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Figure 1. Non-rigid registration on 3D point sets. The blue and gray models represent the source and target point clouds, respectively, while

the yellow models are our registration results. Our method achieves successful registrations even for shapes with challenging deformations.

Abstract

This paper presents a novel non-rigid point set regis-

tration method that is inspired by unsupervised clustering

analysis. Unlike previous approaches that treat the source

and target point sets as separate entities, we develop a

holistic framework where they are formulated as cluster-

ing centroids and clustering members, separately. We then

adopt Tikhonov regularization with an ℓ1-induced Lapla-

cian kernel instead of the commonly used Gaussian ker-

nel to ensure smooth and more robust displacement fields.

Our formulation delivers closed-form solutions, theoretical

guarantees, independence from dimensions, and the ability

to handle large deformations. Subsequently, we introduce

a clustering-improved Nyström method to effectively reduce

the computational complexity and storage of the Gram ma-

trix to linear, while providing a rigorous bound for the low-

rank approximation. Our method achieves high accuracy

results across various scenarios and surpasses competitors

by a significant margin, particularly on shapes with sub-

stantial deformations. Additionally, we demonstrate the

versatility of our method in challenging tasks such as shape

transfer and medical registration. [Code release]

*Corresponding Authors.

1. Introduction

Non-rigid point set registration is to optimize a non-linear

displacement field that accurately aligns one geometric

shape with another. Due to its fundamental importance,

non-rigid registration plays a dominant role in a wide range

of applications, such as scene reconstruction [35, 52, 54],

pose tracking [34], animation [38], deformable shape ma-

nipulation and editing [42], and so on.

However, given two point sets, one acting as the source

and the other as the target, non-rigid registration presents

a highly ill-posed and much more complex challenge com-

pared to the rigid counterpart. This increased complexity

is primarily attributed to the additional freedom of defor-

mations allowed in non-rigid registration, especially when

dealing with shapes that exhibit large deformations (Fig. 1).

To enhance the registration quality for shapes under-

going large deformations, numerous pioneering methods

have been actively researched. Rather than directly opti-

mizing the registration process, these methods usually em-

ploy a two-step approach [30, 36, 47, 48]. First, they per-

form shape matching by identifying corresponding points

between the source and target shapes without considering

geometry deformations. Then, they estimate the alignment

transformation based on the established correspondences

via off-the-shelf registration techniques. While there has

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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been significant attention and research dedicated to the ini-

tial shape matching stage, the exploration of direct registra-

tion methods for handling large deformations, without rely-

ing on shape matching, is comparatively limited and poses

substantial challenges [20].

In this work, we address the problem of non-rigid point

set registration without correspondences, with a specific

emphasis on point sets exhibiting large deformations. To

overcome this challenge, we present a fresh perspective and

introduce a novel method. Our approach reformulates the

non-rigid deformation process as an unsupervised cluster-

ing problem within the context of machine learning. Unlike

previous approaches that treat the two point sets as separate

entities, we consider them as integral parts of a whole.

Concretely, we designate the source point set as the clus-

tering centroids, while the target one as the clustering sam-

ples. This holistic treatment enables us to leverage the in-

terplay between these two sets. Then the dynamic opti-

mization and update of the clustering centroids correspond

to the underlying deformation of the source shape. We

highlight the advantages of our novel registration function,

which is built on clustering analysis, from both information

theory and convex optimization perspectives. Furthermore,

we provide closed-form solutions to our objective function

during each iteration, which enables fast and efficient im-

plementations. We introduce a sparsity-induced Laplacian

kernel (ℓ1-norm) in the Tikhonov regularization to ensure

that the displacement field of clustering centroids remains

as smooth as possible. This differs from the commonly used

Gaussian kernel and exhibits higher robustness, as demon-

strated by experimental results. Additionally, we leverage

clustering analysis to adopt the improved Nyström low-rank

approximation [51], which reduces the computational com-

plexity and storage requirements of the Gram matrix to lin-

ear. Meanwhile, we give a rigorous proof of the approxima-

tion error bound associated with the Laplacian kernel.

Our method is independent of spatial dimensions, allow-

ing us to evaluate and compare its performance in both 2D

and 3D settings. The experimental results demonstrate the

superiority of our method compared to baselines by a large

margin. This is particularly evident in scenarios involving

large deformations, such as shape transfer and medical data

registration.

Our contributions can be summarized as follows:

• We propose a novel and correspondence-free method for

non-rigid point set registration, utilizing unsupervised

clustering analysis. The method achieves impressive re-

sults across various settings and mitigates the challenge

without explicit correspondences.

• We incorporate the Laplacian kernel function for robust

displacement regularization and provide a rigorous theo-

retical analysis to prove the approximation error bound of

the Nyström low-rank method.

• Our method is dimension-independent, offering closed-

form solutions during optimization, and significantly im-

proves performance in handling large deformations.

2. Related Work

We review the work that is closely aligned with ours. Read-

ers are directed to [14, 41] for comprehensive studies.

Non-rigid registration. Differing from shape match-

ing that focuses on finding inlier correspondences, non-

rigid registration aims to optimize the displacement field.

Various pioneering algorithms employ an optimization

paradigm that minimizes both the data and penalty terms

simultaneously. Amberg et al. [1] extended the rigid itera-

tive closest point algorithm [4] to non-rigid settings, while

Yao et al. [47, 48] recently improved non-rigid ICP re-

garding both accuracy and efficiency through deformation

graph optimization. Coherent Point Drift (CPD) [33] and

GMM [23] developed probabilistic frameworks by mini-

mizing the negative logarithm likelihood function to en-

hance the robustness for non-rigid point set registration.

Ma et al. [30] further incorporated the shape context de-

scriptor [2] to establish shape correspondences for better

2D registration. Hirose [20, 21] recently formulated CPD

in a Bayesian setting, which effectively overcomes CPD’s

limitations and delivers impressive results.

With the advancement of deep learning, neural network-

based methods have also been proposed for non-rigid point

set registration [22, 25, 36]. Most of them utilize neural net-

works to extract features for point correspondences and then

apply classical methods such as non-rigid ICP for registra-

tion. Instead of focusing on shape matching and heavily

rely on data annotations, our method is unsupervised and

reasons from a case-by-case geometric perspective. This

allows us to achieve faithful registrations that are more gen-

eralizable to unknown categories.

Deformation representation. The representation of the

deformation field is a key component in non-rigid registra-

tion. Several existing works are based on thin plate spline

functions [12, 23, 37], which can be viewed as a regular-

ization of the second-order derivatives of the transforma-

tions [33]. Another line of researches utilize kernel func-

tions or a reproducing kernel Hilbert space to describe the

deformation field [28, 29, 33, 43]. However, many of these

methods are limited to the Gaussian kernel due to the re-

liance on fast Gauss transform [18]. Recently, the Multi-

Layer Perception (MLP) network has been employed to rep-

resent the deformation field by mapping input coordinates

to signal values [24, 26, 35] and the deformation degree

is controlled by frequencies. These methods have shown

promising results in dynamical reconstruction and scene

flow estimation, which are typically considered less chal-

lenging tasks compared to dealing with large deformations.
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3. Preliminaries on Clustering Analysis

As one of the representative unsupervised learning frame-

works, clustering analysis plays a fundamental role in var-

ious scientific research domains [46]. The pioneering

work [27, 53] explored clustering metrics for rigid point

cloud registration. In contrast, we distinguish ourselves by

addressing a more challenging non-rigid problem, which we

have completely reformulated as a clustering process with a

different objective function. We present a concise overview

on two commonly used clustering approaches: fuzzy clus-

tering and Elkan k-means clustering analysis.

3.1. Fuzzy Clustering Analysis

Given a dataset X = {xi ∈ R
n}Mi=1, fuzzy clustering anal-

ysis solves the following problem:

min
U,V

C
∑

j=1

M
∑

i=1

(uij)
r||xi−vj ||

2

2, s.t.

C
∑

j=1

uij =1, uij ∈ [0, 1], (1)

where U = [uij ]M×C ∈ R
M×C is the fuzzy membership

degree matrix, V = {vj ∈ R
n}Cj=1 is the set of clustering

centroids consisting of C ∈ Z+ classes, and r ∈ [1,+∞) is

the fuzzy factor, which controls the clustering fuzziness. To

enhance the clustering performance on unbalanced datasets,

Miyamoto et al. [32] proposed the inclusion of cluster size

controlling variables α = [³1, · · · , ³C ] ∈ R
C in Eq. (1),

and thus classes with more samples may lead to higher

fuzzy membership degree. Since Euclidean distance-based

clustering algorithms are primarily suitable for spherical

data, Mahalanobis distance is latter introduced to general-

ize the fuzzy clustering analysis to accommodate ellipsoidal

structures [19]. Recently, [9] combined the merits of previ-

ous fuzzy clustering approaches and developed a novel clus-

tering framework based on the ℓ2,p norm, which achieves

appealing results on a set of clustering analysis tasks:

min
U,V,Σ,α

C
∑

j=1

M
∑

i=1

uij ||Σ
−

1

2

j (xi−vj)||
p
2
+uij log|Σj |+λuij log

uij

αj

,

s.t. |Σj | = θj ,

C
∑

j=1

uij = 1,

C
∑

j=1

αj = 1, uij , αj ∈ [0, 1].

(2)

where ¼ ∈ R
+ is a regularization parameter, and Σj ∈

S
n
++ ≜ {A ∈ R

n×n|xT
Ax > 0, ∀x ∈ R

n} denotes the

covariance matrix of the j-th class, with the corresponding

determinant equivalent to |Σj | ∈ R. We explore the ap-

plication of this clustering analysis framework to non-rigid

point set registration and demonstrate its superior perfor-

mance over previous registration approaches.

3.2. Elkan k­Means Clustering

In contrast to fuzzy clustering analysis, the k-means algo-

rithm [31] has emerged as one of the most widely used

clustering methods due to its simplicity. Elkan k-means

clustering further introduced the triangle inequality into the

k-means framework to avoid unnecessary distance calcula-

tions, which dramatically speeds up the primary k-means

clustering process. More details of Elkan k-means cluster-

ing can be found in [15].

4. Proposed Method

Problem formulation. Given two point sets X = {xi ∈
R

n}Mi=1 and Y = {yj ∈ R
n}Nj=1, where X and Y are

named as the target and the source, separately, the objec-

tive of non-rigid point set registration is to find the optimal

deformation map T that minimizes the shape deviation be-

tween T (Y) ≜ Y + ¿(Y) and X, where ¿ represents the

displacement filed acting on each source point yj .

4.1. Clustering­Induced Non­Rigid Registration

Observations. We notice that during the clustering pro-
cess, the spatial position of clustering centroids V are dy-
namically updated until the distance between the centroids
and their members is minimized. This dynamic process
bears resemblance to the iterative update of each source
point T (yj). Inspired by this, we propose to formulate non-
rigid registration as an unsupervised clustering process. We
consider Y as the clustering centroids and X as the cluster-
ing members. We customize Eq. (2) to optimize the overall
clustering loss by

minF (U,α,Σ, ν)=

C
∑

j=1

M
∑

i=1

uij ||Σ
−

1

2

j (xi−(yj+ν(yj)))||
2

2

+uij log|Σj |+λuij log
uij

αj

,

s.t. |Σj | = θj ,

C
∑

j=1

uij = 1,

C
∑

j=1

αj = 1, uij , αj ∈ [0, 1].

(3)

Here we set p = 2 to ease the computation, which also

ensures closed-form solutions as derived in the following.

Regularization. As in [20, 33], we incorporate Tikhonov
regularization [17] to promote smoothness in the displace-
ment field of clustering centroids. Thus, our objective func-
tion is optimized to find the optimal locations of clustering
centroids as follows:

minF (U,α,Σ, ν) + ζR(ν), (4)

where · is a trade-off parameter. R(·) is an operator that
penalizes the high-frequency component of ¿ if we consider
it in the Fourier domain, i.e.,

R(ν) =

∫

Rn

ds
||ν̃(s)||22

K̃(s)
. (5)

K(s) is a kernel function regarding the frequency variable

s, and f̃ indicates the Fourier transform of the function f .
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4.2. Virtues of the Newly­Defined Function

We provide a theoretical analysis of Eq. (3) from both infor-

mation theory and optimization perspectives. This analysis

allows us to highlight the virtues of our newly introduced

loss function for non-rigid point set registration.

Information theory view. We re-write F (U,α,Σ, ¿) as

C,M
∑

j=1,i=1

uij ||Σ
−

1

2

j (xi−(yj+ν(yj)))||
2

2+uij log(
|Σj |

αλ
j

)−λH(U),

where H(U) = −∑C
j=1

∑M
i=1 uij log(uij) is the entropy

of U. From the perspective of information theory, this

entropy regularization term serves to push F (U,α,Σ, ¿)
towards U with a uniform distribution that makes H(U)
the maximal and thus drags F (U, ³,Σ, ¿) away from the

sparse U. This not only enhances the smoothness of the fea-

sible set, but also improves the computational stability dur-

ing optimization, i.e., avoiding lim
uij→0

log(uij) = −∞ [13].

Optimization view. Alternatively, from an optimization

point of view, uij log(uij) is a convex function in terms of

uij with ¼ controlling the degree of convexity. Moreover,

uij log(uij) acts as a barrier function that restricts uij to

the range of [0, 1] and prevents it from taking values outside

this range [49].

4.3. Closed­Form Solutions

Our method enables closed-form solutions for each variable

during the optimization step as derived in the following.

Update of U. We fix α,Σ, ¿ and update U, which be-
comes a convex optimization problem. Utilizing the La-
grangian multiplier and ignoring parameters that are irrele-
vant to U, we obtain

L(U,β)=

C
∑

j=1

M
∑

i=1

uij ||Σ
−

1

2

j (xi − (yj + ν(yj)))||
2

2

+uij log|Σj |+ λuij log
uij

αj

+

M
∑

i=1

βi(

C
∑

j=1

uij − 1),

where β = {´i ∈ R}Mi=1 are the set of Lagrangian multipli-

ers. By equating ∂L
∂U = 0, we have

U = (diag(A1C))
−1

A (6)

Here A = exp(−D/¼)diag(α» |Σ|), D = [dij ]M×C ∈
R

M×C is a squared Euclidean distance matrix with dij =

∥Σ−
1

2

j (xi − (yj + ¿(yj)))∥22, exp(·) is the element-wise

exponential operator of matrices, diag(z) is an operator that

creates a square diagonal matrix with the vector z on its

main diagonal, and |Σ| = [|Σ1|, · · · , |ΣC |]T ∈ R
C . 1C is

the C-dimensional vector of all ones, and » represents the

element-wise Hadamard product of two matrices or vectors.
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Figure 2. Left: Comparison between the Gaussian kernel and

Laplacian kernel with the same bandwidth γ = 3, where the lat-

ter delivers considerably thicker lower and upper tails, indicating

higher robustness. Right: Laplacian kernel with different γ.

Update of α. Likewise, the closed-form solution with re-

spect to α is α = 1
MU

T
1M , which formally quantifies the

clustering size for each class.

Update of Σ. For simplicity, we relax each clustering
centroid’s covariance matrix to be isotropic, i.e., Σj = Ã2

I,
where I ∈ R

n×n is the identity matrix. This ensures a
closed-form solution to variance Ã2:

σ2 =
tr(XTdiag(UT

1M )X− (2(UX)T +T
Tdiag(U1C))T)

n×M
,

where tr(·) is the matrix trace operator.

Update of ¿. By leveraging the Riesz’s representation

theorem [10], the closed-form solution to the regularization

term ¿ can be expressed as

¿(y) =
C
∑

j=1

cjK(y,yj) +
N
∑

η=1

dηÈη(¿), (7)

where {cj ∈ R}Cj=1 are the coefficient scalars, K(·, ·) is

the kernel function defined in Eq. (5), and {Èη}Nη=1 repre-

sent a set of basis in the N -dimensional null space of R(¿),
which is typically composed by a set of polynomials for

most choices of the stabilizer R(¿).
In contrast to previous approaches that commonly utilize

a Gaussian Radial Basis Function (RBF) [30, 33], we adopt

the sparsity-induced Laplacian kernel with the robust ℓ1-

norm to characterize the displacement field ¿, i.e.,

K(yi,yj) = exp(−µ∥yi − yj∥1), µ > 0 (8)

in which ∥yi−yj∥1 is the Manhattan distance between the
two input vectors. Compared to the RBF kernel, the Lapla-
cian kernel exhibits stronger robustness due to its consider-
ably thicker tails, as illustrated in Fig. 2. We also validate
this conclusion through subsequent experiments. Since the
Laplacian kernel is positive definite, we obtain Èη ≡ 0 [17].

By evaluating ¿(y) at Y = {yj ∈ R
n}Cj=1, follow-

ing [20, 33], the coefficient vector c = [c1, c2, · · · , cC ]T ∈
R

C is recovered from the following linear system:

c = (L+ ζσ2diag(U1C)
−1)−1(diag(U1C)

−1
UX−Y), (9)
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where L is the Gram matrix with lij = K(yi,yj). There-

fore, the newly deformed shape T from the source point set

Y becomes T = T (Y) = Y + Lc.

4.4. Improved Nyström Low­Rank Approximation

The matrix inverse operation in Eq. (9) leads to a computa-

tional complexity of O(C3) and a memory requirement of

O(C2). Previous approaches often employ the fast Gauss

transform (FGT) [18] to reduce memory usage and accel-

erate computation. However, FGT is merely limited to the

Gaussian kernel. To circumvent this issue, BCPD [20] com-

bined the Nyström method [11] and the KD tree search [3]

for acceleration. However, there are still two major is-

sues that remain unresolved. (1) Due to the random sam-

pling scheme used in BCPD, it is unclear how effective the

Nyström approximation performs. (2) In order to address

convergence issues when Ã2 becomes small, BCPD need

to switch from Nyström approximation to KD tree search.

This transition may affect the optimization trajectory.

To overcome these challenges, we opt to use clustering

analysis instead of random sampling. Concretely, we first

employ the fast Elkan k-means algorithm (Sec. 3.2) to par-

tition Y into C ′ disjoint clusters Pi ¢ Y, with the corre-

sponding clustering centroids as {zi ∈ R
n}C′

i=1 (C ′ j C).

Then, we adopt the improved Nyström approximation [51]

for efficient and consistent optimization:

L ≈ EW
−1

E
T , (10)

where E = [eij ] ∈ R
C×C′

and W = [wij ] ∈ R
C′

×C′

are the low-rank Laplacian kernel matrices, with elements

eij = K(yi, zj) and wij = K(zi, zj).
By incorporating clustering analysis, we achieve two

key benefits: (1) rigorously proving the error bound of the

Nyström approximation for our utilized Laplacian kernel,

and (2) as demonstrated through experiments, providing en-

couraging results for non-rigid point set registration without

compromising the optimization trajectory.

Proposition 1. The low-rank approximation error ϵ =
∥L − EW

−1
E

T ∥F in terms of the Laplacian kernel is

bounded by

ϵ f 4
√
2T 3/2µ

√

C ′q + 2C ′µ2Tq∥W−1∥F , (11)

where ∥·∥F is the matrix Frobenious norm, T = maxi |Pi|,
q =

∑C
j=1 ∥yj − zc′(j)∥22 is the clustering quantization er-

ror with c′(j) = argmini=1,··· ,C′∥yj − zi∥2, and µ is the

Laplacian kernel bandwidth defined in Eq. (8).

Proof. Please see the Supplementary Material.

5. Experimental Results

We perform extensive experiments to demonstrate the per-

formance of the proposed method and compare it with state-

of-the-art approaches from both 2D and 3D categories.

Implementation details. Given a pair of point sets, for

better numerical stability, we first perform shape normal-

ization to make them follow the standard normal distribu-

tion. However, the registration evaluation is still based on

the original inputs through denormalization. The Laplacian

kernel bandwidth µ is set to 2 by default, and the number

of clustering centroids in Elkan k-means equals to 0.3C
for better trade-off between registration accuracy and effi-

ciency. During optimization, we fix the two weight coef-

ficients ¼ = 0.5 and · = 0.1, which deliver impressive

performance across various scenes. Our algorithm is im-

plemented in MATLAB, on a computer running AMD Core

Ryzen 5 3600XT (3.8GHz). We leverage publicly avail-

able implementations of baseline approaches for assess-

ment, with their parameters either fine-tuned by ourselves

or fixed by the original authors to achieve their best results.

Evaluation criteria. As in [20], we adopt the Root Mean
Squared Error (RMSE) to quantitatively assess the regis-
tration accuracy. For point sets with known ground-truth
correspondences, we compute the squared distance between
corresponding points directly. However, for point sets with-
out annotated correspondences, such as distinct types of ge-
ometries, we identify the corresponding point pairs through
the nearest neighbor search. Accordingly, the RMSE is de-
fined as:

RMSE(T (Y),X)=

√

Tr{(T (Y)−X)T (T (Y)−X)}/M,

where T (Y) and X are the deformed and the target point

sets, respectively.

5.1. 2D Non­Rigid Point Set Registration

For 2D non-rigid point set registration, we utilize the bench-

mark IMM hand dataset [40] for evaluation. This dataset

encompasses 40 real images, showing the left hands of four

distinct subjects, and each contains 10 images. As illus-

trated in Fig. 3, the hand shape is described through 56 key

points extracted from the contour of the hand. We employ

the first pose from each group of hands as our target point

set, while the remaining poses of the same subject serve as

the source point sets. The quantitative comparison results

with state-of-the-art 2D registration approaches including

MR-RPM [30], BCPD [20], GMM [23], and ZAC [45] are

reported in Tab. 1. We report the average RMSE for each

subject along with the average registration timing of each

method. As observed, our method consistently outperforms

the comparative approaches with higher registration accu-

racy and efficiency across all subjects. Although without the

need for constructing the initial point correspondences, like

shape context [2] used in MR-RPM, our method still de-

livers RMSE that is orders of magnitude lower than that of

most competitors, highlighting its compelling advantages.

The qualitative comparison results regarding the inputs in

the third row of Fig. 3 are presented in Fig. 4.
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Figure 3. Test samples from the 2D hand pose dataset with differ-

ent subjects. The red ∗ and the blue ◦ indicate the source and the

target point sets, respectively.

Robustness. We further investigate the robustness of the

designed method against external disturbances including

noise and occlusion. We add a set of Gaussian noise with

zero mean and varying standard deviations Ã ∈ [0.01, 0.06]
to all of the source point sets defined in the above section.

Additionally, we randomly erase several points, around

3% ∼ 20% of the source, to construct a range of occlusion

geometries. Fig. 5 summarizes the average RMSE values

across all subjects. It can be observed that our method still

achieves the highest or comparable registration accuracy on

all settings, highlighting its stability and robustness. Qual-

itative comparison results are presented in the Supplemen-

tary Material.

Table 1. Quantitative comparisons on the 2D hand pose dataset.

Bold values stand for the top performer.

Method Subject 1 Subject 2 Subject 3 Subject 4 Time (s)

MR-RPM [30] 0.0940 0.0834 0.1028 0.1388 0.2382

BCPD [20] 0.1027 0.1055 0.1080 0.1579 0.6890

GMM [23] 0.0571 0.0547 0.0734 0.0917 0.1140

ZAC [45] 0.4886 0.4566 0.4879 0.4935 0.4254

Ours 0.0383 0.0481 0.0537 0.0879 0.1074

5.2. 3D Non­Rigid Point Cloud Registration

Since our method is dimension-independent, we further

substantiate its efficacy on 3D point clouds and com-

pare it with eight state-of-the-art 3D registration or defor-

mation approaches, including BCPD [20], GBCPD [20],

Fast RNRR [50], AMM NRR [48], Sinkhorn [16], as

well as network-based ones Nerfies [35], NDP [26], and

NSFP [24]. For efficiency, we downsample the point clouds

from datasets FAUST [5] and TOSCA [6] using voxel grid

filtering, with a point size of 3, 000 ∼ 4, 000. More experi-

ments are presented in the Supplementary Material.

Registration for real human scans. Tab. 2 and Fig. 6 re-

port the quantitative and qualitative comparison results on

the FAUST human dataset, respectively. The evaluation is

conducted using six sets of subjects in six different and chal-

lenging poses for each subject. We first perform intra-class

Figure 4. Qualitative comparisons on the 2D hand pose dataset.
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Figure 5. Robustness comparisons against external disturbances.

registration, i.e., deforming the first human geometry to

match the other poses for the same subject. Then, to validate

the capability of the designed approach against large defor-

mations, we further conduct an inter-class registration test

by aligning the first human pose of the i-th subject to all the

poses of the (i+2)-th subject (i = 1, 2, 3, 4). The statistical

results summarized in Tab. 2 demonstrate that our method

achieves the highest registration accuracy across all subjects

and outperforms competitors by a significant margin, even

several orders of magnitude higher. Notably, while achiev-

ing remarkable accuracy, our method also maintains effi-

ciency comparable to most competitors, making it a highly

practical and effective solution. The qualitative comparison

results in Fig. 6 indicate that our method not only ensures

higher-quality deformations but also recovers the geomet-

ric details as well as the topology of the target subject more

accurately and faithfully.

Registration for larger deformations. We further ver-

ify whether the proposed method improves the registration

performance for point cloud pairs with much larger de-

formations. We evaluate four classes of animals from the

TOSCA dataset [6] and report the average RMSE for each

class of them. As illustrated in Fig. 7, the source and tar-
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Table 2. Quantitative comparisons on the real-world FAUST human scan dataset.

Method

Settings
Intra-1 Intra-2 Intra-3 Intra-4 Intra-5 Intra-6 Inter-1 Inter-2 Inter-3 Inter-4 Average Time (s)

BCPD [20] 0.0913 0.1011 0.0872 0.0577 0.1004 0.0746 0.1196 0.0705 0.0935 0.0923 0.0888 3.0359

GBCPD [21] 0.0285 0.0212 0.0211 0.0260 0.0244 0.0339 0.0359 0.0340 0.0212 0.0190 0.0265 1.9346

Fast RNRR [47] 0.0430 0.0487 0.0397 0.0504 0.0429 0.0391 0.1358 0.0743 0.0477 0.0358 0.0557 0.6324

AMM NRR [48] 0.0544 0.0486 0.0400 0.0539 0.0405 0.0393 0.0838 0.0686 0.0422 0.0399 0.0511 2.0438

Sinkhorn [16] 0.0654 0.0638 0.1372 0.1096 0.0749 0.0821 0.2467 0.0781 0.1400 0.1720 0.1170 2.0377

Nerfies [35] 0.0120 0.0107 0.0138 0.0129 0.0135 0.0118 0.0121 0.0144 0.0140 0.0140 0.0129 9.4287

NDP [26] 0.0183 0.0199 0.0192 0.0152 0.0170 0.0149 0.0181 0.0198 0.0164 0.0155 0.0174 1.7590

NSFP [24] 0.0126 0.0134 0.0132 0.0118 0.0137 0.0142 0.0167 0.0162 0.0148 0.0166 0.0143 2.4607

Ours 0.0086 0.0089 0.0103 0.0096 0.0089 0.0081 0.0097 0.0099 0.0094 0.0081 0.0092 2.3746

        

Figure 6. Qualitative comparisons on the FAUST dataset. The top and the bottom rows represent the test registrations of intra and inter-

subject, respectively.

Table 3. Quantitative comparisons on the TOSCA dataset.

Method Cat Centaur Dog Gorilla Average

BCPD [20] 3.9884 8.1017 7.2800 5.6253 5.9935

GBCPD [21] 1.5631 2.9480 1.5300 3.5751 2.6523

Nerfies [35] 3.2704 2.8826 1.3612 2.2809 2.3211

NDP [26] 4.3639 3.4373 3.1285 2.8312 3.2560

NSFP [24] 1.8774 2.6425 1.6734 2.2044 2.0710

Ours 1.3496 1.8125 1.2088 1.6807 1.5247

get point sets exhibit significant pose differences, making

the registration quite challenging. Tab. 3 summarizes the

quantitative comparison results. We exclude Fast RNRR,

AMM NRR, and Sinkhorn from our analysis because they

exhibit significant deviations from the target poses, render-

ing the error metrics unreliable. Our method consistently

outperforms all the baselines by a large margin. Fig. 7

demonstrates that our method delivers highly stable and ac-

curate registration results for point clouds with large defor-

mations, even without the point-wise correspondences.

5.3. Ablation Study

Effect of the improved Nyström method. Fig. 8 reports

the registration error, running time, and the matrix approx-

imation error (defined in Proposition 1), between the im-

       

Figure 7. Qualitative comparisons on the TOSCA dataset, where

much larger shape deformations exist.

proved or clustered Nyström approximation method (Ours)

and the random one on two randomly extracted FAUST

models. We vary the approximation ratio R ∈ [0.02, 0.4]
with ∆R = 0.02. It can be seen that our method obtains

significant registration and timing performance boost and

decrease in matrix approximation error by a large margin,

especially on lower ratios.

Laplacian VS. Gaussian. Fig. 9 summarizes both the

quantitative and qualitative comparison results between the

kernel functions of Gaussian and Laplacian. We validate the

merits and robustness of the Laplacian Kernel by aligning

the source Bunny model [39] contaminated by a set of noise

(Ã ∈ [0, 0.06]) to a randomly deformed Bunny. The kernel

bandwidth µ is varied in [1, 3]. We report the RMSE and
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Figure 8. Comparisons between the Nyström low-rank approximation and our clustering-improved one for non-rigid registration.
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Figure 9. Comparisons between the Gaussian and the Laplacian

kernel functions. Left: Results with various kernel bandwidth γ ∈
[1, 3]. Right: The number of iterations when algorithms converge.

the average number of iterations when algorithms converge

in Fig. 9. We find that the Laplacian kernel consistently out-

performs the Gaussian kernel across all settings, suggesting

the merits of the sparsity-induced ℓ1 norm. Moreover, the

Laplacian kernel delivers faster convergence and more ac-

curate registration results (see the Supplementary Material).

5.4. Applications

Shape transfer. As depicted in Fig. 10, we apply the

proposed method to transfer shapes belonging to different

categories that require substantial deformations. We first

transfer two geometries with the identical topology (sphere

and cube) and then proceed to transfer CAD models from

ShapeNet [8], which presents a more challenging task. Re-

sults indicate the effectiveness of our method in achiev-

ing accurate shape deformation while faithfully preserving

the geometric details of the source shapes. Notably, our

method consistently produces high-quality deformation re-

sults even when the shapes possess significantly distinct

topology. More results on shape transfer are presented in

the Supplementary Material.

Medical registration. Deforming a standard medical

template to match those captured from individual patients

is a crucial step in the field of medical data analysis. In

Fig. 11, we demonstrate the efficacy of our method by align-

ing a 3D inhale lung volume to two exhale lungs [7] and two

brain vessels [44], extracted from real-world CT and MRA

images. Despite the presence of complex structures, large

deformations, and mutual interference, our method consis-

tently achieves impressive results in accurately deforming

the template models to align the target shapes.



 











 

 

Figure 10. Application of the proposed method to shape transfer.

  

Figure 11. Application of our method to medical data registration.

6. Conclusions

We proposed an algorithm for solving non-rigid point set

registration without prescribed correspondences. The key

contribution of our method lies in reformulating non-rigid

registration as an unsupervised clustering process that en-

ables holistic optimization, dimension-independent, closed-

form solutions, and handling large deformations simultane-

ously. Moreover, we introduce the ℓ1-induced Laplacian

kernel to achieve a more robust solution than the Gaussian

kernel and provide a rigorous approximation bound for the

Nyström method. Our method achieves higher-quality re-

sults than traditional methods and recent network models,

particularly on geometries that exhibit significant deforma-

tions. We also showcase its applicability in challenging

tasks such as shape transfer and medical registration.
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