contextual knowledge. For example, in Fig. 1,
the monitors are too small to see, but if context information
like “this is a baggage claim in airport” is provided, then
the question can be much easier to answer, since a baggage
claims usually have monitors on the top. Given this intu-
ition, we take advantage of the context, i.e. the description
of the image, for more effective question answering.

To this end, we propose context generation with a causal-
effect look, dubbed as Causal-CoG, which is a prompting
technique for MLMs. The method is shown in Fig. 2. Con-
cretely, instead of prompting MLMs to answer questions di-
rectly, we first instruct the MLM to generate a description,
i.e. context, of the image by employing a simple prompt
like “describe this image” (rephrased in different flexible
ways), then prompt the model to answer the question based
on the generated context description. With multiple prompt-
ing runs, different context descriptions can be generated,
which provides rich information for answering the question.

Moreover, to select the most helpful contexts from the mul-
tiple generated candidates, we leverage casual inference and
take a causal effect look at the contexts. Finally, we propose
a candidate aggregation method to attribute greater weight
to better candidates considering the impact of the context on
the answer. To the best of our knowledge, we are the first to
develop “prompting” technique for MLMs.

We conduct extensive experiments to show the effective-
ness of Casual-CoG. We run experiments on recent stan-
dard benchmarks, including MME [7], SEEDBench [16],
MMBench [24], POPE [19], VSR [21], and reformed ver-
sions of some traditional datasets: VQAv2 [9], Vizwiz [10],
GQA [12], OKVQA [26] and Winoground [30], from
ReForm-Eval [20]. On all the benchmarks, Casual-CoG
leads to consistent improvements, e.g., +6.30% on POPE,
+13.69% on Vizwiz and +6.43% on VQAv2, showing the
advantage of context knowledge for VQA tasks. To sum-
marize, our contributions are as follows:

* We propose Causal-CoG, a training-free decoding strat-
egy that can be easily applied to the off-the-shelf MLMs
for generating factual response for VQA.

* Causal-CoG explores the usage of context knowledge,
with context filtering and aggregation using causality.

» Extensive experiments on 10 datasets show the effective-
ness of our method. Causal-CoG consistently boosts the
performance of MLMs.

2. Related Work

Multi-modal Language Models. With the remarkable suc-
cess of Large Language Models (LLM) in the field of Natu-
ral Language Processing (NLP), there has been a significant

13343



surge of interest in extending LLMs to the multi-modal do-
mains. Noteworthy prior research,such as VisualGPT [4]
and Frozen [33], has achieved significant progress in cross-
modal tasks. VisualGPT [4] employs a series of prompts
to facilitate LLMs input, while Frozen [33] trains a visual
component to adapt to large language models. Additionally,
Flamingo [1] has demonstrated impressive in-context few-
shot learning capabilities by utilizing gated cross-attention
to align a pre-trained vision encoder and a language model.
Similarly, BLIP2 [18] leverages a Q-Former to align the vi-
sual and language modalities. Building upon these founda-
tions, MiniGPT-4 [39] utilizes a limited number of high-
quality image-text pairs to align MLM, while Instruct-
BLIP [5] and LLaVA [23] enhance comprehensive MLM
performance through instruction tuning. These advance-
ments have significantly contributed to the advancement of
MLM.

Prompt Techniques for LLM. Prompt engineering tech-
nique has been utilized on LLM to improve its reasoning
ability, e.g., CoT [14], ToT [35] and GoT [3]. The strat-
egy of these methods is to first prompt LLM to generate the
reasoning path, then based on the reasoning path, LLM can
give a more factual answer. LLM may generate multiple
reasoning path, and we need to select better reasoning paths
or aggregate these paths, e.g., self-consistent [34] and cu-
mulative reasoning [37]. Prompt engineering technique is
under-explored in MLM.

Visual Question Answering with Context. Context-aware
VQA, which considers contextual information to better un-
derstand and answer questions about images, has gained
significant attention in recent years. Experiments in Sci-
enceQA [25], MM-CoT [38] and LLaMA-Adapter-V2 [8]
have shown that contextual information can help MLM bet-
ter answer the visual questions. There are also some works
focusing on forcing the model to attend the context when
answering questions, e.g., CAD [29].

3. Causality in VQA with Context

In this section, we provide an introduction to fundamental
concepts in causal inference, elucidating the foundational
knowledge that underpins Causal-CoG’s causality filter in
Sec. 4.2.

3.1. Causal Graph

A causal graph is a directed acyclic graph that serves as a
graphical representation of the causal relationships between
nodes. It is typically denoted as G = {V, £}, where V rep-
resents the set of variables within the causal graph, and £
denotes the set of causal-effect relationships between pairs
of variables. We construct the causal graph specific to VQA
with context in Fig. 3. When doing VQA with context, im-
age (I), question (Q)) and context (C) are input to MLM,
and MLM can output likelihood distribution on different op-

<j:(>
I: Image NDE
C: Context
Q: Question TIE

Y: Likelihood Distribution

TE: Total Effect
NDE: Natural Direct Effect
TIE: Total Indirect Effect

Figure 3. Causal graph of visual question answering with context.
Capital letter with “*” as superscript means not input this variable
into MLM when doing VQA.

tions, termed as Y. In Fig. 3, if a causal-effect relationship
exists between two variables, e.g., C' and I, it can be sym-
bolized by I — C.

3.2. Causal Effect

Causal effect serves as a measure that assesses the con-
trast between potential outcomes with and without a spe-
cific treatment. In Fig. 3, I functions as a treatment for Y.
There are two distinct types of effects between I and Y': the
direct effect (I — Y') and the indirect effect via the gener-
ated context (I — C — Y)). In the literature of causality,
the Total Effect (TE) of I on Y is calculated by comparing
Y (I,C,Q) and Y(Q), expressed as:

TE = E[Y(I,C,Q) - Y(Q)], (D

where E[-] represents expectation operation and Y (I, C, Q)
represents the answer obtained in the VQA task, taking 7,
C, and @ as input. The TE encompasses two essential com-
ponents: the Natural Direct Effect (NDE) and the Total In-
direct Effect (TIE). By fixing the variable C, the NDE is
computed by contrasting the potential outcomes with and
without 7, as formulated by:

NDE = E[Y (I,Q) - Y (Q)]. @)
TIE represents the difference between TE and NDE:

TIE=TE - NDE =E[Y(I,C,Q) - Y(I,Q). (3

4. Causal-CoG

Prior investigations have demonstrated the potential of con-
text in augmenting the visual understanding and visual rea-
soning capabilities of MLM, e.g., ScienceQA [25], MM-
CoT [38], and LLaMA-Adapter-V2 [8]. In these prior stud-
ies, the contextual information has typically consisted of
rationale or image descriptions, often necessitating input
from domain experts or the utilization of retrained models.
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Question: What is in this image?

Context: The image depicts a large red bus,

specifically a double-decker bus, driving down the

street. The bus has four open doors, and people

are standing on top of it, possibly waving. This

scene suggests a fun and unique mode of
transportation, possibly for a special event or tour. ©

Question: Is the actor inside the red bounding box named
Frank Morgan?

Context: The image is of an older man with a thick beard,
possibly a wizard, who is sitting inside a green-hued,
costume-like, and fanciful hat. The hat is likely a part of a

A larger costume he is wearing, possibly for a performance,
role, or for amusement. The setting suggests that he is
dressed up for a fun and whimsical occasion, such as a
costume party or a theatrical event.

Figure 4. Helpful and unhelpful context. (1) For the upper image,
context provides a descriptional information, which is helpful to
the question: “What is it in this image?” (2) For the image below,
to determine this actor’s name, the common sense of the real world
is needed, while context can’t provide this kind of information.

Different from these approaches, we directly employ this
Multi-modal Language Model by using a simple prompt to
autonomously generate “context”, bypassing the need for
retraining the model to generate specific “context”.

However, our exploration has revealed that the utility of
the generated contexts is not consistently beneficial for ad-
dressing the questions posed. These contexts may some-
times be inaccurate or fail to provide valuable information.
As a response to this challenge, we propose a causality-
based filtering mechanism to determine whether to employ
CoG” or not. For those instances where CoG is deemed
appropriate, we aggregate the outcomes to derive the final
answer.

4.1. Context Generation

Various forms of contextual information can be employed
to facilitate the VQA task, including lecture content, as
exemplified in the case of MM-CoT [38], and image de-
scriptions, as utilized in LLaMA-Adapter-V2 [8]. Within
the framework of CoG, we instruct the model to produce a
detailed description of the provided image through the use
of the following prompt: “Before answering this question,
please give a detailed description of this image.” This gen-
erated description is subsequently referred to as the “Con-
text.” Note that the MLM which generates the context is the
same as the MLM where we apply Causal-CoG.

4.2. Causality Filter

The generated context provides relevant descriptions of the
image. But it is not always helpful in answering the ques-
tion, as illustrated in Fig. 4. This illustration underscores
that the generated context has the potential to introduce ir-
relevant or even erroneous information for answering the
question, thereby increasing the likelihood of an incorrect

3CoG in this paper refers to the process of generating multiple candi-
dates and aggregating their answers as the final answer, i.e., removing the
causality filter’s judgment in Causal-CoG.

model response. In this scenario, the context can be re-
garded as a source of noise during the question-answering
process, which could result in lower performance compared
to a model that operates without CoG, as depicted in Fig.4.
Therefore, it is important to evaluate whether the generated
context is beneficial for a given sample. In essence, we need
to devise a filtering mechanism to ascertain the utility of the
generated context for individual samples.

The causality graph associated with the VQA task,
showed in Fig. 3, reveals the existence of two causal rela-
tionships between the image (I) and the answers’ likelihood
distribution (Y'): one corresponds to the direct causal path-
way (I — Y'), while the other represents the indirect causal
pathway (I — C' — Y'). The direct causal path signifies the
immediate influence of the provided image on the answer,
while the indirect path encapsulates the influence mediated
by the generated context. In causality literature, we have
the capacity to compute the Natural Direct Effect (NDE)
and the Total Indirect Effect (TIE) between the provided I
and Y.

In Sec. 3, we have introduced how to calculate the NDE
and TIE of I on Y (see Eq. 2 and Eq. 3). It is impor-
tant to note that the subtraction in these formulations signi-
fies a comparison between two types of outcomes, and this
comparison is instantiated using the Jensen-Shannon Diver-
gence (JSD) in our work. Therefore, the practical calcula-
tion methods for NDE, and TIE are as follows:

NDE = E[JSD(Y (1, Q),Y(Q))], 4)
TIE = E[JSD(Y (I,C,Q),Y (I,Q))]. (5)

Since E[] represents the expectation operation, we gener-
ate multiple candidates, consisting of generated context and
corresponding answers’ likelihood distribution, to estimate
the expectation value. Overall, NV candidates are generated.
For the i-th candidate, we denote the answers’ likelihood
distribution as Y; and the candidate’s context as C;. Here
we use a sample with [V generated candidates to exemplify
the NDE and TIE calculation process:

NDE = JSD( v (1,Q),Y(Q)), (6)

TIE = ZJSD (1,C,Q),Y(1,Q)), (D

where different candidates have different Y, and éi. 1
and () remain the same for all the candidates, denoted as I
and Q for this sample.

For any given sample, if NDE < TIE, it implies that the
indirect effect plays a more pivotal role in responding to the
question, signifying that the context can be instrumental in
addressing the question effectively. Consequently, we select
such samples for the application of the CoG technique. In
contrast, for samples whose NDE > TIE, we opt to use the
answer generated directly by the MLM as the final answer.
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Aggregation based on TIE®

Final answer
w/o CoG

Final answer
w/ CoG

Figure 5. Pipeline of aggregation strategy, exemplified by Top-2
aggregation of 5 candidates’ answers. (1) Compare the NDE and
TIE values of this sample, determining whether to use CoG to de-
cide the final answer. (2) For samples with TIE>NDE, aggregate
answers based on TIE®.

4.3. Candidate Aggregation

Given multiple candidates’ contexts, we propose an aggre-
gation method to obtain the ultimate response. It’s crucial
to acknowledge that, despite applying a causality filter to
select these samples, not all candidates produce desirable
responses. It’s important to assign different weights to dif-
ferent candidates. A trivial approach is to use the answer’s
likelihood as the weight to aggregate all the candidates’ an-
swers or majority voting without weights [34]. But in this
work, The determination of higher weight assignment for
these candidates hinges on a consideration of the impact of
the context on the answer.

Effect of the Context. As illustrated in Fig. 4, certain con-
texts may not contribute significantly to the question’s an-
swer. Therefore, we consider candidates with a higher TIE
value of the image on the answer, mediated through the gen-
erated context, to be “better.” Similar to the approach de-
scribed in Section 3.2, we compute the individual-level TIE
value for ith candidate and denote it as TIE?, which is ex-
pressed as:

TIES = ISD(Y;(I,C;,Q), Y (1,Q)). (8)

Here, TIE; quantifies the degree of indirect effect and ajds
in the evaluation of candidate effectiveness in leveraging

context to answer questions.

Top-k Aggregation. For samples applied with CoG, we
need to aggregate the candidates’ answers to get the final
answer, considering each candidate’s TIE®. Assuming that
we sampled N candidates and each candidate consists of a
context and a corresponding answer. After getting the TIE®

of each candidate, then
TIE® = [TIES, ..., TIEY], 9

where TIEC is the set of all candidates’ TIES.

Next, top-k candidates in TIE® are picked and whose
indices are grouped into a set Q. Then, we only keep
the top-k candidates’ values while setting other candidates’
values to zero via:

ﬁ::{ TIE‘; 11 € Qsim

0 11 ¢ QSIM~ (10)

Finally, we can get the final answer for the sample using the
weighted majority vote, according to each candidate’s TIE .

5. Experiment
5.1. Setup

We conduct experiments on 10 VQA benchmarks, compar-
ing the performance of Causal-CoG with competitors. The
results show that Causal-CoG can boost the MLM’s ability
on both perception and reasoning tasks, as well as reduce
object hallucination.

Evaluation Benchmarks. We evaluate on 4 compre-

hensive benchmarks containing multiple subtasks ranging

from object identification to visual reasoning: MME [7],

SEEDBench [16], MMBench [24] and VQAvV2 [9]. Be-

sides, we use POPE [19] for evaluating object hallucina-

tion; VSR [21] and Winoground [30] for evaluating vi-

sual spacial understanding ability; OKVQA [26] for testing

MLM’s ability to leverage outside knowledge; Vizwiz [10]

for assisting blind people; GQA [12] for real-world visual

reasoning. Noted that Winoground [30], OKVQA [26],

VQAV2 [9], Vizwiz [10] and GQA [12] used in this paper

are not the original versions, but the split and reformed ver-

sions in ReForm-Eval [20] and they are reformed into the
single-choice forms, along with -* in the rest of the paper.

Multi-modal Language Models. We evaluate Causal-CoG

on two representative MLMs: LLaVA and LLaVA-v1.5.

- LLaVA [23]: LLaVA is trained on image-text pair data
and visual instruction data. The 7B checkpoint is used in
our experiment.

- LLaVA-v1.5 [22]: LLaVA-v1.5 is an improved version
of LLaVA, trained on more multi-modal data. We use the
7B version in our experiment.

Implementation Details of Candidate Generation. We

denote the context and the likelihood distribution of the ¢th

candidate on all the answer options as C’i and 171

- Context: C; is generated by the language model in MLM,
thus we can choose the hyperparameters in the sampling
strategy to control the generation process of C;. For all
the MLMs mentioned above, we follow the similar setting
as [34], setting the temperatur to 0.9 [11], and truncating
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‘ MME SEEDBench MMBench POPE VSR  Winoground* OKVQA*  VQAvV2*  Vizwiz* GQA*
Ensemble 57.03 39.26 41.43 66.46  54.42 61.25 30.75 42.86 29.47 37.23
One-shot 54.72 39.82 41.57 68.66  51.55 62.50 30.56 4291 32.25 37.55
Naive-CoG | 60.43 39.20 42.53 68.63  58.10 63.75 30.75 47.81 38.05 39.78
LLaVA 57.49 38.65 41.16 64.55 5556 61.25 30.36 43.10 28.54 37.71
+Causal-CoG | 61.23 40.66 43.52 70.85 58.92 66.25 32.74 49.44 42.23 41.45
A +3.74 +2.01 +2.36 +6.30  +3.36 +5.00 +2.38 +6.43 +13.69 +3.74
LLaVA-vl.5 72.27 45.45 43.96 85.76  58.02 63.75 33.92 52.89 39.21 49.64
+Causal-CoG | 71.84 45.93 4543 86.34  61.62 66.25 34.92 54.34 46.64 48.77
A -0.43 +0.48 +1.47 +0.64  +3.60 +2.50 +1.00 +1.45 +7.43 -0.87

Table 1. Accuracy results on 10 benchmarks. (1) Causal-CoG improves LLaVA [23] and LLaVA-v1.5 [22]’s performance on 10 bench-
marks, e.g., +13.69% on Vizwiz* [10] and +6.43% on VQAV2* [9]. (2) Ensemble and One-shot is conducted on LLaVA [23]. On some
benchmarks, these two methods show a slight improvement. (3) In Naive-CoG, the number of generated candidates is set to 1. Though
Naive-CoG’s improvement is not as significant as Causal-CoG, it still boosts LLaVA [23] on most benchmarks, e.g., +9.51% on Vizwiz*.
(4) Dataset* is the split and reformed version of Dataset from ReForm-Eval [20].

the top-k (k = 40) tokens with highest probability [6]. In
our experiments we apply Causal-CoG on LLaVA with
40 candidates and on LLaVA-v1.5 with 20 candidates.

- Answer’s likelihood distribution: For the ith candidate,
the answer options list of this sample is denoted as L =
[A1, Ay, ..., Apr]. Yy is the likelihood distribution on L.
A;’s likelihood, termed as Yz] can be calculated as:

~ ~ 1 EKi ~
Yvi,j(Xi) = eprJ k=1 logP(tk|Xi7t1,t2,...7tk,1)
an

where X; is the input MLM take, e.g., X is [f, C, Q] in
Yi(I,Ci, Q). P(ty] X, t1,ta, ..., ts—1) is the probability
of generating the kth token ¢, conditioned on X, and pre-
vious generated tokens ¢; ~ tj_1. Kj is the length of
the jth answer. As all the benchmarks we use are single-
choice formulations, the output answer, regardless of with
the application of Causal-CoG or not, is decided based on
the options’ likelihood distribution, i.e., choose the option
with highest likelihood as the output answer.

Competitors. Since the study of MLM’s decoding strat-

egy* is still under-explored, we compare our Causal-CoG

with two methods that can be used directly during the de-
coding stage of MLM: (1) ensemble MLM through vari-

ous prompts [28] and (2) one-shot in-context learning [ 1].

The implementation details are as follows.

- Ensemble: We ensemble the outputs by averaging the 5
answers’ likelihood distribution using 5 different system
prompts® on LLaVA. Full list of all system prompts we
use is provided in the supplementary material.

- One-shot: Similar to Flamingo [1], we use the one-shot
in-context learning on LLaVA.

4MLM’s decoding strategy refers to methods can be used directly with-
out retraining or fine-tuning the pretrained MLM during the inference time.

3System prompt refers to the prompt that is contained in every con-
versation’s beginning, telling the MLM to act as an multi-modal chatbot.
An example of system prompt is: “You are a helpful language and vi-
sion assistant. And you are able to understand the visual content that the
user provides, and assist the user with a variety of tasks using natural lan-
guage.” [23]

5.2. Main Results

We apply Causal-CoG on LLaVA and LLaVA-vl.5 re-
spectively, and compare the results with the ones without
Causal-CoG. Table 1 shows the overall results on 10 bench-
marks. Causal-CoG improves the performance of both
LLaVA and LLaVA-v1.5 significantly on most of the bench-
marks. For LLaVA, Causal-CoG boosts the accuracy by
more than 5.00% over POPE, Winoground™, VQAv2* and
Vizwiz*, 2.00%-3.00% absolute improvement over other
benchmarks. When it comes to LLaVA-v1.5, we can still
observe nearly 2.00%-3.00% improvement. It is worth
mentioning that LLaVA-v1.5 is an advanced version of
LLaVA. Compared with LLaVA, it performs better on all
benchmarks significantly, while Causal-CoG can still work
on this advanced and more developed MLM, which shows
the potential of Causal-CoG for working on well-developed
MLMs. In Table 1, Ensemble and One-shot works on some
datasets, improving the accuracy incrementally, while these
two methods can cause performance drop on other datesets,
e.g., VSR, VQAv2* and GQA*.

Performance on Perception, Recognition and Object
Hallucination. In MME [7], SEEDBench [16] and MM-
Bench [24], all the subtasks are split into two main parts:
perception and cognition. Table 2 shows results on per-
ception tasks and cognition tasks. POPE [19] is a bench-
mark for testing MLM’s object hallucination issue. It con-
tains three versions: POPE-Popular, POPE-Adversarial and
POPE-Random. Detailed results of Causal-CoG is included
in Table 2. We can see that Causal-CoG works better on
perception tasks and object hallucination issues than cogni-
tion tasks. This may be due to that context MLM generated
mainly focuses on the image’s description, which is obvi-
ously helpful for perception tasks, and may be not helpful
for cognition tasks in some cases, e.g., code_reasoning.

5.3. Ablation and Analysis
5.3.1 Ablation of the Proposed Components

There are three main components in Causal-CoG: Context
Generation, Causality Filter and Top-£ Aggregation. We
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‘ Cognition ‘ Perception ‘ Object hallucination

| MME. SEEDBench. MMBench. | MME, SEEDBench, ~MMBench, | POPE-P  POPE-A  POPE-R
LLaVA 53.85 37.50 44.30 59.11 40.94 38.02 61.27 57.67 74.71
+Causal-CoG | 56.43 39.43 45.26 63.37 43.12 41.78 65.97 63.60 82.99
A +2.59 +1.93 +0.96 +4.26 +2.18 +3.76 +4.70 +5.93 +8.28
LLaVA-vl.5 | 53.57 46.88 44.37 80.58 42.59 43.55 87.13 82.03 88.11
+Causal-CoG | 53.93 47.17 45.80 79.81 43.45 45.07 86.47 83.57 88.97
A +0.36 +0.29 +1.43 -0.77 +0.86 +1.52 -0.66 +1.54 +0.86

Table 2. Results on cognition tasks, perception tasks and object hallucination issues. (1) Dataset. represent the average of results over
cognition tasks. While Dataset, represents the average of results over perception tasks. The list of cognition and perception tasks in
MME [7], SEEDBench [16] and MMBench [24] is provided in supplementary material. (2) POPE-P, POPE-A and POPE-R are the
abbreviation of POPE-Popular, POPE-Adversarial and POPE-Random respectively, which are three versions of POPE [19].

LLaVA MME SEEDBench MMBench POPE VSR gﬁf{? ' OKVQA*  VQAV2*  Vizwiz*  GQA*
Casusal-CoG 61.23 40.66 43.52 70.85 5892  66.25 3274 49.44 4223 4145
W/o Top-kyge 61.58 39.93 43.44 7066 59.17  65.00 32.74 49.49 4130  40.89
w/o Causality filter 58.43 37.60 41.62 69.07 5802  60.00 29.17 44.26 3898 3858
Weighted sum (likelihood) | 59.94 39.89 42.69 7003 58.10  60.00 30.56 46.18 3759 3946
w/o Causality filter 59.13 38.56 41.37 7012 S8.10  62.50 28.97 4375 3782 3890
Weighted sum (similarity) | 60.23 40.23 4274 7009 5859  60.00 30.75 47.99 3782 38.82
w/o Causality filter 59.34 38.93 41.62 7020 58.02  62.50 29.37 47.20 3852 38.11
Unweighted sum 60.24 40.17 4271 7003 58.10  60.00 30.75 47.90 3805 3875
w/o Causality filter 59.43 38.86 4121 7012 57.61  62.50 29.17 47.11 3875 38.03

Table 3. Results of ablation and analysis experiments. (1) Either we remove the Top-k aggregating strategy or the causality filter, perfor-
mance drops on most datasets, signifying the necessity of these two modules. (2) During the aggregating stage, if the candidates’ answers
are aggregated based on other values, e.g., likelihood of each answer, similarity between context and image, or simple majority vote, we
find that Causal-CoG does not perform as well as before, showing the importance of TIE values.

NDE>TIE: M Sy Sraw NDE<TIE: MM Sw2r Sraw
0.6
0.4
0.2
0.0
Vizwiz* MM MM GQA* VQAv2*  OKVQA*
Benchl Bench2

Figure 6. (1) MMBenchl and MMBench2 are two subtasks in
MMBench: atribute_reasoning and finegrained_perception. (2)
Swor stands for samples on which CoG is helpful; Srow means
samples on which CoG is harmful. For samples with TIE>NDE,
CoG is helpful for most of them.

conduct the ablation experiments of Causality Filter and
Top-k Aggregation respectively on 10 benchmarks men-
tioned above, illustrating the necessity and effectiveness of
these two components.
Candidates with Higher TIE® are More Important. Ta-
ble 3 shows in Causal-CoG, if we consider all candidates’
TIE® when aggregating candidates’ answers instead of us-
ing the top-k strategy, accuracy on most benchmarks drops.
In Causal-CoG, when aggregating top-k candidates, we
select candidates with the 1st to 5th high TIE®. We also

explore the situation that uses candidates with 6th to 10th,
11th to 15th, 16th to 20th high TIE® to do weighted aggrega-
tion. As shown in Fig. 7, using candidates with lower TIE®
cause a significant accuracy drop, showing the effectiveness
of TIES as the aggregation weight.

The Causality Filter Works by Identifying Samples on
which CoG is Helpful. In Table 3, results without causal-
ity filter drop a lot compared with ones with causality filter,
signifying the importance of causality filter in Causal-CoG.

The motivation of designing causality filter is to se-
lect the samples, where context has more consequence on
the answer than image, i.e., TIE>NDE. Thus, we count
the samples that can benefit from CoG, i.e., CoG corrects
these samples’ answers from wrong to right, termed as
Swor, and samples that are harmed by CoG, i.e., the orig-
inal answers output by MLM directly are right but CoG
changes them to wrong, termed as Sgow. The distribution
of Swor and Sgrow in the samples set with NDE>TIE and
NDEKTIE are illustrated as in Fig. 6. As we can see, in
samples with NDE<TIE, Swr accounts for the majority,
i.e., CoG works well on most samples with NDE<TIE, thus
we should apply CoG on these samples. While in samples
with NDE>TIE, Sgow is the most, i.e., CoG makes errors
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Figure 7. During aggregation, instead of aggregate candidates’
answers based on top-k TIE® value, if we aggregate the answers
from candidates with 6th to 10th, 11th to 15th, 16th to 20th high
TIE® values, the performance drops a lot, showing that candidates
with higher TIE® value are better when aggregating.

on most samples with NDE>TIE, so we should avoid ap-
plying CoG on these samples. These insightful results in-
form us how the causality filter works: selecting the sam-
ples that can benefit from CoG.

5.3.2 Additional Analysis

Other Aggregation Strategies. In the aggregation strategy
we used in this paper, TIE® is used as the weights. How-
ever, there are other measures we can use as the weights
when aggregating. For example, we can use each answer’s
likelihood or the similarity® between the image and the gen-
erated context as the weights. Table 3 shows the results us-
ing the answer’s likelihood and the similarity between the
given image and the generated context as weights to aggre-
gate in Causal-CoG’s framework. We also take place the
weighted aggregation with unweighted aggregation (simple
majority vote), and results are shown in Table 3.

We find that aggregating with TIE® as weights outper-
forms the other three aggregation strategies, informing us
that TIES is a better metric for aggregation.

Besides, when removing the causal filter, performance

drops even if candidates’ answers are aggregated by the
other three strategies, further showing the effectiveness of
causality filter.
Contextual Information Assists VQA Tasks in MLM. To
verify the direct effect of contextual information, we di-
rectly use the first generated candidate’s answer as the final
answer (getting rid of aggregation in Causal-CoG), termed
as Naive-CoG, results are shown in Table 1. Naive-CoG
improves MLM’s performance on 10 benchmarks, showing
the helpfulness of contextual information itself for VQA.

We also compare some samples’ attention maps on the
image queried by the answer of this visual question with and
without Causal-CoG in Fig. 8. As we can see, Causal-CoG
helps the MLM to attend the context region of the image.

6The similarity is calculated using pretrained openai/clip-vit-patch14

Attention Map

w/o Original
context

w/
context

Figure 8. This figure reflects the changes in attention distribution
after being provided context. (1) In these three samples, the ques-
tion is: “Is there a cow/horse/screen in this image?” And the atten-
tion map is queried by the right answer of this question above. (2)
After providing context when doing VQA, MLM pays more atten-
tion to the context in the images, which is helpful for answering
the question. For example, in the left-most image, provided with
context, the trees and various animals are attended, so MLM can
infer to the existence of a cow based on the contextual information
and the image.

Causal-CoG on Other MLMs. Besides LLaVA and
LLaVA-v1.5, we also apply Causal-CoG on MiniGPT-
4 [39], and compare the results with ones without Causal-
CoG on MME [7]. Causal-CoG boosts MiniGPT-4’s accu-
racy on MME’s coarse-grained perception tasks by +2.09%,
showing the Causal-CoG can generalize to other MLMs.
More results are provided in supplementary material.

6. Conclusion

Motivated by contextual information can help MLM answer
the visual questions better, we propose Causal-CoG to boost
MLM’s performance on VQA. In Causal-CoG, we also de-
sign a causality filter to determine whether the contextual
information is helpful, thus deciding if we should use the
answer from CoG or not. We prove the effectiveness of
Causal-CoG by conducting the experiments over 10 VQA
benchmarks. Causal-CoG improves the accuracy over all
these 10 benchmarks significantly compared to the original
MLM.
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