
Equivariant Multi-Modality Image Fusion

Zixiang Zhao1,2 Haowen Bai1 Jiangshe Zhang1 Yulun Zhang3* Kai Zhang4

Shuang Xu5 Dongdong Chen6 ∗ Radu Timofte2,7 Luc Van Gool2,8
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Abstract

Multi-modality image fusion is a technique that com-
bines information from different sensors or modalities, en-
abling the fused image to retain complementary features
from each modality, such as functional highlights and texture
details. However, effective training of such fusion models
is challenging due to the scarcity of ground truth fusion
data. To tackle this issue, we propose the Equivariant Multi-
Modality imAge fusion (EMMA) paradigm for end-to-end
self-supervised learning. Our approach is rooted in the
prior knowledge that natural imaging responses are equiv-
ariant to certain transformations. Consequently, we intro-
duce a novel training paradigm that encompasses a fusion
module, a pseudo-sensing module, and an equivariant fu-
sion module. These components enable the net training to
follow the principles of the natural sensing-imaging pro-
cess while satisfying the equivariant imaging prior. Exten-
sive experiments confirm that EMMA yields high-quality
fusion results for infrared-visible and medical images, con-
currently facilitating downstream multi-modal segmenta-
tion and detection tasks. The code is available at https:
//github.com/Zhaozixiang1228/MMIF-EMMA.

1. Introduction
Multi-modality image fusion serves as an image restoration
method that synthesizes information from multiple sensors
and modalities to generate a comprehensive representation of
scenes and objects [29, 38, 51, 54]. It finds widespread appli-
cation in tasks such as image registration [13, 36, 39], scene
information enhancement or restoration [7, 20, 42, 43, 53],
and downstream tasks such as object detection [1, 21] and se-
mantic segmentation [24, 33] in scenes with multiple sensors.
Notable tasks include infrared-visible image fusion (IVF)
and medical image fusion (MIF). IVF focuses on merging
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thermal radiation information from input infrared images and
intricate texture details from input visible images, resulting
in fusion images that mitigate the limitations of visible im-
ages affected by illumination variations and infrared images
susceptible to low resolution and noise [48, 56]. The primary
goal of MIF is to provide a comprehensive representation of
any abnormalities in a patient’s medical condition. This is
accomplished by integrating multiple imaging techniques,
thereby enabling an intelligent decision-making system that
supports both diagnostic and therapeutic processes [12].

We assume that the underlying ground truth fused image
is information-rich, but in practice we can only measure
the same ground truth through different sensing processes
which are typically nonlinear and difficult to model, thus
obtaining observations in different modalities. Therefore,
the multi-modality image fusion problem can be regarded as
a challenging nonlinear and blind inverse problem, which
can be regarded as the following negative log-likelihood
minimization problem:

min
f

{− log p (f | i1, i2)} (1a)

∝min
f

{− log p (i1, i2 | f)− log p (f)} (1b)

∝min
f

{L(f , i1, i2) +R(f)} (1c)

where i1, i2, and f represent two input source images and
the output fusion image, respectively. Eq. (1b) originates
from Bayes’ theorem. In Eq. (1c), the first term is the data
fidelity term, indicating that i1 and i2 are sensed from f ;
the second term is the prior term, indicating that f needs to
satisfy certain fusion image prior or empirical characteristics.

In the era of deep learning, numerous advanced meth-
ods strive to better model this problem. However, several
pressing issues remain unaddressed in this task. For the first
term of Eq. (1c), it is evident that individual sensors are
limited to capturing modality-specific features; no singular
“super” sensor exists that can perceive all modal information
simultaneously in reality. Consequently, the absence of a
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definitive ground truth hampers the effective application of
deep learning’s supervised learning paradigm to image fu-
sion tasks. While generative model-based methods [21, 26]
attempt to achieve fusion by making the source image and
the fused image belong to a similar distribution, they suffer
from a lack of interpretability, controllability, and present
training challenges. On the other hand, methods based on
manually crafted loss functions [18, 38, 51] often push the
fusion image to resemble the source images by minimizing
the ℓ1 or ℓ2 distance. However, such direct computation of
∥f − i1∥+ ∥f − i2∥ to determine f neglects the potential
domain differences between the fused images and the source
images, failing to consider that f may not reside on the same
feature manifold as i1 and i2. Meanwhile, for the second
term of Eq. (1c), researchers often presuppose that the fused
image exhibits certain structures, such as low-rank [17, 19],
sparsity [6, 8], multi-scale decomposition [51, 54], etc., and
impose priors to restrict the solution space. Nonetheless,
due to that ground truth fused images are inaccessible, these
priors typically depend on speculative assumptions about the
fused images or extrapolations from natural image priors,
thereby overly relying on domain knowledge and exhibiting
limited adaptability to unseen scenarios.

In response to the challenges mentioned above, we plan
to address them from two aspects. First, since aligning distri-
butions and manually crafted loss functions are challenging
tasks, we propose to start with the sensing and imaging pro-
cesses. We aim to learn the sensing, or say, the inverse
mapping from the fusion image back to images of various
modalities. This approach is intuitively simpler than mas-
tering the process of fusion itself. By doing so, we can
measure the loss between the input source images and the
(pseudo) sensing results, which are obtained by applying the
fusion images to different sensing functions. This strategy
overcomes the problem of not having ground truth images
for fusion. Furthermore, as image fusion is an inherently
ill-posed problem, merely optimizing the aforementioned
sensing loss may not yield the optimum fused image. Con-
sequently, we introduce a conceptually simple yet effective
prior, which is based on the inherent priors of the imaging
systems and does not rely on domain-specific knowledge
of fusion images. This non-domain-specific prior is predi-
cated on the understanding that natural imaging responses
are equivariant to transformations such as shifts, rotations,
and reflections. In other words, the transformed fused image,
after sensing and re-fused, should yield the same outcome as
before sensing. Leveraging the equivariance prior of the nat-
ural imaging system offers stronger constraints and guidance
for the learning process within the fusion network. In sum-
mary, regarding the common learning paradigms for image
fusion, we have made the following improvements:

∥f − i1∥+∥f − i2∥+fusion image prior(f)

=⇒∥̂i1 − i1∥+∥̂i2 − i2∥+equivariance prior(F◦A)
(2)

where F represents the fusion model and A is the sensing
model. î1 =A1(f) and î2 =A2(f) denote the respective
sensing results for i1 and i2, as determined by their corre-
sponding sensing models A1 and A2, respectively. A1 and
A2 together comprise the sensing model A.

Following this methodology, we devise a self-supervised
learning paradigm named Equivariant Multi-Modality
imAge fusion (EMMA). This framework consists of a fu-
sion module, a pseudo-sensing module, and an equivariant
fusion module. The fusion module, named U-Fuser, is a
U-Net-like [30] structure that incorporates Restormer [45]-
CNN blocks, and is employed to model both global and
local features, thereby effectively aggregating information.
The pseudo-sensing module, based on U-Net [30], is a learn-
able construct that maps the fused image back to the source
images, simulating the natural process of perception imag-
ing. Lastly, the equivariant fusion module is designed to
ensure that fused images adhere to the established prior of
equivariant imaging. Our contributions are as follows:
• We propose a novel self-supervised learning paradigm

named EMMA, designed to address the absence of ground
truth in image fusion. EMMA leverages the natural
sensing-imaging process with the non-domain-specific
prior that imaging responses are equivariant to transforma-
tions such as shift, rotation, and reflection.

• We refine the inappropriate handling of domain differences
between fused images and source inputs in the conven-
tional fusion loss by simulating the perceptual imaging
process via pseudo-sensing module and the sensing loss
component effectively.

• The U-Fuser fusion module proposed in EMMA profi-
ciently models long- and short-range dependencies across
multiple scales to integrate the source information.

• Our approach demonstrates excellent performance in
infrared-visible image fusion and medical image fusion,
which is also proved to facilitate downstream multi-modal
object detection and semantic segmentation tasks.

2. Related Work
Multi-modality image fusion. In the deep learning
era, multi-modality image fusion methods can be clas-
sified into four primary groups: generative models [26–
28], autoencoder-based models [16, 18, 22, 24, 46], algo-
rithm unrolling models [6, 8, 41, 52], and unified mod-
els [15, 37, 38, 47, 49]. Generative models represent the
distribution of fused images and source images in the latent
space through generative adversarial networks [26–28] or
denoising diffusion model [55]. Autoencoder-based models
use the encoder/decoder with CNN or Transformer block
as the basic unit to model the mapping/inverse mapping be-
tween the image domain and the feature domain [20, 35, 54].
Algorithm unrolling models shift the algorithm focus from
data-driven learning to model-driven learning, which replace
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complex operators with CNN/Transformer blocks while re-
taining the original computational graph structure, achieving
lightweight and interpretable learning [19, 52]. Unified mod-
els identify meta-knowledge between different tasks through
cross-task learning, enabling rapid adaptation to new tasks
and improved performance with fewer examples [38, 46].
Moreover, the multi-modality image fusion task is often inte-
grated into coupled systems with upstream (pre-processing)
image registration [13, 36, 39] and downstream object de-
tection and semantic segmentation tasks [21, 23, 31, 33].
Image registration can effectively eliminate image artifacts
and unaligned areas, enhance edge clarity and expand the
perception field [11, 39, 40]. Furthermore, gradient of the
recognition loss in downstream tasks can effectively guide
the production of the fused image [21, 23, 33, 50].

Equivariant Imaging. Equivariant imaging (EI) [2–4] is
an emerging fully unsupervised imaging framework that
exploits the group invariance property in natural signals to
learn a reconstruction function from partial measurement
data alone. The main idea behind EI is to use the fact that
natural signals often have certain symmetries. For example,
images are often translation invariant, meaning that they look
the same if they are shifted around. With this invariance prior,
the whole imaging system (from sensing to reconstruction) is
transformation equivariant. Under certain sensing conditions
[32], the reconstruction function will be able to correctly
reconstruct images that have been transformed around, even
if it has never seen those images before. As a promising new
approach to imaging and a new way to acquire and process
images, EI has been shown to be effective for a variety of
linear inverse problems [4]. This paper devotes to exploring
the potential of EI on a more challenging task, i.e., non-linear
and blind inverse problems in multi-modality image fusion.

Comparison with existing approaches. a) Compared to
the regular fusion loss, i.e. ∥f − i1∥+ ∥f − i2∥ in the im-
age or feature domains [18, 33, 51], the pseudo-sensing loss
item in Eq. (2) from EMMA mitigates the irrationality in
traditional loss caused by the manifold difference between
f and {i1, i2}, ensuring that the distances calculated be-
tween {̂i1, i1} and {̂i2, i2} are within the same domain. b)
Similar fusion-to-source mapping concepts [44, 46] aim to
make f decomposable into {i1, i2} to ensure it containing
the source image information. However, their decompo-
sition module, as an integral part of the fusion algorithm,
undergoes updates during training, and the fusion output
is considered as a feature for source reconstruction. Thus,
proficiency in decomposition learning does not invariably
correlate with enhanced information in fusion. In contrast,
within the EMMA paradigm, the learning of the pseudo-
sensing module is decoupled from that of the fusion network,
and it remains frozen during EMMA training, thus ensuring
that the mapping from the fused image back to the source im-
age is explicit and determinate. This enhances the rationality

and interpretability of the sensing module. c) Furthermore,
other prior-based optimizations [19, 51] often necessitate
domain knowledge of fusion images. However, in EMMA ,
we only need to use the imaging system prior rather than the
fusion image prior to accomplish self-supervised learning.

3. Method
In this section, we first provide the model formalization,
including the sensing module and the fusion module, and
give the model hypotheses for establishing the equivariant
image fusion paradigm. Then, we take the IVF task as an
example and present the implementation details of EMMA.
Other image fusion tasks can be analogously derived.

3.1. Problem Overview

Let i, v, and f refer to infrared, visible, and fused images,
respectively, with i∈RHW , v∈R3HW , and f ∈R3HW . We
assume the existence of an information-rich f that contains
multi-sensory and multi-modal information and needs to be
predicted. However, there is no perception device in real life
that can fully sense f up to now. Thus, as an unsupervised
task, there is no ground truth for f . Therefore, we model the
fusion process and the sensing process as follows:
f=F (i,v)+nf ⇔ i=Ai (f)+ni,v=Av (f)+nv, (3)

where F (·, ·) represents the fusion model, Ai (·) and Av (·)
represent the sensing model of i and v, i.e., the infrared and
RGB cameras, respectively. In the traditional image inverse
problem y = A(x)+n, where x and y are the ground truth
image and the measurement, the degradation operator A(·) is
known (such as the noise distribution in denoising tasks and
the blur kernel in super-resolution tasks). However, in image
fusion, we cannot explicitly obtain Ai and Av . Nevertheless,
we can set them learnable, in order to simulate the perceptual
process and assist the network in self-supervised learning.

3.2. Model hypothesis

To provide comprehensive sensing and fusion models and
further support the subsequent introduction of EMMA frame-
work, we first need to establish some necessary hypotheses.
a) Measurement consistency. We assume that the fusion
function F (·, ·) maintains consistency within the measure-
ment domain, that is,

Ai (F (i,v)) = i, Av (F (i,v)) = v. (4)
However, due to the underdetermined nature of the sensing
process, the estimation of F (i,v) cannot be achieved by
estimating the inverse of Ai or Av, and we have to learn
more information beyond the range space of their inverse.
b) Invariant set consistency. We first give two definitions
in the equivariant imaging [4]:

Definition 1 (Invariant set). For a set of transformations
G =

{
g1, . . . , g|G|

}
composed of unitary matrices Tg ∈

25914



Rn×n, X is the invariant set with respect to transformations
G, if Tgx ∈ X holds for ∀x ∈ X and ∀g ∈ G, i.e., TgX and
X are identical.

Definition 2 (Equivariant function). If function I satisfies
I (Tgx) = TgI(x) for ∀x ∈ X and ∀g ∈ G, we call I is an
equivariant function with respect to the transformation G.

Regarding the corollary of Definition 1, if X represents
a set of natural images, it is evident that the result remains
natural images after transformations that include translations,
rotations, and reflections. Hence, X is an invariant set for
transformation group G. Furthermore, the set composed of
fused images f , being a subset of X , is also an invariant
set to G. Moreover, in Definitions 1 and 2, “invariance”
pertains to the properties of the dataset, while “equivariance”
characterizes the properties of the imaging system, meaning
that the imaging system (denoted as F◦A in our paper) is
the equivariant function with respect to G. Consequently, we
propose the following theorem:

Theorem 1 (Equivariant image fusion theorem). If we regard
I in Definition 2 to be the composite function F◦A, where
F is the fusion model and A (including Ai and Av) is the
sensing model, the equivariant image fusion theorem is:

F (Ai (Tgf) ,Av (Tgf)) = TgF (Ai (f) ,Av (f)) . (5)

Proof. Consider a set of natural images X satisfying the in-
variance property, by Definition 2 the imaging system F ◦A
should be equivariant to the group actions {Tg}. Hence, for
∀f ∈ X , we have F ◦A(Tgf) = TgF ◦A(f). Furthermore,
by separating A into Ai and Av , we can get Eq. (5). ■

Remark 1. For Eq. (5), it does not necessitate F or A
to be equivariant to Tg, instead, F ◦ A is required to be
equivariant. Thus, F and A here can be set to any form of
mapping without restriction.

In the following , we will demonstrate how to establish
our equivariant image fusion paradigm based on Theorem 1.

3.3. Equivariant image fusion paradigm

The main focus of this paper is to present EMMA, a self-
supervised image fusion framework based on the equivariant
imaging prior, with the specific workflow shown in Fig. 1.
Overall paradigm. Firstly, we establish a U-Net-like
fusion module F(·) named U-Fuser, which combines a
Restormer [45] with CNN blocks as the basic unit to gen-
erate the fused image f from inputs i and v. Subsequently,
based on the equivariant image fusion theorem in Theo-
rem 1, an equivariant prior-based self-supervised framework,
comprising U-Fuser module and learnable (pseudo) sens-
ing modules Ai and Av, is employed to better preserve the
source image information in the absence of the fusion ground
truth. Specifically, we transform f , estimated by U-Fuser,

through a series of transformations Tg to obtain f t, then
pass f t through pseudo sensing modules {Ai,Av} to ob-
tain pseudo-images {it,vt}. Finally, we fuse {it,vt} with
U-Fuser again to obtain f̂ t.

Unlike other methods that require a well-designed
loss function to minimize the distance between f and
{i,v}, EMMA’s loss focuses on making the pseudo-images
{Ai(f) ,Av(f)} generated by the sensing module from f
as close to the original {i,v} as possible, while making f t

close to f̂ t simultaneously. Thus, from a natural imaging
perspective, the optimal fusion image f is found.

In the following text, we will first introduce the fu-
sion module U-Fuser F(·) and the pseudo sensing modules
{Ai,Av}, then illustrate the entire self-supervised learning
framework, and finally provide the training loss function.
U-Fuser module. We adopt a U-Net-like structure for fusing
i and v and generating the fused image f . At each scale,
since the input cross-modal features contain both global fea-
tures such as environment and background information, as
well as local features like the highlighting and detailed tex-
ture object features, we design a Transformer-CNN structure
to better model the cross-modal features by leveraging their
respective inductive biases. For the selection of Transformer
block, we adopt Restormer block [45], which implements
self-attention in channel dimension to model global features
without too much computation load. In the CNN block, we
use Res-block [10]. The input features of the Restormer-
CNN block are embedded and then parallelly processed by
the Restormer block and the Res-block, followed by em-
bedding interaction and a CNN layer, and finally input to
the next scale. Features of i and v at the same scale are
fused in the fusion layer, and are passed to the reconstruction
branch at the previous scale via skip connections. Design of
blocks for feature fusion and reconstruction is the same as
Restormer-CNN block used in the feature extraction branch.
Pseudo sensing module. In contrast to other works in this
field where their algorithm mainly focuses on the design
of the fusion function F , in this paper, we propose a self-
supervised learning framework based on equivariant imaging
prior to address the issue of lacking ground truth for fused
images. According to the equivariant image fusion theorem
stated in Theorem 1, we need to obtain pseudo imaging
results from Ai(f) and Av(f). To achieve this goal, we
need to simulate the process of sensing infrared and visible
images from the (imagined) fused image, as described in
Eq. (4). Since it is not feasible to explicitly give the structures
of Ai and Av, we adopt a data-driven learning approach to
obtain them. Recently, many deep learning-based methods
have shown promising results in image fusion. Therefore,
we selected fifteen state-of-the-art (SOTA) methods that have
recently appeared in top venues. They are DIDFuse [51],
U2Fusion [38], SDNet [46], RFN-Nest [18], AUIF [52],
RFNet [39], TarDAL [21], DeFusion [20], ReCoNet [11],
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Figure 1. Workflow for EMMA. The image pair {i,v} are initially input into U-Fuser F , resulting in the fused image f . Next, a series
of transformations Tg containing shift, rotation, reflection, etc., are applied to f to produce f t. f t is then fed into the parameter-frozen
{Ai,Av} to generate the pseudo-sensing images {it,vt}, which are finally input into F to obtain the re-fused image f̂ t.

MetaFusion [50], CDDFuse [54], LRRNet [19], MURF [40],
DDFM [55] and SegMIF [23]. We use their fusion results
as the (pseudo) ground truth for the fused images and then
learn the mappings from the fused images to i and v, which
can be regarded as Ai and Av, respectively. Considering
that both the input and output of the mapping have the same
image size, we choose U-Net [30] as the backbone of Ai

and Av and conduct the end-to-end training paradigm. The
specific network details are in the supplementary material.

Equivariant image fusion. After obtaining the U-Fuser F
and pseudo-sensing functions {Ai,Av}, we introduce our
self-supervised learning framework based on image equiv-
ariant prior. As shown in Fig. 1, we first input the image
pairs {i,v} into F , and obtain fused image f (which is the
entire operation of conventional fusion algorithms). Then,
we apply a series of transformations Tg to f , including shift,
rotation, reflection, etc., to obtain f t. Subsequently, f t is
input into the well-trained {Ai,Av} to obtain the pseudo-
sensing images {it,vt}, which contain the information from
f t and satisfy the imaging characteristics of infrared and
visible images, respectively. Finally, paired {it,vt} are fed
into F to obtain the re-fused image f̂ t. Throughout the
framework, we aim to aggregate information from {i,v}
into f , and according to the equivariant image fusion the-
orem (Theorem 1), f t and f̂ t should be sufficiently close.
These will be guaranteed through the designed loss function.

Training detail and loss function. During the entire train-
ing process of EMMA, we first trained Ai and Av using
ℓ2 loss as the loss function, i.e., LRec

I = ℓ2

(
i,Ai(f̃)

)
and

LRec
V = ℓ2

(
v,Av(f̃)

)
, where f̃ are the fusion results from

the SOTA methods in Sec. 3.3. Then, we freeze the param-
eters of Ai and Av, which means that parameters of the
pseudo-sensing module will no longer be updated. After-
wards, we train U-Fuser module with the total loss function:

Ltotal=L (Ai(f),i) + α1L (Av(f),v) + α2L
(
f t, f̂ t

)
, (6)

where L(x, x̂) = ℓ1(x, x̂) + ℓ1(∇x,∇x̂). α1 and α2 are
the tuning parameters, and ∇ indicates the Sobel operator.
In particular, the first and second terms of Eq. (6) ensure our
paradigm satisfies the measurement consistency of model
hypothesis in Sec. 3.2, while the third term ensures it satisfies
the invariant set consistency of model hypothesis.

3.4. Explanations

Here we will explain why the unsupervised fusion of EMMA
works. By the fact that image set {f} is invariant to a group
of invertible transformations {Tg}, give any image f from
the invariant set {f}, then Tgf also belongs to the set for
all g = 1, · · · , |G|. Under the equivariant theorem in The-
orem 1, we have {i,v} = Af = ATgT

−1
g f = Agf

′

for g = 1, · · · , |G|, where Ag = ATg and f ′ = T−1
g f

belongs to {f}. That is to say, applying transformations
is equal to generating multiple virtual sensing operators
{Ag}g=1,··· ,|G|. Since those virtual operators Ag are with
potentially different nullspaces, this allows us to learn be-
yond the range space of inverse A (see [32]).

The lack of ground truth leads to potential inaccuracies
in modeling Ai and Av, making the reconstruction of f
potentially unsatisfactory in the first few training epochs.
Fortunately, the combination of transformation for f t and
learning via equivariant imaging prior allows the completion
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Infrared Visible SDNet TarDAL DeFusion MetaFusion

CDDFuse LRRNet MURF DDFM SegMIF Ours

Figure 2. Visual comparison of “06832” from RoadScene [37] IVF dataset.
Infrared Visible SDNet TarDAL DeFusion MetaFusion

CDDFuse LRRNet MURF DDFM SegMIF Ours

Figure 3. Visual comparison of “00782N” from MSRS [34] IVF dataset.

of the originally missing knowledge to calibrate and refine
the fusion results, i.e., achieving the recovering of the missed
null space component. Notably, in the final algorithm de-
ployment phase, only the fine-tuned U-Fuser F is needed,
and all other modules will be disregarded, such as Ai and
Av . Finally, the proposed equivariant fusion module differs
from data augmentation (DA), which mainly extends data
based on the ground truth. However, ground truth is firmly
inaccessible in the image fusion task and DA cannot pro-
vide extra information gains when learning to image without
ground truth [2, 4]. Fortunately, as we have shown, with the
equivariance prior the proposed EMMA can provide extra
information and figure out principle-plausible fusion results.

4. Experiment
4.1. Infrared and visible image fusion

Setup. We conduct experiments on three fashion bench-
marks: MSRS [34], RoadScene [37] and M3FD [21]. The
network is trained on the MSRS training set and tested on its
test set to evaluate the performance. In addition, the trained
model is implemented to RoadScene and M3FD without
fine-tuning to verify the generalization performance. Our
experiments are performed using PyTorch on a computer
equipped with two NVIDIA GeForce RTX 3090 GPUs. The
training image pairs are cropped into 128×128 patches ran-
domly and with a batchsize of 8 before being fed into the
network. α1 and α2 in Eq. (6) are set to 1 and 0.1, to ensure
comparable magnitudes among the terms in the loss function.
We train the network for 100 epochs using the Adam opti-

MRI PET SDNet TarDAL Defusion MetaFusion

CDDFuse LRRNet MURF DDFM SegMIF Ours

Figure 4. Visual comparison for MIF task.

mizer, with an initial learning rate of 1e-4 and decreasing
by a factor of 0.5 every 20 epochs. U-Fuser is set to contain
a four-layer structure. Ai and Av are set as five-layer U-
Nets [30]. They are pre-trained and parameter-frozen prior
to the U-Fuser training. As for the transformation set G, we
will discuss it in our supplementary material.
SOTA methods and metrics. We compare EMMA with
SOTA methods of IVF, including SDNet [46], TarDAL [21],
DeFusion [20], MetaFusion [50], CDDFuse [54], LRR-
Net [19], MURF [40], DDFM [55] and SegMIF [23]. Six
metrics are used to objectively compare fusion performance,
including entropy (EN), standard deviation (SD), spatial
frequency (SF), average gradient (AG), structure content
dissimilarity (SCD) and visual information fidelity (VIF).
Higher values indicate superior fusion effects and the calcu-
lation details are in [25].
Qualitative comparison. We compare the fusion outcomes
of EMMA with SOTAs in Figs. 2 and 3. Our results success-
fully integrate thermal radiation information derived from
infrared images with detailed texture features extracted from
visible images. Fig. 2 shows that the fused image accurately
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Infrared-Visible Image Fusion on MSRS Dataset [34] Infrared-Visible Image Fusion on RoadScene Dataset [37]
EN ↑ SD ↑ SF ↑ AG ↑ SCD ↑ VIF ↑ EN ↑ SD ↑ SF ↑ AG ↑ SCD ↑ VIF ↑

SDN [46] 5.25 17.35 8.67 2.67 0.99 0.50 SDN [46] 7.30 44.06 14.58 5.80 1.37 0.61
TarD [21] 5.28 25.22 5.98 1.83 0.71 0.42 TarD [21] 7.26 47.44 11.11 4.14 1.40 0.56
DeF [20] 6.46 37.63 8.60 2.80 1.35 0.77 DeF [20] 7.36 47.03 10.99 4.38 1.62 0.63
Meta [50] 5.65 24.97 9.99 3.40 1.14 0.31 Meta [50] 6.88 31.97 14.38 5.57 0.92 0.55

CDDF [54] 6.70 43.38 11.56 3.73 1.62 1.05 CDDF [54] 7.52 54.42 14.97 5.81 1.65 0.66
LRR [19] 6.19 31.78 8.46 2.63 0.79 0.54 LRR [19] 7.12 39.16 11.41 4.37 1.46 0.45

MURF [40] 5.04 16.37 8.31 2.67 0.86 0.40 MURF [40] 6.91 33.34 13.88 5.37 1.04 0.52
DDFM [55] 6.19 29.26 7.44 2.51 1.45 0.73 DDFM [55] 7.24 42.43 10.68 4.15 1.64 0.62
SegM [23] 5.95 37.28 11.10 3.47 1.57 0.88 SegM [23] 7.29 46.14 14.47 5.57 1.61 0.65

Ours 6.71 44.13 11.56 3.76 1.63 0.97 Ours 7.52 54.81 15.21 5.83 1.69 0.66

Infrared-Visible Image Fusion on M3FD Dataset [21] Medical Image Fusion on Harvard Dataset [9]
EN ↑ SD ↑ SF ↑ AG ↑ SCD ↑ VIF ↑ EN ↑ SD ↑ SF ↑ AG ↑ SCD ↑ VIF ↑

SDN [46] 6.87 36.22 15.32 5.61 1.41 0.55 SDN [46] 3.79 52.53 21.91 5.51 0.87 0.52
TarD [21] 6.80 41.77 8.65 3.17 1.35 0.51 TarD [21] 4.74 55.73 18.02 5.35 0.86 0.31
DeF [20] 6.90 36.81 9.85 3.65 1.42 0.58 DeF [20] 4.00 57.48 17.09 4.19 0.84 0.59
Meta [50] 6.73 30.56 16.48 6.02 1.31 0.65 Meta [50] 3.90 65.18 28.69 6.29 1.33 0.54

CDDF [54] 7.04 42.02 16.56 5.84 1.41 0.65 CDDF [54] 4.13 68.46 21.58 5.83 1.61 0.66
LRR [19] 6.58 30.28 11.83 4.21 1.34 0.54 LRR [19] 4.15 45.71 17.39 4.47 0.23 0.51

MURF [40] 6.59 28.89 11.82 4.81 1.21 0.39 MURF [40] 4.42 36.35 27.18 5.98 0.35 0.37
DDFM [55] 6.82 32.68 10.07 3.71 1.35 0.60 DDFM [55] 3.97 59.81 16.43 4.11 1.49 0.63
SegM [23] 6.88 36.20 16.19 5.83 1.38 0.75 SegM [23] 3.67 57.79 21.91 5.56 1.05 0.66

Ours 7.12 44.01 16.92 6.23 1.48 0.66 Ours 4.81 69.42 22.15 6.02 1.64 0.66

Table 1. Quantitative results of IVF and MIF task. Best and second-best values are highlighted and underlined.

Configurations EN SD SF AG SCD VIF

I w/o Equivariant Loss 6.36 39.22 9.09 3.01 1.18 0.72
II w/o Sensing Loss 6.42 40.12 9.12 3.29 1.24 0.79
III w/ ℓ1(f , i) + ℓ1(f ,v) Loss 6.21 38.96 8.85 2.99 0.85 0.76
IV Exp. III w/ augmentations 6.26 39.11 8.73 3.02 0.96 0.77
V w/o Global Extractor 6.45 39.37 9.44 3.24 1.42 0.81
VI w/o Local Extractor 6.52 40.49 9.79 2.82 1.46 0.82

Ours 6.71 44.13 11.56 3.76 1.63 0.97

Table 2. Ablation experiment results. Bold indicates the best value.

captures the advantages of each modality while eliminating
redundant information. The fusion process enhances object
visibility, sharpens textures, and reduces artifacts. In Fig. 3,
objects situated in inadequately illuminated surroundings
are prominently highlighted with well-defined edges and
abundant contours. This distinctiveness facilitates the differ-
entiation between foreground objects and the background,
thereby enhancing our comprehension of the depicted scene.
Quantitative comparison. The fusion outcomes are quanti-
tatively compared using six metrics, as shown in Tab. 1. Our
method exhibits remarkable performance across nearly all
metrics, affirming its suitability for various environmental
conditions and object categories. They indicate the capa-
bility of EMMA to produce images that align with human
visual perception while preserving the integrity of the source
image features and producing informative fused images.

4.1.1 Ablation studies

We conduct ablation studies on the MSRS testset to prove
the rationality of EMMA, with the results shown in Tab. 2.
Terms in loss function. In Exp. I, we eliminate the last
term in Eq. (6), which is the equivariant term. Even though
the fusion module is capable of completing image fusion, it

is unable to constrain the solution space through the equiv-
ariant prior. Thus, the network yields weaker results. In
Exp. II, we modified the first two terms of Eq. (6) to be
ℓ1(f , i) + ℓ1(f ,v), which is the traditional loss in other
fusion tasks. The first two terms of Eq. (6), i.e., sensing
loss, guarantee that the fused image needs to inherit enough
information from source images, so that the output pseudo-
perceptual imaging result can be closer to the source images.
While the traditional loss function purely forces the fused im-
age to closely resemble the source images. Results in Exp. II
demonstrate the necessity of sensing loss term. In Exp. III,
we replace the loss in Eq. (6) with that in Exp. II. The results
indicate that without equivariant loss and sensing loss, rely-
ing on ℓ1(f , i) + ℓ1(f ,v) loss makes it difficult to achieve
an ideal fusion network. In Exp. IV, to further demonstrate
our claim, we employ the same transformation as EMMA for
conducting data augmentation (DA) on input images i and
v, expanding upon the ablation experiment Exp. III. That is,
we employ the same transformation group as EMMA on the
original network input, and the fusion training framework
follows traditional approaches. Specifically, the loss function
becomes: ∥f−i∥+∥f−v∥+∥f t−it∥+∥f t−vt∥, where
f t = Tgf . Experimental results demonstrate that under the
same transformation, there is only a slight improvement for
DA on i and v. Conversely, in comparison to EMMA, sub-
stantial differences in effectiveness are observed. Thus, our
equivariant fusion module fundamentally differs from tra-
ditional DA, as DA cannot provide additional information
gains when learning to image without ground truth.
U-Fuser. Then, in Exp. V and Exp. VI, we separately elimi-
nated the Restormer-block or the Res-block, ensuring a con-
sistent number of parameters by increasing the remaining
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Bus Car Lam Mot Peo Tru mAP@0.5

IR 78.8 88.7 70.2 63.4 80.9 65.8 74.6
VI 78.3 90.7 86.4 69.3 70.5 70.9 77.7

SDN [46] 81.4 92.3 84.1 67.4 79.4 69.3 79.0
TarD [21] 81.3 94.8 87.1 69.3 81.5 68.7 80.5
DeF [20] 82.9 92.5 87.8 69.5 80.8 71.4 80.8
Meta [50] 83.0 93.4 87.3 74.8 81.6 68.8 81.5

CDDF [54] 81.8 92.9 87.6 72.8 81.8 72.9 81.6
LRR [19] 80.1 92.3 86.2 73.6 78.3 68.6 79.9

MURF [40] 81.3 92.6 86.5 70.8 80.2 69.9 80.2
DDFM [55] 82.2 93.2 87.6 68.4 81.0 71.3 80.6
SegM [23] 81.8 93.1 86.8 72.3 79.9 70.9 80.8

Ours 83.2 93.5 87.7 77.7 82.0 73.5 82.9

Table 3. AP@0.5(%) for MM detection.

Unl Car Per Bik Cur CS GD CC Bu mIOU

IR 90.5 75.6 45.4 59.4 37.2 51.0 46.4 43.5 50.2 55.4
VI 84.7 67.8 56.4 51.8 34.6 39.3 42.2 40.2 48.4 51.7

SDN [46] 97.3 78.4 62.5 61.7 35.7 49.3 52.4 42.2 52.9 59.2
TarD [21] 97.1 79.1 55.4 59.0 33.6 49.4 54.9 42.6 53.5 58.3
DeF [20] 97.5 82.6 61.1 62.6 40.4 51.5 48.1 47.9 54.8 60.7
Meta [50] 97.3 81.6 61.2 62.1 37.2 52.9 59.8 46.2 56.2 61.6

CDDF [54] 97.8 82.5 63.2 62.2 40.8 52.7 56.2 45.3 58.7 62.2
LRR [19] 97.4 81.2 62.4 61.9 40.3 50.7 48.1 45.3 47.3 59.4

MURF [40] 97.2 81.4 62.0 60.9 39.7 52.3 55.5 46.8 56.1 61.3
DDFM [55] 97.4 82.5 60.4 62.0 41.7 52.9 56.2 46.3 53.7 61.2
SegM [23] 97.6 84.6 64.8 63.6 40.2 52.9 59.9 49.4 56.2 63.2

Ours 97.6 84.0 65.2 63.1 42.4 53.6 60.2 50.5 56.3 63.7

Table 4. IoU(%) for MM segmentation.

blocks number. The results demonstrate that an incomplete
feature extraction module leads to deficiencies in modeling
local texture details or capturing long-range dependencies,
thereby resulting in a degradation of performance.

4.2. Downstream IVF applications

This section aims to examine the impact of image fusion
on downstream vision tasks. We assess the performance of
fusion results in both multi-modal semantic segmentation
(MMSS) tasks and multi-modal object detection (MMOD)
tasks. To ensure fairness, we individually re-train the net-
work for each task using fusion results obtained from their
own methods. Due to space limitations, the visual compar-
isons are placed in the supplementary material.
Infrared-visible object detection. MMOD task is con-
ducted on the M3FD dataset [21], which comprises 4200
images encompassing six categories of labels: people, cars,
buses, motorcycles, trucks, and lamps. We partition M3FD
dataset into training/validation/test sets in an 8:1:1 ratio.
YOLOv5 detector [14] is trained using the SGD optimizer
for 400 epochs. Batch size is 8 and the initial learning is
0.01. We evaluate the detection performance by comparing
the mAP@0.5. Tab. 3 indicates that EMMA exhibits the
most superior detection capabilities, enhancing the detection
accuracy by merging thermal radiation and RGB information
and emphasizing hard-to-detect objects.
Infrared-visible semantic segmentation. MSRS dataset
[34] is designed for MMSS task and encompasses nine cate-
gories of pixel-level labels: background, bump, color cone,
guardrail, curve, bike, person, car stop, and car. We select
DeeplabV3+ [5] as the segmentation network and value the
performances via Intersection over Union (IoU). The divi-
sion of training and test sets adheres to the protocol in the
original dataset paper [34]. We employ the cross-entropy
loss along with the SGD optimizer. The total number of
epochs is 340 while the backbone is frozen for the first 100
epochs. The batch size and the initial learning rate are set to
8 and 7e-3, and the learning rate follows cosine annealing
delayed as the epoch number increases. Segmentation out-
comes are displayed in Tab. 4. EMMA effectively combines
the edge and contour details present in the source images,

thereby improving the model’s capability to recognize the
object’s boundary, and leading to more precise segmentation.

4.3. Medical image fusion

Setup. We conducted MIF experiments via the Harvard Med-
ical dataset [9], which included 50 pairs of MRI-CT/MRI-
PET/MRI-SPECT images. We directly generalize the mod-
els trained on the IVF task to the MIF task without fine-
tuning. The quantitative metrics used are the same as those
employed in the IVF task.
Comparison with SOTA methods. In both visual percep-
tion and quantitative measures in Fig. 4 and Tab. 1, EMMA
demonstrates superior accuracy in extracting structural high-
lights and detailed texture features, and effectively integrates
characteristic features within the fused image. Consequently,
it achieves remarkable fusion results.

5. Conclusion
This paper tackles the lack of ground truth in image fu-
sion by employing a conceptually straightforward yet potent
prior that natural imaging responses exhibit equivariance to
translations like shifts, rotations, and reflections. Upon this
foundation, we propose a self-supervised paradigm called
equivariant image fusion, which adjusts the inherent patterns
of the loss function by taking into account the principles
of natural imaging, making it simulate the sensing-imaging
process. We also introduce a U-Net-like fusion module
using the Restormer-CNN block as its basic unit, facilitat-
ing global-local feature extraction and efficient information
fusion. Experimental results corroborate the effectiveness
of our proposed paradigm in multi-modality image fusion,
and its propensity to facilitate downstream tasks like multi-
modality segmentation and detection.

Acknowledgement
This work has been supported by the National Natural
Science Foundation of China under Grant 12371512
and 12201497, the Guangdong Basic and Applied Basic
Research Foundation under Grant 2023A1515011358, and
partly supported by the Alexander von Humboldt Foundation.

25919



References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark

Liao. Yolov4: Optimal speed and accuracy of object detection.
CoRR, abs/2004.10934, 2020. 1

[2] Dongdong Chen, Julián Tachella, and Mike E. Davies. Equiv-
ariant imaging: Learning beyond the range space. In ICCV,
pages 4359–4368. IEEE, 2021. 3, 6

[3] Dongdong Chen, Julián Tachella, and Mike E. Davies. Robust
equivariant imaging: a fully unsupervised framework for
learning to image from noisy and partial measurements. In
CVPR, pages 5637–5646. IEEE, 2022.

[4] Dongdong Chen, Mike E. Davies, Matthias J. Ehrhardt,
Carola-Bibiane Schönlieb, Ferdia Sherry, and Julián Tachella.
Imaging with equivariant deep learning: From unrolled net-
work design to fully unsupervised learning. IEEE Signal
Process. Mag., 40(1):134–147, 2023. 3, 6

[5] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, pages 833–851. Springer, 2018. 8

[6] Xin Deng and Pier Luigi Dragotti. Deep convolutional neural
network for multi-modal image restoration and fusion. IEEE
Trans. Pattern Anal. Mach. Intell., 43(10):3333–3348, 2021.
2

[7] Li Fang, Qian Wang, and Long Ye. Glgnet: light field angu-
lar superresolution with arbitrary interpolation rates. Visual
Intelligence, 2(1):6, 2024. 1

[8] Fangyuan Gao, Xin Deng, Mai Xu, Jingyi Xu, and Pier Luigi
Dragotti. Multi-modal convolutional dictionary learning.
IEEE Trans. Image Process., 31:1325–1339, 2022. 2

[9] Harvard Medical website. http://www.med.harvard.
edu/AANLIB/home.html. 7, 8

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Conference
on Computer Vision and Pattern Recognition, CVPR, pages
770–778, 2016. 4

[11] Zhanbo Huang, Jinyuan Liu, Xin Fan, Risheng Liu, Wei
Zhong, and Zhongxuan Luo. Reconet: Recurrent correction
network for fast and efficient multi-modality image fusion. In
European Conference on Computer Vision (ECCV), 2022. 3,
4

[12] Alex Pappachen James and Belur V. Dasarathy. Medical
image fusion: A survey of the state of the art. Inf. Fusion, 19:
4–19, 2014. 1

[13] Zhiying Jiang, Zengxi Zhang, Xin Fan, and Risheng Liu.
Towards all weather and unobstructed multi-spectral image
stitching: Algorithm and benchmark. In ACM Multimedia,
pages 3783–3791, 2022. 1, 3

[14] Glenn Jocher. ultralytics/yolov5. https://github.
com/ultralytics/yolov5, 2020. 8

[15] Hyungjoo Jung, Youngjung Kim, Hyunsung Jang, Namkoo
Ha, and Kwanghoon Sohn. Unsupervised deep image fusion
with structure tensor representations. IEEE Trans. Image
Process., 29:3845–3858, 2020. 2

[16] Hui Li and Xiao-Jun Wu. Densefuse: A fusion approach to
infrared and visible images. IEEE Transactions on Image
Processing, 28(5):2614–2623, 2018. 2

[17] Hui Li, Xiao-Jun Wu, and Josef Kittler. Mdlatlrr: A novel
decomposition method for infrared and visible image fusion.
IEEE Trans. Image Process., 29:4733–4746, 2020. 2

[18] Hui Li, Xiao-Jun Wu, and Josef Kittler. Rfn-nest: An end-to-
end residual fusion network for infrared and visible images.
Inf. Fusion, 73:72–86, 2021. 2, 3, 4

[19] Hui Li, Tianyang Xu, Xiaojun Wu, Jiwen Lu, and Josef Kittler.
Lrrnet: A novel representation learning guided fusion network
for infrared and visible images. IEEE Trans. Pattern Anal.
Mach. Intell., 45(9):11040–11052, 2023. 2, 3, 5, 6, 7, 8

[20] Pengwei Liang, Junjun Jiang, Xianming Liu, and Jiayi Ma.
Fusion from decomposition: A self-supervised decomposi-
tion approach for image fusion. In European Conference on
Computer Vision (ECCV), 2022. 1, 2, 4, 6, 7, 8

[21] Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng
Liu, Wei Zhong, and Zhongxuan Luo. Target-aware dual ad-
versarial learning and a multi-scenario multi-modality bench-
mark to fuse infrared and visible for object detection. In
CVPR, pages 5792–5801. IEEE, 2022. 1, 2, 3, 4, 6, 7, 8

[22] Jinyuan Liu, Runjia Lin, Guanyao Wu, Risheng Liu, Zhongx-
uan Luo, and Xin Fan. Coconet: Coupled contrastive learning
network with multi-level feature ensemble for multi-modality
image fusion. International Journal of Computer Vision,
pages 1–28, 2023. 2

[23] Jinyuan Liu, Zhu Liu, Guanyao Wu, Long Ma, Risheng Liu,
Wei Zhong, Zhongxuan Luo, and Xin Fan. Multi-interactive
feature learning and a full-time multi-modality benchmark
for image fusion and segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 8115–8124, 2023. 3, 5, 6, 7, 8

[24] Risheng Liu, Zhu Liu, Jinyuan Liu, and Xin Fan. Searching
a hierarchically aggregated fusion architecture for fast multi-
modality image fusion. In ACM Multimedia, pages 1600–
1608. ACM, 2021. 1, 2

[25] Jiayi Ma, Yong Ma, and Chang Li. Infrared and visible image
fusion methods and applications: A survey. Information
Fusion, 45:153–178, 2019. 6

[26] Jiayi Ma, Wei Yu, Pengwei Liang, Chang Li, and Junjun Jiang.
Fusiongan: A generative adversarial network for infrared and
visible image fusion. Information Fusion, 48:11–26, 2019. 2

[27] Jiayi Ma, Pengwei Liang, Wei Yu, Chen Chen, Xiaojie Guo,
Jia Wu, and Junjun Jiang. Infrared and visible image fusion
via detail preserving adversarial learning. Information Fusion,
54:85–98, 2020.

[28] Jiayi Ma, Han Xu, Junjun Jiang, Xiaoguang Mei, and Xiao-
Ping (Steven) Zhang. Ddcgan: A dual-discriminator con-
ditional generative adversarial network for multi-resolution
image fusion. IEEE Trans. Image Process., 29:4980–4995,
2020. 2

[29] Bikash Meher, Sanjay Agrawal, Rutuparna Panda, and Ajith
Abraham. A survey on region based image fusion methods.
Information Fusion, 48:119–132, 2019. 1

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, pages 234–241. Springer, 2015. 2, 5, 6

[31] Yiming Sun, Bing Cao, Pengfei Zhu, and Qinghua Hu. Det-
fusion: A detection-driven infrared and visible image fusion
network. In ACM Multimedia, pages 4003–4011, 2022. 3

25920



[32] Julián Tachella, Dongdong Chen, and Mike Davies. Sensing
theorems for unsupervised learning in linear inverse problems.
Journal of Machine Learning Research, 24(39):1–45, 2023.
3, 5

[33] Linfeng Tang, Jiteng Yuan, and Jiayi Ma. Image fusion in the
loop of high-level vision tasks: A semantic-aware real-time
infrared and visible image fusion network. Inf. Fusion, 82:
28–42, 2022. 1, 3

[34] Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and
Jiayi Ma. Piafusion: A progressive infrared and visible image
fusion network based on illumination aware. Inf. Fusion,
83-84:79–92, 2022. 6, 7, 8

[35] Vibashan Vs, Jeya Maria Jose Valanarasu, Poojan Oza, and
Vishal M Patel. Image fusion transformer. In 2022 IEEE
International Conference on Image Processing (ICIP), pages
3566–3570. IEEE, 2022. 2

[36] Di Wang, Jinyuan Liu, Xin Fan, and Risheng Liu. Unsu-
pervised misaligned infrared and visible image fusion via
cross-modality image generation and registration. In IJCAI,
pages 3508–3515. ijcai.org, 2022. 1, 3

[37] Han Xu, Jiayi Ma, Zhuliang Le, Junjun Jiang, and Xiaojie
Guo. Fusiondn: A unified densely connected network for
image fusion. In AAAI Conference on Artificial Intelligence,
AAAI, pages 12484–12491, 2020. 2, 6, 7

[38] Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin
Ling. U2fusion: A unified unsupervised image fusion net-
work. IEEE Trans. Pattern Anal. Mach. Intell., 44(1):502–518,
2022. 1, 2, 3, 4

[39] Han Xu, Jiayi Ma, Jiteng Yuan, Zhuliang Le, and Wei Liu.
Rfnet: Unsupervised network for mutually reinforcing multi-
modal image registration and fusion. In CVPR, pages 19647–
19656. IEEE, 2022. 1, 3, 4

[40] Han Xu, Jiteng Yuan, and Jiayi Ma. MURF: mutually reinforc-
ing multi-modal image registration and fusion. IEEE Trans.
Pattern Anal. Mach. Intell., 45(10):12148–12166, 2023. 3, 5,
6, 7, 8

[41] Shuang Xu, Zixiang Zhao, Yicheng Wang, Chunxia Zhang,
Junmin Liu, and Jiangshe Zhang. Deep convolutional sparse
coding networks for image fusion. CoRR, abs/2005.08448,
2020. 2

[42] Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Guangyu
Li, Jun Li, and Jian Yang. Learning complementary correla-
tions for depth super-resolution with incomplete data in real
world. IEEE transactions on neural networks and learning
systems, 2022. 1

[43] Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Jun Li,
and Jian Yang. Rignet: Repetitive image guided network
for depth completion. In European Conference on Computer
Vision, pages 214–230. Springer, 2022. 1

[44] Wuyang Ye, Tao Yan, Jiahui Gao, and Yang Yang. Lfienet:
Light field image enhancement network by fusing exposures
of lf-dslr image pairs. IEEE Transactions on Computational
Imaging, 2023. 3

[45] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In CVPR, pages 5718–5729. IEEE, 2022. 2, 4

[46] Hao Zhang and Jiayi Ma. Sdnet: A versatile squeeze-and-
decomposition network for real-time image fusion. Int. J.
Comput. Vis., 129(10):2761–2785, 2021. 2, 3, 4, 6, 7, 8

[47] Hao Zhang, Han Xu, Yang Xiao, Xiaojie Guo, and Jiayi Ma.
Rethinking the image fusion: A fast unified image fusion
network based on proportional maintenance of gradient and
intensity. In AAAI, pages 12797–12804. AAAI Press, 2020. 2

[48] Xingchen Zhang and Yiannis Demiris. Visible and infrared
image fusion using deep learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 1–20, 2023.
1

[49] Yu Zhang, Yu Liu, Peng Sun, Han Yan, Xiaolin Zhao, and Li
Zhang. IFCNN: A general image fusion framework based on
convolutional neural network. Inf. Fusion, 54:99–118, 2020.
2

[50] Wenda Zhao, Shigeng Xie, Fan Zhao, You He, and Huchuan
Lu. Metafusion: Infrared and visible image fusion via meta-
feature embedding from object detection. In CVPR, pages
13955–13965. IEEE, 2023. 3, 5, 6, 7, 8

[51] Zixiang Zhao, Shuang Xu, Chunxia Zhang, Junmin Liu, Jiang-
she Zhang, and Pengfei Li. DIDFuse: Deep image decompo-
sition for infrared and visible image fusion. In International
Joint Conference on Artificial Intelligence, IJCAI, pages 970–
976, 2020. 1, 2, 3, 4

[52] Zixiang Zhao, Shuang Xu, Jiangshe Zhang, Chengyang Liang,
Chunxia Zhang, and Junmin Liu. Efficient and model-based
infrared and visible image fusion via algorithm unrolling.
IEEE Trans. Circuits Syst. Video Technol., 32(3):1186–1196,
2022. 2, 3, 4

[53] Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Zudi Lin, and
Hanspeter Pfister. Discrete cosine transform network for
guided depth map super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5697–5707, 2022. 1

[54] Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang,
Shuang Xu, Zudi Lin, Radu Timofte, and Luc Van Gool.
Cddfuse: Correlation-driven dual-branch feature decompo-
sition for multi-modality image fusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5906–5916, 2023. 1, 2, 5, 6, 7, 8

[55] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang,
Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu
Timofte, and Luc Van Gool. Ddfm: Denoising diffusion
model for multi-modality image fusion. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 8082–8093, 2023. 2, 5, 6, 7, 8

[56] Zixiang Zhao, Jiangshe Zhang, Xiang Gu, Chengli Tan,
Shuang Xu, Yulun Zhang, Radu Timofte, and Luc Van Gool.
Spherical space feature decomposition for guided depth map
super-resolution. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 12547–
12558, 2023. 1

25921


