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Abstract

Determining the relative pose of an object between two

images is pivotal to the success of generalizable object pose

estimation. Existing approaches typically approximate the

continuous pose representation with a large number of dis-

crete pose hypotheses, which incurs a computationally ex-

pensive process of scoring each hypothesis at test time.

By contrast, we present a Deep Voxel Matching Network

(DVMNet) that eliminates the need for pose hypotheses and

computes the relative object pose in a single pass. To this

end, we map the two input RGB images, reference and

query, to their respective voxelized 3D representations. We

then pass the resulting voxels through a pose estimation

module, where the voxels are aligned and the pose is com-

puted in an end-to-end fashion by solving a least-squares

problem. To enhance robustness, we introduce a weighted

closest voxel algorithm capable of mitigating the impact

of noisy voxels. We conduct extensive experiments on the

CO3D, LINEMOD, and Objaverse datasets, demonstrating

that our method delivers more accurate relative pose esti-

mates for novel objects at a lower computational cost com-

pared to state-of-the-art methods. Our code is released at:

https://github.com/sailor-z/DVMNet/.

1. Introduction
Object pose estimation plays a crucial role in 3D computer
vision and robotics tasks [2, 11, 23, 33], aiming to estimate
the 3D rotation and 3D translation of an object depicted in
an RGB image. The vast majority of existing methods work
under the assumption that the training and testing data in-
clude the same object instances, thereby limiting their appli-
cability to scenarios that involve previously unseen objects.
Recently, generalizable object pose estimation [21, 29, 32]
has received growing attention, showcasing the potential to
generalize to unseen objects from new categories without
retraining the network. In pursuit of this generalization ca-
pability, existing methods leverage densely sampled images
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Figure 1. Advantages of our DVMNet compared to hypothesis-
based methods. Hypothesis-based techniques approximate the
relative object pose by scoring numerous pose hypotheses, leading
to a high computational cost. By contrast, our DVMNet computes
the pose in a hypothesis-free fashion by robustly matching vox-
elized 3D representations of the reference and query images via a
Weighted Closest Voxel (WCV) algorithm. Our method strikes a
favorable balance between computational cost and accuracy in rel-
ative object pose estimation, as measured by multiply-accumulate
operations (MACs) and angular error.

depicting unseen objects in diverse poses, serving as refer-
ences. Object pose estimation is then carried out through
template matching [21, 29] or by establishing 2D-3D cor-
respondences [14, 32]. Unfortunately, the effectiveness of
these methods strongly depends on the references densely
covering the viewpoints of unseen objects, making them in-
applicable to practical scenarios where only sparse refer-
ence views are available.

In this context, a few methods [18, 47, 52] highlight
the importance of relative object pose estimation. Unlike
previous approaches in generalizable object pose estima-
tion, these methods focus on estimating the relative pose
of an unseen object between two images, i.e., a single ref-
erence image of the object and the query image. In this
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paper, we also work in this setting, motivated by the prac-
tical ease of obtaining a single reference image for a new
object. One plausible solution is to compute the relative
pose based on 2D-2D correspondences [13]. However, the
single-reference scenario tends to yield a significant view-
point gap between the reference and the query. Exist-
ing studies [18, 52] have shown that image-matching tech-
niques [26, 31] are sensitive to such pose differences. To
handle this issue, the prior methods [18, 47, 52] follow an
alternative strategy of scoring multiple pose hypotheses for
the input reference-query pair, and predicting the pose as
the hypothesis with the highest score. However, this strat-
egy comes with the drawback of requiring numerous pose
hypotheses to achieve reasonable accuracy, e.g., 500,000
in [18], which thus induces a computational burden. More-
over, we empirically found that these approaches occasion-
ally produce unnaturally large errors. One plausible expla-
nation is their failure to model the continuous nature of the
object pose space, as they primarily concentrate on learning
to score discrete hypotheses.

To overcome these drawbacks, we present a novel Deep
Voxel Matching Network (DVMNet) that computes the rel-
ative pose of unseen objects in a hypothesis-free and end-
to-end manner. Our approach starts by voxelizing the query
and reference images in a dedicated autoencoder. The en-
coder network lifts 2D image features to 3D voxels, lever-
aging cross-view 3D information. The decoder network re-
constructs a masked object image from the voxels, encour-
aging the learned voxels to account for the object. Subse-
quently, we align the query and reference voxels based on
a score matrix that measures the voxel similarities. To han-
dle unreliable voxels due to background, varying illumina-
tion, and other potential nuisances, we present a Weighted
Closest Voxel (WCV) algorithm to facilitate robust pose es-
timation. In this algorithm, each voxel-voxel correspon-
dence is assigned a confidence score computed by utiliz-
ing both the 3D voxel objectness map and the 2D object
mask learned by the autoencoder. The relative object pose
is then computed by solving a weighted least-squares prob-
lem. Such an end-to-end learning mechanism eliminates
the necessity for voxel-wise annotations and allows the net-
work to directly learn pose-aware features from RGB im-
ages. As illustrated in Fig. 1, our DVMNet requires signifi-
cantly fewer multiply-accumulate operations (MACs) while
achieving smaller angular errors than its hypothesis-based
competitors.

We perform comprehensive experiments on the
CO3D [25], LINEMOD [15], and Objaverse [9] datasets.
Our method yields more accurate and robust relative
pose estimates for previously unseen objects than both
image-matching and hypothesis-based competitors. We
also conduct ablation studies where the results demonstrate
the effectiveness of the key components in our framework.

In short, our contributions are twofolds: First, we tackle
the problem of relative pose estimation for unseen objects
in a hypothesis-free manner by introducing a deep voxel
matching network. Second, we present a weighted closest
voxel algorithm that robustly and end-to-end computes the
object pose from voxel-voxel correspondences.

2. Related Work
Instance-Level Object Pose Estimation. The majority of
previous deep learning approaches to object pose estima-
tion [24, 30, 34, 35, 43] tackle the problem at an instance
level, holding an assumption that the training and testing
data depict the same object instances. Since the appearance
of an object instance in different poses typically exhibits
limited variations, these methods provide highly accurate
object pose estimates. Nevertheless, they struggle to gen-
eralize to previously unseen objects during testing without
retraining the network, as has been observed in the litera-
ture [21, 29, 32]. This limitation constrains their applicabil-
ity in real-world scenarios that often involve diverse object
instances. This has been remedied to a degree by category-
level object pose estimation methods [7, 19, 36]. In this
scenario, the testing images comprise new object instances
from specific categories already included in the training
data. Although these methods have achieved promising
generalization ability within the predefined object cate-
gories, they become ineffective when facing objects from
entirely new categories.
Generalizable Object Pose Estimation. To tackle the sce-
nario of unseen objects from new categories, there has been
growing interest in generalizable object pose estimation.
When a textured 3D mesh is available for an unseen ob-
ject, some approaches [29, 42, 51] suggest generating syn-
thetic images as references by rendering the 3D mesh from
various viewpoints. Given a query image that depicts this
object, a template matching paradigm is utilized to identify
the most similar reference and approximate the object pose
in the query as that of the selected reference. Some meth-
ods bypass the need for 3D meshes by assuming the avail-
ability of multiple real reference images. Object pose esti-
mation is then carried out by employing either a template
matching strategy [21] or a 3D object reconstruction tech-
nique [14, 32]. Nevertheless, all of these methods rely on
having access to dense-view reference images, which limits
their applicability in scenarios where only sparse views of
references are available.
Relative Object Pose Estimation. Recently, several stud-
ies [18, 37, 47, 52] have highlighted the importance of rel-
ative object pose estimation. These methods stand out in
generalizable object pose estimation due to their key advan-
tage of requiring only a single reference image. The objec-
tive of these methods is to estimate the relative object pose
between the input query image and the reference. Since the
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single-reference assumption tends to result in a large object
pose difference between the query and the reference, unseen
object pose estimation becomes more challenging. Intu-
itively, one could establish pixel-pixel correspondences be-
tween the two images and compute the relative object pose
based on multi-view geometry [13]. However, as reported
in the literature [18, 52] and also in our experiments, even
the state-of-the-art image-matching techniques [12, 26, 31]
cannot deliver accurate pose estimates when confronted
with large object pose differences. To address this, existing
methods [18, 47, 52] suggest approximating the relative ob-
ject pose via a discrete set of pose hypotheses, and learning
to maximize scores of the positive hypotheses. Since object
pose lies in a continuous space [53], accurately approximat-
ing the pose necessitates a vast number of pose hypothe-
ses, which makes the hypothesis-based approaches compu-
tationally expensive. Moreover, scoring discrete samples
lacks an understanding of the continuous pose distribution,
leading to failure cases with unnaturally high pose estima-
tion errors. By contrast, we present a hypothesis-free tech-
nique that is capable of computing the relative object pose
in a single pass via deep voxel matching.

3. Method

3.1. Problem Formulation

We tackle the problem of estimating the relative pose �P
of a previously-unseen object between a query image Iq and
a reference image Ir. In this scenario, the objects present in
the testing set ⌦test differ from those in the training set ⌦train,
and the goal is to handle the unseen objects without retrain-
ing the network. This requires addressing the challenges of
generalization to unseen objects in ⌦test and robustness to
the large object pose difference between Iq and Ir.

Since the relative object translation estimation can be fa-
cilitated by using zero-shot object detectors [17, 39, 50],
our focus is on predicting the relative object rotation, i.e.,
�R 2 SO(3), which is more challenging. This choice
aligns with existing literature [42, 44, 51, 52]. Previous
hypothesis-based approaches [18, 47, 52] approximate �R
by sampling discrete pose hypotheses and maximizing the
scores of positive samples. The problem is formulated as

�R̂ = argmax
�Ri2R

f(Iq, Ir,�Ri), (1)

where R denotes the set of discrete pose hypotheses.
Achieving a decent approximation accuracy requires a large
number of hypotheses, e.g., 500,000 in [18]. By contrast,
we present a hypothesis-free technique that computes �R
in a single pass as �R̂ = g(Iq, Ir).

3.2. Motivation
Drawing inspiration from the success of pixel-pixel corre-
spondences in image matching [26, 45, 49] a natural ap-
proach to avoiding the use of pose hypotheses would be to
compute the relative object pose based on 2D correspon-
dences. However, recent studies [18, 52] have observed
that such an image-matching strategy is unreliable in the
scenario of object pose estimation. We trace this limita-
tion back to the fact that image-matching methods are not
fully differentiable w.r.t. the pose. Specifically, some ap-
proaches [45, 46, 48] encode a notion of consistency among
the pixel-pixel correspondences utilizing the essential ma-
trix. However, computing the pose from the essential matrix
leads to multiple solutions [13]. The pose estimation is thus
detached from the learning process as a post-processing
step. Notably, in the context of object pose estimation, the
pre-generated correspondences tend to be unreliable in the
presence of challenges such as large object pose differences
and textureless objects. Therefore, the isolated pose estima-
tion step in the two-stage design becomes less effective.

To address this issue, we propose to lift the input im-
ages to voxelized 3D representations [40] and perform the
matching process in 3D space. Therefore, the computation
of the relative object pose from the resulting voxel-voxel
matches becomes a differentiable operation. This charac-
teristic enables us to directly supervise the entire framework
with the actual quantity we aim to predict, i.e., the relative
object pose. Subsequently, we elaborate on the steps in-
volved in the presented hypothesis-free mechanism.

3.3. Image Voxelization
To achieve the pose estimation from voxel-voxel correspon-
dences with only RGB images as input, we first need to lift
each RGB image to a set of 3D voxels. To enable such
a voxelization, we introduce an autoencoder network de-
picted in Fig. 2, which includes a 2D-3D encoder and a 3D-
2D decoder. Specifically, we employ a pretrained vision
transformer [41] to convert the query and reference images
to 2D feature embeddings denoted as Fq and Fr, respec-
tively. Considering the difficulty of lifting 2D images to 3D
representations, we incorporate a cross-attention module to
capture cross-view 3D information. We take the feature em-
bedding Fq as an example (a symmetric process is carried
out for Fr). The cross-attention module [41] is defined as

F̃l
q = MHSA(LN(Fl�1

q )) + Fl�1
q , (2)

F̂l
q = MHCA(LN(F̃l

q),LN(Fl�1
r )) + F̃l

q, (3)

Fl
q = FFN(LN(F̂l

q)) + F̂l
q, (4)

where MHSA stands for a multi-head self-attention layer,
MHCA represents a multi-head cross-attention layer that
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Figure 2. Network architecture of our autoencoder. The encoder takes two RGB images, query and reference, as input and lifts their 2D
feature embeddings to 3D voxels by leveraging cross-view 3D information. Oq and Or represent the learned 3D objectness maps account
for robust object pose estimation. The decoder then reconstructs the masked object images from the voxels, allowing the voxels to encode
the object patterns.

takes F̃l
q as query and Fl�1

r as key and value, LN denotes
layer normalization [3], and FFN is a feed-forward network
that includes MLPs. The resulting F̂l

q then serves as the in-
put to the next cross-attention module. Consequently, the
output of the last cross-attention module contains object
features depicted from two different viewpoints, thus incor-
porating 3D information.

Benefiting from such a 3D-aware encoding process, we
voxelize the image feature embeddings via a simple reshap-
ing process. Note that, to facilitate the robust pose esti-
mation that will be introduced in Sec. 3.5, we predict an
objectness score for each voxel, which reflects the signif-
icance of the voxel to the relative object pose estimation.
Therefore, the actual reshaping process is conducted as
RC⇥H⇥W ! R(C

0
+1)⇥D⇥H⇥W , where C = (C

0
+1)⇥D.

As shown in Fig. 2, we denote the resulting 3D object-
ness maps and 3D volumes as Oq,Or 2 R1⇥D⇥H⇥W and
Vq,Vr 2 RC

0
⇥D⇥H⇥W , respectively.

As our approach does not rely on object segmentation,
the learned voxel representations might be affected by the
background of the query and reference images. To alleviate
this issue, we introduce an object-aware decoding process
over Vq and Vr. Concretely, Vq and Vr are projected to
2D space by aggregating the voxels along the depth direc-
tion as RC

0
⇥D⇥H⇥W ! RC⇤⇥H⇥W , where C⇤ = C

0 ⇥D.
The resulting 2D feature embeddings are then fed into a de-
coder that contains several self-attention modules [10] from
which the object images Îq and Îr without background are
produced. The object masks M̂q and M̂r are additionally
predicted to provide auxiliary information that benefits the
following robust object pose estimation.

We supervise the training of the autoencoder with an

image-level loss function defined as

Lae = Limg + Lmask, (5)

Limg = Lmse(Îq, Î
gt
q ) + Lmse(Îr, Î

gt
r ), (6)

Lmask = Lbce(M̂q, M̂
gt
q ) + Lbce(M̂r, M̂

gt
r ), (7)

where Lmse is the mean squared error loss, Lbce indi-
cates the binary cross entropy loss, (Îgtq , Îgtr ) denote the
ground-truth foreground images, and (M̂gt

q , M̂gt
r ) represent

the ground-truth object masks.

3.4. Object Pose from Deep Voxel Matching
According to multi-view geometry [4, 13, 38], the rel-
ative object pose can be computed by solving a least-
squares problem expressed in terms of voxel-voxel corre-
spondences. Specifically, as we focus on 3D rotation esti-
mation, the least-squares problem is formulated as

E(�R) =
1

N

NX

i=1

||�Rxi
r � xi

q||2, (8)

where xi
r 2 Xr and xi

q 2 Xr stand for the 3D coordinates
of the i-th reference and query voxels, respectively. The
optimal �R̂ is then determined as

�R̂ = argmin
�Ri2SO(3)

� 2
NX

i=1

xi
q
T
�Rix

i
r, (9)

As suggested in [4], this problem can be solved by perform-
ing a singular value decomposition (SVD) of a covariance
matrix as

H =
NX

i=1

xi
rx

i
q
T
, (10)

H = U⌃VT
, (11)
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Figure 3. Computing relative object pose from 3D voxels. The feature similarities of Vq and Vr are computed, which results in a score
matrix S. A soft assignment is performed based on S over the query object mask M̂q , the 3D objectness map Oq , and the 3D coordinates
Xq . The aligned query and reference voxels are then fed into a Weighted Closest Voxel (WCV) algorithm that estimates the relative object
pose in a robust and end-to-end manner.

where H indicates the covariance matrix. The closed-form
solution to the least-squares problem is given by �R̂ =
VUT . Consequently, the key aspect of this problem is to
align the 3D voxel coordinates Xq with Xr.

Inspired by the studies [16, 19, 38] showing that object
pose estimation benefits from the end-to-end training, we
carry out the alignment in a differentiable fashion. As illus-
trated in Fig. 3, the alignment is conducted based on a deep
voxel matching module. Specifically, we compute a score
matrix S whose entry sij indicates the cosine similarities
between two voxels as

sij =
vi
q · vj

r

||vi
q||2||v

j
r||2

, (12)

where vi
q 2 RC

0
and vj

r 2 RC
0

denote the i-th voxel in
Vq and the j-th voxel in Vr, respectively. The alignment is
then achieved as

X
0

q = p(S/⌧)Xq, (13)

where p(·) represents the softmax process and ⌧ is a prede-
fined temperature.

3.5. Weighted Closest Voxel Algorithm
Note that our task differs from standard point cloud reg-
istration [1, 28, 38], which typically operates on 3D point
clouds sampled from 3D object meshes [6] or captured us-
ing specific sensors [8]. Here, by contrast, we work with 3D
volumes lifted from 2D images, and some voxels could thus
be outliers since the corresponding 2D image patches may
depict nuisances such as the background. The presence of
these outliers may impact the accuracy of the relative ob-
ject pose estimated from the voxel matches. To address this
challenge, we introduce a weighted closest voxel algorithm
that enables robust relative object pose estimation.

Concretely, the objective is to mitigate the effect of un-
reliable voxel matches. We thus incorporate a weight vector

%"
&"#'"∗ Pseudo 

Mask
Objectness 

Scores("

Figure 4. Illustration of the voxel weights. Each colored dot
indicates the voxel position in 3D space. The green dots in the
middle and right cubes represent the voxels with larger weights.
The voxel weights in the middle cube are computed based on the
replicated object mask, while the weights in the right cube are up-
dated by integrating the 3D objectness map with the object mask.

into the pose estimation process, modifying Eq. 10 as

H =
NX

i=1

!
ixi

rx
i
q
T
, (14)

where !
i 2 (0, 1) denotes the weight of the i-th voxel pair.

This makes the subsequent relative object pose estimation
aware of the reliability of each voxel pair. We determine
the weight vector by utilizing both the object mask and
voxel objectness information produced by the encoder net-
work. Specifically, we first replicate M̂q and M̂r D times
along the depth dimension, which creates pseudo 3D masks,
M̂⇤

q , M̂
⇤
r 2 R1⇥D⇥H⇥W . These pseudo 3D masks con-

tribute to alleviating the influence of voxels that depict the
background. The weight of each voxel pair is then deter-
mined as

Wm = h(
p(S/⌧)M̂⇤

q + M̂⇤
r

2�
), (15)

where h(·) indicates the sigmoid function, and � is a man-
ually defined temperature. Additionally, to mitigate the re-
dundancies naturally introduced by the replication process
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over M̂q and M̂r, we integrate the resulting pseudo masks
with the 3D objectness maps. The final weight vector of all
pairwise voxels is determined as W = Wo �Wm, where
� indicates the Hadamard product, and Wo is obtained by
carrying out Eq. 15 over Oq and Or.

Fig. 4 provides an example of the estimated voxel
weights. The dots denote the 3D voxel positions and the
voxels assigned with larger weights are colored in green
within the middle and right cubes. In the right cube, the
green dots roughly depict a 3D surface that corresponds to
the object visible in the 2D image. Note that our DVMNet is
trained without relying on ground-truth 3D object models.
This observation thus demonstrates that the voxels crucial
in determining the relative object pose are aware of the 3D
object shape information. The complete DVMet is trained
end-to-end with a loss function defined as L = Lae+Lpose

with

Lpose = ||q(�R̂)� q(�Rgt)||, (16)

where �Rgt is the ground-truth relative object pose, and
q(·) is a function that converts a rotation matrix to a 6D
continuous representation [53].

4. Experiments
4.1. Implementation Details
In the presented autoencoder, we use 3 cross-attention mod-
ules in the 2D-3D encoder and 3 self-attention modules in
the 3D-2D decoder. In the relative object pose estimation
module, we normalize the 3D coordinates of the voxels to
an interval of [�1, 1] with a mean of 0. We set the tem-
peratures ⌧ and � in Eq. 13 and Eq. 15 to 0.1 and 1.0, re-
spectively. We train our network in an end-to-end fashion
on an A100 GPU, employing the AdamW [22] optimizer
with a batch size of 64 and a learning rate of 10�5. Since
we focus on predicting the relative object rotation, we crop
the object from the RGB image by utilizing the ground-
truth object bounding box, following the implementation
in [18, 42, 47, 51, 52].

4.2. Relative Object Pose Estimation on CO3D
We first evaluate our method on the CO3D dataset [25],
which has been commonly utilized in the literature [18, 47,
52]. This dataset contains 18,619 video sequences that de-
pict 51 object categories. To evaluate the generalization
ability of the network to unseen objects, we follow the set-
ting in [47], training the network on 41 object categories
and testing it on the other 10 categories. The performance
is measured by the mean angular error e 2 [0�, 180�] of the
estimated relative object rotation, which is defined as

e = arccos

 
tr(�R̂T�Rgt)� 1

2

!
. (17)

Figure 5. Histogram depicting the distribution of angular er-
rors. The image pairs in the testing set are divided into distinct
groups based on the angular errors obtained by a specific pose
estimation approach. Each bar in the histogram represents the
count of image pairs within a particular group. Our DVMNet
yields much fewer unnaturally large errors than image-matching
and hypothesis-based methods.

We compare our approach with state-of-the-art tech-
niques including image-matching methods, SuperGlue [26],
LoFTR [31], and ZSP [12], hypothesis-based methods, Rel-
Pose [47], RelPose++ [18], and 3DAHV [52], and a direct
regression method implemented in [18].

As reported in Table 1, DVMNet delivers superior rel-
ative pose estimation performance for unseen objects, out-
performing both the image-matching and hypothesis-based
competitors by at least 8.49� in terms of mean angular er-
ror. To shed more light on the robustness of the evaluated
approaches, we categorize the testing image pairs into dif-
ferent groups according to the corresponding angular errors
observed when applying a particular relative object pose es-
timation method. We count the number of image pairs in
each group and show the results in Fig. 5. Our method re-
sults in a higher number of image pairs with smaller angu-
lar errors. More importantly, as highlighted by the red dash
box in Fig. 5, both image-matching and hypothesis-based
methods exhibit large angular errors for some image pairs.
By contrast, our DVMNet results in fewer failure instances,
thus demonstrating better robustness.

Furthermore, as argued in Sec. 3, our hypothesis-free
strategy is more efficient than the hypothesis-based tech-
niques in relative object pose estimation. We thus assess
their computational cost, utilizing the multiply-accumulate
operations (MACs). For hypothesis-based methods, all
sampled hypotheses are processed in parallel. The results
shown in Fig. 1 indicate the benefits of our hypothesis-free
DVMNet, which requires considerably fewer MACs than
the hypothesis-based competitors. To further substantiate
this advantage, we provide detailed results in Fig. 6, where
the hypothesis-based methods are evaluated with the num-
ber of pose samples varying from 1,000 to 500,000. Note
that for 3DAHV, the maximum number is 100,000 because
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Method Ball Book Couch Frisbee Hotdog Kite Remote Sandwich Skateboard Suitcase Mean
SuperGlue [26] 83.55 71.02 45.14 68.67 88.74 56.46 78.58 73.64 72.14 76.74 71.47
LoFTR [31] 82.51 77.33 60.57 78.39 85.05 70.03 89.74 77.77 74.33 90.73 78.64
ZSP [12] 88.09 90.09 64.07 79.08 99.62 72.71 98.61 89.09 89.41 95.03 86.66
Regress [18] 47.56 52.91 39.12 50.16 51.28 52.33 43.85 52.89 51.59 29.11 47.08
RelPose [47] 56.96 55.89 40.71 54.11 64.20 69.43 42.89 59.05 42.32 32.50 51.80
RelPose++ [18] 36.42 35.64 20.00 36.27 33.62 33.63 34.83 36.93 40.60 20.32 32.82
3DAHV [52] 34.83 31.21 22.12 31.30 35.39 34.96 24.73 26.97 26.81 16.13 28.44
DVMNet 28.31 21.98 19.01 23.23 21.45 17.50 11.39 19.63 20.14 16.85 19.95

Table 1. Experimental results on CO3D [25]. We report the angular errors of the estimated relative object rotations. All testing object
categories were unseen during training. The best results are shown in bold fonts.
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Figure 6. Comparison with hypothesis-based methods. We
measure the computational cost as multiply-accumulate operations
(MACs). The results for hypothesis-based methods are shown
with varying numbers of pose samples, ranging from 1,000 to
500,000. For 3DAHV, we set the maximum number to be 100,000
due to the computational resource constraints.

of our computational resource constraints. As shown in
Fig. 6, one can enhance the efficiency of the hypothesis-
based methods by reducing the number of samples. How-
ever, this efficiency gain comes at the cost of sacrificing
pose estimation accuracy. By contrast, our method achieves
a good trade-off between efficiency and pose estimation ac-
curacy. We also evaluate the time consumption on an A100
GPU. On average, DVMNet processes a pair of images in
23ms. Despite benefiting from parallel estimation, Rel-
Pose++ and 3DAHV still cost 29ms and 35ms, respectively,
which are slower than our method.

4.3. Relative Object Pose Estimation on GROP
Recently, a new benchmark called GROP for relative pose
estimation of unseen objects was introduced in [52]. This
benchmark comprises two datasets, i.e., Objaverse [9] and
LINEMOD [15]. Both synthetic and real images with di-
verse object poses are considered. We develop experiments
on these two datasets, following the same setup as described
in [52]. More concretely, the synthetic images are gener-
ated by rendering the object models of the Objaverse dataset
from different viewpoints [20]. Several sequences of cali-

brated real images that depict 13 texture-less household ob-
jects are provided from the LINEMOD dataset. The testing
set encompasses 128 objects from Objaverse and 5 objects
from LINEMOD. The images containing these objects are
excluded from the training data, ensuring that all testing ob-
jects are previously unseen. All evaluated approaches are
trained and tested on the same predefined image pairs, lead-
ing to a fair comparison.

Table 2 provides the angular errors of the estimated rela-
tive object poses on the LINEMOD and Objaverse datasets.
In the synthetic scenarios of Objaverse, DVMNet outper-
forms the previous methods by at least 7.92� in terms of
mean angular error. In the real scenarios of LINEMOD,
DVMNet achieves the smallest angular error for most of
the testing objects and reduces the mean angular error by
at least 4.73� compared to the other approaches. Moreover,
we visualize the object pose depicted in the query image and
show qualitative results in Fig. 7. The query object pose is
determined as Rq = �RRr, where �R is the relative ob-
ject pose and Rr denotes the object pose in the reference
image. The ground-truth and predicted query object poses
are represented as green and blue arrows, respectively. It is
evident from Fig. 7 that the poses estimated by employing
our DVMNet are consistently more similar to the ground
truth than those obtained with the baselines.

4.4. Ablation Studies
As a critical component of DVMNet, the presented WCV
algorithm plays a pivotal role in achieving hypothesis-free
and end-to-end relative object pose estimation. To substan-
tiate the effectiveness of the WCV algorithm, we develop
comprehensive ablation studies on the CO3D dataset.

We first replace the WCV algorithm with a pose regres-
sion module. More concretely, we perform global average
pooling over Vq and Vr. The resulting feature embeddings
are concatenated and passed through three fully connected
layers to predict the 6D continuous representation of rela-
tive object rotation. We maintain all the other components
in our framework unchanged to ensure a fair comparison.
This alternative approach is also able to predict the rela-
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LINEMOD SuperGlue [26] LoFTR [31] ZSP [12] Regress [18] RelPose [47] RelPose++ [18] 3DAHV [52] DVMNet
Cat 67.28 88.06 79.61 54.21 53.72 47.77 50.99 31.70
Ben. 58.52 70.80 74.07 52.03 62.32 44.67 38.16 34.00
Cam. 58.11 87.13 79.65 51.04 59.91 44.31 41.92 33.18
Dri. 65.16 78.85 76.35 52.83 57.61 47.95 32.65 46.29
Duck 74.90 97.63 83.43 55.44 55.15 48.65 44.03 38.91
Mean 64.79 84.49 78.62 53.11 57.75 46.67 41.55 36.82
Objaverse SuperGlue [26] LoFTR [31] ZSP [12] Regress [18] RelPose [47] RelPose++ [18] 3DAHV [52] DVMNet
Mean 102.40 134.05 107.20 55.90 80.39 33.49 28.11 20.19

Table 2. Experimental results on the GROP benchmark [52]. The methods are evaluated in terms of angular error on the LINEMOD [15]
and Objaverse [9] datasets. The testing data comprises 5 objects from LINEMOD and 128 objects from Objaverse. All images containing
these objects are omitted from the training set.

Reference Query DVMNetSuperGlue RelPose++ 3DAHV

Figure 7. Qualitative results on LINEMOD [15]. We compute
the object pose in the query image utilizing the relative object
pose. The green and blue arrows represent the ground-truth ob-
ject poses and the estimated ones, respectively.

WCV 2D Mask Voxel Objectness Angular Error
7 7 7 31.78
3 7 7 21.64
3 3 7 20.92
3 7 3 20.07
3 3 3 19.95

Table 3. Effectiveness of the presented WCV algorithm. We
report the mean angular errors on the CO3D dataset. The second
row indicates the scenario where the WCV algorithm is replaced
with a pose regression module. The third row presents a closest
voxel algorithm without weights involved.

tive object pose in a hypothesis-free and end-to-end fash-
ion. However, as shown in Table 3, the mean angular er-

ror on the CO3D dataset increases by more than 10� when
the regression module is employed, showcasing the impor-
tance of the WCV algorithm in the presented hypothesis-
free mechanism. Furthermore, we evaluate three counter-
parts of the WCV algorithm, i.e., a closest voxel algorithm
without weights, a WCV algorithm with only replicated 2D
object masks, and a WCV algorithm with only 3D object-
ness maps. The final weights of the voxel pairs are deter-
mined as Wm and Wo in the last two counterparts, respec-
tively. The closest voxel algorithm delivers the worst results
among these three variants, revealing that the pose estima-
tion process is affected by the potential outliers. The opti-
mal performance is achieved by leveraging both 2D object
masks and 3D voxel objectness maps, which thus demon-
strates the effectiveness of these components in DVMNet.

5. Conclusion
In this paper, we have introduced DVMNet, a novel deep
voxel matching network for relative pose estimation of un-
seen objects. Unlike hypothesis-based approaches that rely
on a multitude of discrete pose samples, DVMNet com-
putes relative object poses in a hypothesis-free and end-to-
end manner. We determine the object pose by solving a
weighted least-squares problem based on voxel-voxel cor-
respondences. The voxels are obtained by lifting the query
and reference images to 3D via a dedicated autoencoder.
We then align query voxels with the reference ones and ap-
ply a weighted closest voxel (WCV) algorithm for robust
pose estimation. Comprehensive experiments on the CO3D,
Objaverse, and LINEMOD datasets have demonstrated that
our method excels in efficiently delivering accurate relative
poses for unseen objects. In future work, we plan to explore
the integration of DVMNet with zero-shot object detectors
for 6D relative object pose estimation.
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