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Abstract

Text-to-image (T2I) generative models have attracted
significant attention and found extensive applications
within and beyond academic research. For example, the
Civitai community, a platform for T2I innovation, currently
hosts an impressive array of 74,492 distinct models. How-
ever, this diversity presents a formidable challenge in select-
ing the most appropriate model and parameters, a process
that typically requires numerous trials. Drawing inspira-
tion from the tool usage research of large language models
(LLMs), we introduce DiffAgent, an LLM agent designed
to screen the accurate selection in seconds via API calls.
DiffAgent leverages a novel two-stage training framework,
SFTA, enabling it to accurately align T2I API responses
with user input in accordance with human preferences.
To train and evaluate DiffAgent’s capabilities, we present
DABench, a comprehensive dataset encompassing an ex-
tensive range of T2I APIs from the community. Our evalua-
tions reveal that DiffAgent not only excels in identifying the
appropriate T2I API but also underscores the effectiveness
of the SFTA training framework. Codes are available at
https://github.com/OpenGVLab/DiffAgent.

1. Introduction

Recent advancements in text-to-image (T2I) generative
models [1, 13, 20, 21, 23] have garnered considerable atten-
tion, courtesy of their extraordinary proficiency in following
text prompts and the exceptional capability in image gener-
ation. As a prominent technique, Stable Diffusion (SD) [21]
is widely utilized in various generative applications, and has
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Figure 1. The comparison of different ways to T2I generation.

gained significant traction within the research community
and broader adoption.

However, the vanilla SD model falls short in catering
to diverse personalized styles such as pixel art. For ex-
ample, a corgi covered by several messy lines is gener-
ated by the SD-XL model [17] with the user’s request of
‘A cute happy corgi, pixel art’, as shown in Fig. 1. Such
a limitation has spurred the emergence of various person-
alized models, which are tailor-made to excel in specific
styles. Innovations in lightweight personalization tech-
niques such as Low-Rank Adaption (LoRA) [11] and other
approaches [7, 22, 34] have streamlined the process of fine-
tuning these models from the original SD framework, mak-
ing it more cost-efficient. Such advancements foster a wide
adoption and influence of customized models in the open-
sourced community [4, 6]. For instance, Civitai [4] hosts
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approximately 74,492 models with various personalized
LoRA [11] packages, facilitating itself a vibrant ecosystem
for personalized image generation.

Despite the amounts of personalized models, it is hard
to obtain the desired images given arbitrary requests from
users. Firstly, it often requires multiple attempts to select
the appropriate one from massive SD models. Secondly,
continuous feedback is needed to modify generation param-
eters for the final performances. The multiple attempts to
select an appropriate model and refinement of input prompts
necessitate a meticulous cycle of text-to-image (T2I) gen-
erations and continuous feedback adaptation, as shown in
Fig. 1. This work targets tackling the challenging problem:
how to quickly screen a good SD model and corresponding
parameters for user-specific requests?

Recent advances in large language models (LLMs) have
shown that LLMs fine-tuned with self-instruction data about
tool usage exhibit exceptional capability in invoking various
tools, serving as powerful agents to call different tools (e.g.,
APIs) for target tasks. For example, Gorilla [16] can gen-
erate proper model API collected from open-sourced model
libraries such as HuggingFace [6] to execute various tasks.
GPT4Tool [33] enables LLMs to use multimodal tools for
tackling a variety of visual problems such as object ground-
ing and segmentation. Motivated by these studies, we turn
the challenges of selecting a proper SD model and corre-
sponding parameters for various requests into a process of
calling appropriate text-to-image APIs conditioned on the
input prompt through LLMs. In this regard, LLMs as API
calling tools are expected to comprehend the user’s request
and generate a corresponding T2I API for image generation.

To achieve this, we propose LLM as the agent to call
text-to-image API involving a stable diffusion model with
associated hyperparameters in response to arbitrary user
prompts, termed as DiffAgent. DiffAgent incorporates
two essential components: an instruction-following dataset
called DABench that gathers extensive pairs of user prompts
and T2I APIs, and a fine-tuning and alignment training
framework for training an LLM as an agent to call a proper
T2I API for the user prompt. Compared with previous
API calling tools [16, 33], our DiffAgent has two appealing
properties. First, DiffAgent can screen the most appropriate
T2I generation API for different user requests in the text-to-
image task by training the LLM with massive pairs of user
prompts and T2I APIs in DABench. While previous ap-
proaches [16, 33] provide a limited number of model APIs
for every single task. For example, GPT4Tools [33] would
always return Stable Diffusion XL as the API when given
any text-to-image generation prompts. Second, DiffAgent
can generate the T2I API aligned well with human pref-
erences. Other than supervised fine-tuning (SFT) LLM to
follow API calling instructions as also done in previous ap-
proaches [16, 33], DiffAgent further trains the LLM with

the ranking responses with human feedback (RRHF) al-
gorithm [36], encouraging the LLM to generate responses
aligned better with human preference than results from SFT.

Specifically, we first construct, DABench, a large
instruction-following dataset for T2I generation API calling
by crawling massive pairs of T2I APIs (SD models with cor-
responding parameters) and user prompts from the Civitai
website which is a vibrant community for creators to share
various AI-generated art [4]. DABench undergoes rigorous
filtering and reconstruction processes. It then incorporates
high-quality APIs from two main components of the com-
munity, i.e. 39,670 and 10,812 pairs of T2I APIs and user
prompt for SD 1.5 and SD XL, respectively, ultimately re-
sulting in 50,482 pieces of instruction data for API calls.

By fine-tuning the LLM (instantiated as LLaMA-2-7B
[29] in this paper) on the DABench, DiffAgent can gener-
ate API calls that correspond to the user prompt. Neverthe-
less, we find that the supervised fine-tuning on DABench
cannot choose the best one in terms of human preference
when multiple appropriate T2I APIs are presented for the
user prompt. As shown in Fig. 1, for one style (e.g., pixel
art), there are several T2I generation APIs that all adopt this
style but with different qualities. To address this limitation,
we further fine-tune the LLM with the RRHF algorithm [36]
by incorporating various image assessment scores aligned
with human preference as the reward model function. Our
observations indicate that the LLM, fine-tuned using the
RRHF, exhibits a decreased occurrence of hallucination er-
rors in its generated APIs (e.g., 20.1% lower than the SFT
model). Moreover, the resulting image aligns closely with
human preferences. Specifically, when considering the SD
1.5 model architecture, our fine-tuned model demonstrates
over a 10% improvement compared to the SFT model in
terms of unified metric as presented in Table 2.

This paper’s contributions are summarized as follows:
• We propose DiffAgent, a text-to-image (T2I) agent

model that selects appropriate T2I generation infor-
mation (i.e., T2I API) to free users from tedious at-
tempts and matching for the prompt. The T2I APIs
from DiffAgent exhibit a high degree of human pref-
erences and relevance with the prompt.

• We introduced DABench, which is a carefully curated
high-quality dataset for T2I API selection. DABench
is the first API call dataset designed specifically for
T2I domain, containing a large number of callable
APIs (a total of 50,482).

• We conduct comprehensive experiments at DiffAgent,
encompassing various datasets (DABench, COCO
Caption [2], Parti Prompts[35]) and multiple T2I eval-
uation scores (CLIP Score [9], ImageReward [32],
HPS v2 [31]). Our results demonstrate that DiffAgent
achieves a substantial performance improvement than
using the original T2I model (e.g., 40% in SD 1.5).
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2. Related Work
LLMs Tool Usage. Recent studies [8, 16, 18, 24, 28,

33] have revealed the growing potential of large language
models (LLMs) in acquiring proficiency in tool usage and
decision-making within intricate environments. [8, 24] en-
hance the performance of LLMs in targeted domains by
using a small set of simple tools (e.g., using calculators
for precise mathematical reasoning). Gorilla [16] enables
LLMs to respond to API calls by constructing a dataset
and performing fine-tuning. ToolLLM [18] further to make
LLMs utilize massive APIs. GPT4Tool [33] focuses on us-
ing multimodal tools for tackling a variety of visual prob-
lems (e.g., segmentation). ToolAlpaca [28] verifies the fea-
sibility of equipping compact LLMs with generalized tool-
use capacities These works have primarily focused on a
general range of API calls that only allow for limited and
fixed options for a single task. Our work, DiffAgent, aims
to select the most suitable API from massive T2I APIs in
the text-to-image task. Different further align LLMs with
human preferences using the training framework SFTA.

Text-to-Image Diffusion Models. Recently, text-to-
image (T2I) diffusion models [1, 13, 20], have shown ex-
ceptional capability in image generation quality and ex-
traordinary proficiency in following text prompts, under
the dual support of large-scale text-image dataset [25] and
model optimizations [5, 10, 21]. GLIDE [13] incorporated
text conditions into the diffusion model and empirically
showed that leveraging classifier guidance leads to visually
appealing outcomes. DALLE-2 [20] enhances text-image
alignment via CLIP [19] joint feature space. DALLE-3 [1]
further improves the prompt following abilities by training
on highly descriptive generated image captions. Stable Dif-
fusion [21], a well-established and widely adopted method,
has gained substantial traction in the open-source commu-
nity [4, 6], leading to a large and diverse model library (e.g.,
74492 models in Civitai [4]). The cost of generating desired
images using specific personalized models also increases
especially in such a vast quantity of models with quality
varies. DiffAgent can free users from multiple attempts and
screen the personalized model and corresponding parame-
ters for matching text prompts in seconds.

Align Language Models with Human Preferences.
Reinforcement Learning from Human Feedback (RLHF)
has been pivotal in aligning LLMs to human preferences,
typically employing Proximal Policy Optimization (PPO)
algorithm for model optimization [15, 27, 37]. During the
optimization process with PPO, the likelihood of a whole
generation is required to update LLMs. For LLM agents,
however, human feedback is typically available only after
acquiring the complete API response and successful func-
tion invocation. This implies that 1) the reward model based
on human feedback is not capable of getting the likelihood
of a whole generation and 2) the receipt of delayed human

feedback necessitates the complete API response for effec-
tive invocation. Rank Responses to Align Human Feedback
(RRHF) [36] emerges as a notable method, employing re-
ward models to rank multiple responses for language model
alignment. This approach facilitates its extension to fine-
grained API Agents, maximizing the utility of existing re-
ward models. Nevertheless, it presents challenges such as
maintaining the output API’s integrity and evaluating output
using the reward model solely on the post-invocation actual
results. To address these challenges, we enhance the RRHF
method by incorporating evaluation scores into the reward
model function, establishing a viable alignment procedure.

3. Methodology
Given a text prompt, our objective is to free users from

tedious attempts and matching in order to find the appro-
priate APIs for text-to-image generation (i.e., T2I API se-
lection). We initially introduce DABench for this task,
a benchmark derived from Civitai. DABench consists of
Instruction-API pairs, each pair including the text prompts
and corresponding T2I generation information (e.g., model
information and parameters information). We provide an
overview of the procedure of the API dataset collection, fil-
tering, and reconstruction as detailed in Sec. 3.1. Subse-
quently, we introduce DiffAgent, an LLM agent to call T2I
APIs in response to arbitrary user prompts. We describe the
multi-step training framework, called SFTA, for DiffAgent
and the unified metric for evaluating DiffAgent (Sec. 3.2).

3.1. DABench

The Civitai community [4] comprises approximately
74,492 models, each typically accompanied by a set of sam-
ple images. These images demonstrate the function of the
corresponding model, while their prompts show the style
and common scenarios that are most suitable for generat-
ing. Civitai also exists evaluation mechanisms (download
count, rating, etc.), statistical results show common prefer-
ences of the community. We can acquire hierarchical infor-
mation, which includes the model’s data and sample images
with generation details from uploader, and statistical results
from user. Our goal is to collect a high-quality dataset, each
data pair consists of Instruction (text prompts), and its API
(corresponding model and parameter information). This is
achieved through the collection and filtration of model-level
data, followed by a reverse mapping with image’s data.

APIs Collection We first perform a comprehensive anal-
ysis of the composition of Civitai. As shown in Fig. 2, the
base model architectures can be categorized into two pri-
mary types: SD 1.5 (85%) and SDXL 1.0 (5%). regarding
the model types, they consist of LoRA (77%) and Check-
point (9%). Therefore, we determine the scope of APIs col-
lection to include the above content.
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Figure 2. The data collection process of DABench. The left side is the data distributions of the data source, Civitai [4]. These distributions
include: (a) Model type. (b) Base model architecture. (c) Not suitable for work (NSFW) content. (d) File availability.

APIs Filtering Due to the varying quality of APIs, we
employ two multi-attribute filters (availability and quality
filters) to choose a wide range of high-quality options.

As depicted in Fig. 2, we initiate the process of veri-
fying the availability of APIs to ensure successful invoca-
tion of the collected APIs. The APIs related to not suitable
for work (NSFW) content will also be excluded during this
stage. As stated in 3.1, the model type (Checkpoint and
LoRA) and base model architectures (SDXL 1.0 and SD
1.5) under the scope are reserved and vice versa. During
the T2I generation, the LoRA model needs to be used si-
multaneously with the base model by embedding tags into
prompts. However, only the hash of the base model ex-
ists in the collected data, and for a LoRA model, there may
be different base models present in different sample im-
ages. Then we attempt to obtain base model information
for LoRA models’ images using the hash and filter out the
inaccessible parts. The LoRA tag embedded within their
text prompts is subsequently eliminated.

We next perform a quality assessment of these APIs us-
ing established evaluation mechanisms (download count,
rating count, etc.) within the community, showing the com-
mon preferences of the users. The process results in the
identification of a subset with superior quality

Description Reconstrcution As an active open-source
community, many models lack accurate and relevant de-
scriptions. For instance, the description of the pixel Art
model does not include many of the applicable styles
for the model itself while we can understand this at a
glance through sample images. Hence we employ GPT-
3.5-turbo [14] to reconstruct the description of models by
incorporating information from both the models themselves
and sample images (utilizing their associated prompts) as
shown in Fig. 2. This approach aims to improve the consis-
tency between APIs and their corresponding description.

Dataset composition We convert the collected APIs’ in-
formation into a json object with the following fields:
{model, type, base Model, width, height, sampling method,
sampling steps, cfg scale, model description}. These fields
consist of two parts required for T2I generation: model
information (model, type, base Model, model description)
and parameter information (the remaining fields). The col-
lected instructions are also converted into a json object:
{prompt, negative prompt}.

Finally, DABench includes high-quality APIs from SD
1.5 (39,670 Instruction-API pairs in 5,516 API calls) and
SD XL (10,812 in 1,306).

3.2. DiffAgent

DiffAgent is an LLM agent fine-tuned through our two-
stage training framework, SFTA, to achieve T2I API selec-
tion given by text prompt. In the first stage, we employ su-
pervised fine-tuning (SFT) with DABench to train and ob-
tain the preliminary model known as DiffAgent-SFT. In the
second stage, we further enhance DiffAgent-SFT through
alignment with human preferences as depicted in Fig. 3, to
obtain the final DiffAgent model (i.e., DiffAgent-RRHF).

3.2.1 DiffAgent-SFT

We employ the standard fine-tuning to get the DiffAgent-
SFT model. For a pair of text prompts t and API response
r, the cross-entropy loss is used for fine-tuning:

Lsft = −
∑
t

logPπ(rt|t, r<t). (1)

DiffAgent-SFT possesses all the necessary conditions for
generating images, including text prompts as input along
with the corresponding model and parameters as response
API. This enables us to generate images directly for the pur-
pose of evaluating the performance of APIs.
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3.2.2 DiffAgent-RRHF

We first propose a human preference-related unified met-
ric for evaluating DiffAgent. Then, we introduce an effec-
tive training framework to further align DiffAgent-SFT with
human preferences.

Human Preferences Evaluation In the T2I generation
domain, there already exist multiple scoring models or met-
rics [9, 31, 32], which can be employed for related or human
preference evaluation. Given a prompt t in text prompts and
the generated image x (r) using API response r, we eval-
uate DiffAgent using a human preference-related unified
metric composed of: First, CLIP Score [9] aims to evalu-
ate the correlation between t and x using cosine similarity
of their respective embedding obtained through CLIP [19]:

sθc(t, x (r)) = w∗max (cos(Enctxt(t),Encimg(x (r))), 0) ,
(2)

where w = 2.5 as stated in [9], and θc represents the param-
eters in CLIP (ViT-B for image encoder, 12-layers trans-
former for text encoder). Second, ImageReward [32], a T2I
human preference reward model fine-tuned by BLIP [12]
(ViT-L for image encoder, 12-layers transformer for image-
grounded text encoder), extracts t and x (r) features, em-
ploys cross attention and an MLP layer to generate a scalar:

sθi(t, x (r)) = MLP(Enctxt(t,Encimg(x (r)))), (3)

where θi represents the parameters of the ImageReward
Model. Third, Human Preference Score v2 (HPS v2) [31],
a scoring model fine-tuned by CLIP-H model, can more ac-
curately predict text-generated images’ human preferences:

sθh(t, x (r)) =
Enctxt(t) · Encimg(x (r))

τ
, (4)

where τ represents the learned temperature during HPS v2’s
fine-tuning process, and θh denotes it’s parameters.

Now, we will proceed to the normalization and combi-
nation of the scores to obtain a unified metric S for eval-
uating APIs. Given a text prompt t and a set of images
X (r) = {x (r)1 , x (r)2 , ..., x (r)k}, where each image
x (r)i generated based on a different random seed to mit-
igate the influence of random seeds, we compute the scores
from three metrics using Eqs. (2) to (4). Each of these
scores is normalized to the range [0, 1]. The final score for
the text prompt t with API response from DiffAgent is ob-
tained by averaging all image’s scores:

S(t, r) =
1

k

k∑
i=1

S(t, x (r)i), (5)

s.t.

S(t, x (r)i) =
1

3
(sθc,norm(t, x (r)i)+

sθi,norm(t, x (r)i) + sθh,norm(t, x (r)i) ).
(6)

The Unified Metric S(t, r) describes the human preference
score for an API response r given a prompt t. The Eq. (5)
serves a dual purpose, as it can be utilized for both API
evaluation and as a reward model function in alignment with
human preferences.

Alignment with Human Preferences The existing Rein-
forcement Learning from Human Feedback (RLHF) meth-
ods [3, 15, 27] is performed using reinforcement learning
algorithms (e.g., PPO [26]), which depends on the likeli-
hood of a whole generation to update the model. However,
the evaluation way of the agent model necessitates the ex-
clusion of vanilla RLHF methods due to the delayed feed-
back received only upon API invocation and a complete API
response is required during this process.

We propose an extension to the existing RRHF [36]
method that can be used for aligning DiffAgent (Fig. 3).
For text prompts t, we employ multinomial sampling to
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get a comprehensive API response and utilize diverse beam
search [30] to get m diverse responses from SFT model π.
However, it is difficult to ensure the format and validity of
multiple different responses. Therefore, we only take the
model information part of responses, then proceed to val-
idate and reconstruct the complete API response informa-
tion. After incorporating the default API response, a list of
n API responses R = {r1, r2, ..., rn} is generated. Then
we actually call APIs to retrieve the images and use Eq. (5)
as the scoring function for the reward model to get n scores
for each ri with S(t, ri) = si.

To align with scores {si}n, we use SFT model π to give
scores pi for each ri by:

pi =

∑
t logPπ(ri,t|t, ri,<t)

∥ri∥
, (7)

where pi is conditional log probability (length-normalized)
of ri under model π. We use the RRHF algorithm to let the
model π give larger probabilities for better responses and
give smaller probabilities for worse responses. this object is
optimized by ranking loss:

Lrank =
∑
si<sj

max(0, pi − pj), (8)

and a cross-entropy loss like SFT process is added as well:

Lce = −
∑
t

logPπ(ri′,t|t, ri′,<t), i
′ = argmax

i
si. (9)

The overall loss is utilized to optimize the DiffAgent-SFT
in order to obtain DiffAgent-RRHF:

L = Lrank + Lce. (10)

4. Experiment
We performed a comprehensive evaluation of DiffA-

gent by conducting experiments on three benchmarks:
DABench, COCO Caption [2], and Parti Prompts [35]. Our
evaluation involved comparing the performance of DiffA-
gent with other powerful models and investigating the effec-
tiveness of our two-stage training framework. In addition,
we show the effectiveness of aligning with human prefer-
ences in DiffAgent through comparative experiments. We
then conduct a user study to examine DiffAgent’s ability to
identify related diverse styles’ APIs, which demonstrated
its strong capability. Finally, we showcase visualizations to
offer an intuitive assessment and facilitate comparisons.

4.1. Experimental Settings

Training Setups We transform DABench’s Instruction-
API pairs into single-round user-agent dialogues, partition-
ing them in an 8:1:1 ratio for fine-tuning, aligning with hu-
man preferences, and evaluation. For different model archi-
tectures (SD 1.5 and SD XL), we employ the SFTA frame-
work to fine-tune LLaMA-2-7b [29], thereby generating the

DiffAgent SFT RRHF

SD 1.5
DABench 11.5 9.5
COCO Caption [2] 26.9 15.5
Parti Prompts [35] 28.9 20.0

SD XL
DABench 7.4 7.1
COCO Caption [2] 45.6 36.0
Parti Prompts [35] 48.1 28.0

Table 1. The hallucination error of DiffAgent in different training
stage. DiffAgent-RRHF shows a lower error than DiffAgent-SFT.
respective DiffAgents. In the SFTA’s second stage, we as-
sess each response through ten random image generations
(k = 10, as per Eq. (5)).

Dataset Setings DiffAgent’s evaluation employs the fol-
lowing datasets: 1) The validation set of DABench. 2)
For the COCO Caption and Parti Prompts datasets, we ran-
domly select 1,000 prompts from each for assessment. Ad-
ditionally, we adapt GPT-3.5-turbo [14] as a text prompt
generator, leveraging in-context learning to transform con-
cise prompts into well-structured text prompts.

Baselines Our primary comparison involves DiffAgent
against the original Stable Diffusion (SD) with a default
parameter, maintaining identical architectures. Given that
DiffAgent’s T2I APIs incorporate both model and param-
eter information, we consider combining these separately
with the baseline to obtain two additional comparisons. Fur-
thermore, the DiffAgent-SFT, derived from the initial stage
of the SFTA process, serves as a significant method in our
analysis. As outlined in Sec. 3.2.2, we employ three met-
rics (CLIP Score [9], ImageReward [32], and HPS v2 [31])
alongside the Unified Metric (Eq. (5)) for evaluation. The
Unified Metric requires the normalization of scores across
different baselines, a process complicated by potential hal-
lucination issues in DiffAgent’s generated API. Hence, we
consider applying the baseline to generate images when the
issue of hallucination arises. we standardized the shape of
the generated image to be consistent due to the impact of
shape on the evaluation. The default parameters are set to
{sampling method: Euler a, sampling steps: 20, cfg scalse:
7}, which are the most commonly used parameter choices.

4.2. Results

4.2.1 Hallucination

In Table 1, we present the hallucination error of DiffA-
gent on various evaluation datasets. It is evident that
DiffAgent-RRHF consistently achieves a lower hallucina-
tion error compared to DiffAgent-SFT. For example, The
hallucination error decreased from 48.1% to 28.0% after op-
timizing with RRHF on the Parti Prompt. This proves that
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SD XL SD 1.5
CLIP

Score ↑
Image

Reward ↑
HPS
v2 ↑

Unified
Metric ↑

CLIP
Score ↑

Image
Reward ↑

HPS
v2 ↑

Unified
Metric ↑

DABench

Baseline 83.2 65.1 26.8 49.2 75.4 -73.9 25.6 37.2
Baseline* 83.4 67.4 26.9 54.2 75.4 -69.7 25.7 39.5
DiffAgent# 83.0 69.6 26.9 53.0 80.6 -6.7 26.6 67.0
DiffAgent-SFT 83.2 67.7 27.0 55.8 79.2 -21.0 26.4 59.7
DiffAgent-RRHF 83.2 71.4 27.0 57.5 80.6 -5.3 26.6 68.2

COCO Caption [2]

Baseline 85.2 71.8 27.4 48.0 78.8 -37.6 26.3 42.3
Baseline* 85.5 75.3 27.6 53.7 78.8 -33.0 26.4 45.2
DiffAgent# 85.0 78.9 27.5 52.2 80.3 7.4 26.9 60.8
DiffAgent-SFT 85.4 79.2 27.6 55.6 79.5 -12.4 26.6 53.5
DiffAgent-RRHF 85.3 82.7 27.6 57.4 80.3 9.6 26.9 62.2

Parti Prompts [35]

Baseline 86.5 88.7 27.4 49.8 79.9 -30.1 26.1 43.0
Baseline* 86.6 91.3 27.4 53.6 80.2 -24.6 26.2 46.5
DiffAgent# 86.4 93.5 27.4 52.5 81.6 12.3 26.7 60.7
DiffAgent-SFT 86.7 96.4 27.6 56.5 80.3 -0.2 26.5 53.7
DiffAgent-RRHF 86.8 98.6 27.6 58.8 81.8 13.2 26.7 61.8

Table 2. The evaluation results in SD XL and SD 1.5 model architecture. Baseline*: Use the baseline model with the parameter information
from DiffAgent-RRHF for generation. DiffAgent#: Use the model information from DiffAgent-RRHF with default parameter

the RRHF stage of our framework SFTA can reduce the hal-
lucination error and provide more callable API responses.

4.2.2 Main Experiment

Tab. 2 shows the main results of DiffAgent with different
baselines. We report the results of three T2I metrics and the
Unified Metric by averaging the scores of three randomly
generated images for each T2I API. We can deduce the fol-
lowing conclusions from the results in several aspects.

Unified Score of DiffAgent The DiffAgent significantly
outperforms the baseline in the Unified Metric in all
datasets. Remarkably, DiffAgent-RRHF surpasses the base-
line by 8.3 ∼ 9.4 in the SD XL architecture and 18.8 ∼ 31
in SD 1.5. We find that this improvement is mainly due
to the contribution of human preference scores (ImageRe-
ward and HPS v2), which indicates that DiffAgent can gen-
erate T2I APIs that align well with human preferences. No-
tably, the models from T2I API are typically specialized for
specific styles, resulting in similar outcomes for Clip Score
compared with baseline. At the same time, we can observe
that under the same architecture, the Unified Scores are very
close across different datasets. This proves that this score is
a powerful and robust evaluation metric for T2I generation.

Effectiveness of Different Components The Baseline*
and DiffAgent# respectively demonstrate the utilization of
either parameter or model information from DiffAgent in-
dependently, resulting in improved performance compared
to the baseline. This shows these two components of T2I
API both have a positive effect on original T2I generation.

Furthermore, we observe that the model information from
API exhibits a greater improvement for SD 1.5 architecture,
whereas, for XL architecture, there is from parameter infor-
mation. This observation can be attributed to the thriving
popularity of models under the SD 1.5 architecture within
the community, as depicted in Figure 2.

Effectiveness of RRHF We also report the evaluation
of DiffAgent-SFT, which represents the results in the first
stage of our training framework SFTA, to compare with
DiffAgent-RRHF As shown in Tab. 2, the DiffAgent-
RRHF’s performance is higher than the DiffAgent-SFT, es-
pecially in human preference scores (e.g., in SD 1.5 ar-
chitecture, 15.7 improvement in DABench using ImageRe-
ward). Notably, DiffAgent-RRHF markedly enhances the
unified metric scores by 8.1 ∼ 8.7 than DiffAgent-SFT un-
der SD 1.5. This indicates that the RRHF process improves
the alignment of responded API with human preferences.

Inference Time We evaluate the average time overhead of
API generation on DABench, which is 4.81s (single A100
80G), by processing each data independently. This show-
cases the superior efficient applicability of DiffAgent.

4.3. Human evaluations

We further evaluate our DiffAgent using a user study.
Users are provided with two images, one from DiffAgent
and one from baseline, along with a corresponding prompt.
Users can choose which is better or a tie for the rele-
vance with prompt and image quality (as human prefer-
ences). Here, under different model architectures, we sam-
ple respective 90 image pairs and prompts evenly across the

6396



a man in a space suit, josan gonzales,  cyberpunk , futurepunk, 3D 1980s anime, adult male, red haired bounty hunter in gothic city, 
distinct characterization, 2D animation aesthetic

sdxlNijiSpecialsdxlUnstableDiffusers

serene Japanese garden, cherry blossoms in full 
bloom, koi pond, footbridge, pagoda, Ukiyo-e art 
style

underwater, giant whale, fantastic location, dream, 
flying, underwater cyberpunk city, highres, shadows, 
absurdres, best_quality, ultra_detailed, 8k, 
extremely_clear, photograph

colorful

an old woman with glasses and a scarf on, Disney, 
wearing a purple coat and green scarf, standing at the 
park

disneyPixarCartoon

A terrifying and gloomy castle at night, with a 
moon shining brightly

revAnimated

3d cartoon, cute cartoon,disney cartoon, masterpiece, 
masterpiece, cyborg girl, white hair, cyber arm, neon armor, 
night city, blue eyes, light in eyes

LahCuteCartoonSDXL

meinamixSD 1.5

SD XL

Figure 4. The visualization comparison between the original SD model (left) with DiffAgent’s T2I API (right). The two lines come from
the SD XL and SD 1.5 architectures respectively. For each pair, we provide the user prompt and the model name from T2I API.

three evaluation datasets (DABench, COCO Caption, and
Parti Prompts) and received evaluations from ten users. As
shown in Fig. 5, the user study results align with the uni-
fied metric and demonstrate that DiffAgent shows more rel-
evance and human preferences than Baseline. Specifically,
DiffAgent achieves a win rate of 78% on relevance and 86%
on human preference compared to the baseline in SD 1.5,
while for SD XL, it achieves a win rate of 53% and 58%.

4.4. Visualizations

We present a visual comparison between the baseline
and T2I API from DiffAgent in Fig. 4. The first row is
the results under the SD XL architecture, and the second
row is under the SD 1.5. From the comparison, it can be
seen that compared to the original one, DiffAgent can find
T2I APIs that suit the style of the prompts. For exam-

92 238 570

DiffAgent WinTieBaseilne Win

(a) Relevance with prompt
0 20 40 60 80 100

SD 1.5

SD XL

Win rate

78%

53%

(b) Human preference
0 20 40 60 80 100

Win rate

86%

58%

SD 1.5

SD XL

65%

143 503254

222 301387

235211 464

Figure 5. The user study results of DiffAgent. Win rates are cal-
culated without considering tie samples. DiffAgent surpasses the
baseline in both relevance with prompt and human preference.

ple, the DiffAgent can capture the Disney style in prompts
and responses a T2I API includes the ”disneyPixarCartoon”
model, a model to make pictures maintain a Disney style.

5. Conclusion

Our research is centered on harnessing LLMs as agents
to liberate users from constant attempts and adjustments
of the generative information in the text-to-image (T2I)
domain. This paper introduces DiffAgent, a novel agent
model adept at generating T2I APIs (model and parameter
information) in response to user specifications. We further
present a specialized training framework designed to fine-
tune LLMs, enabling them to adeptly select APIs that align
well with human preferences. Massive evaluations demon-
strate that DiffAgent markedly outperforms existing power-
ful models in both our collected dataset and two widely used
datasets. Notably, DiffAgent exhibits a remarkable profi-
ciency in swiftly identifying the most suitable T2I APIs,
expanding the tool usage of LLM in specific domains.
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