
FlashEval: Towards Fast and Accurate Evaluation of
Text-to-image Diffusion Generative Models

Lin Zhao2∗, Tianchen Zhao12*, Zinan Lin3, Xuefei Ning1†, Guohao Dai24, Huazhong Yang1, Yu Wang1†

1Tsinghua University, 2Infinigence-AI, 3Microsoft Research, 4Shanghai Jiao Tong University
{lllzz0309zz,suozhang1998,linzinan1995,foxdoraame}@gmail.com daiguohao@sjtu.edu.cn

{yanghz, yu-wang}@mail.tsinghua.edu.cn

Abstract

In recent years, there has been significant progress in the
development of text-to-image generative models. Evaluating
the quality of the generative models is one essential step in
the development process. Unfortunately, the evaluation pro-
cess could consume a significant amount of computational
resources, making the required periodic evaluation of model
performance (e.g., monitoring training progress) impracti-
cal. Therefore, we seek to improve the evaluation efficiency
by selecting the representative subset of the text-image
dataset. We systematically investigate the design choices,
including the selection criteria (textural features or image-
based metrics) and the selection granularity (prompt-level or
set-level). We find that the insights from prior work on subset
selection for training data do not generalize to this problem,
and we propose FlashEval, an iterative search algorithm
tailored to evaluation data selection. We demonstrate the
effectiveness of FlashEval on ranking diffusion models with
various configurations, including architectures, quantization
levels, and sampler schedules on COCO and DiffusionDB
datasets. Our searched 50-item subset could achieve compa-
rable evaluation quality to the randomly sampled 500-item
subset for COCO annotations on unseen models, achieving
a 10x evaluation speedup. We release the condensed subset
of these commonly used datasets to help facilitate diffusion
algorithm design and evaluation, and open-source FlashE-
val as a tool for condensing future datasets, accessible at
https://github.com/thu-nics/FlashEval.

1. Introduction
Diffusion models could generate high-fidelity images

based on textual descriptions (referred to as prompts) and
achieve substantial research interest [23, 27, 28, 39]. Re-
searchers have designed a range of techniques aimed at en-

*Equal contribution
†Corresponding authors: Xuefei Ning and Yu Wang.

…

Compactor
1

Compactor design for shortcut
(Sec 3.2)

Conv1-
1

Conv1-
2

…

Shortcu
t

80% 80%

80%

40% 40%

Different sensitivity
Same prune ratio

Less shortcut memory

80%

Conv1-
1 Conv1-2 …

80% 80% 40% 40%

80% 20%

Shortcut activation
 is kept in memory

for long term

Decouple the
pruning

 of 2 branches

…

…

Memory-oriented pruning flow (Sec
3.3)

1 2 3 4 5 6

C2

C1

U-Net Architecture

a b

c
d

e

d

t

Ta

Tb

Memor
y

a b c d

d e

Activation Stored in Memory

 Peak Memory

Reduce by Memory
Stride

in each iteration

Prune �� related
layers

15M
12M

3M

 Ta has peak
memory

- 0.6M
- 1.0M

- 0.2M

- 1.2M
Relative

Sensitivity

bas
e

on Memory
Stride

3MLinear
Programming

LP-Based
Allocation

(b) With Compactor
(a) Without
Compactor

Current
Peak

Memory

Target
Peak Memory

Iteratively Reduce
by memory stride

20%

Reduced
shortcut

 keep rate

15M 3.75
M

(1) Model & Schedule Selection

Applications that
Requires Repeated Evaluations Better Evaluation

Quality-Speed Trade-off

Bad Eval. Quality

Acceptable Eval. Cost

Good Eval. Quality

Excessive Eval. Cost

Acceptable Eval. Cost Good Eval. Quality

(2) Weight Tuning

(3) Design Choices
DPMSolverPNDMDDIM

&
50 10 10

SD-V2.1SD-V1.5SD-V1.2

Eval Quality
(Kendall’s Tau)

Eval Cost
(Subset Size)

FlashEval (Ours)

Random Sample
(Current)

0.87

Representative
Subet (10-100)

Large Dataset
(40K)

Condense
dataset

FlashEval: Search Subset

Figure 1. The Motivation and Effectiveness of FlashEval. Left:
Applications and the search method. Right: The excessive evalua-
tion cost and how FlashEval improves the evaluation speed-quality
trade-off (evaluation quality is represented by the ranking correla-
tion of a variety of diffusion models w.r.t subset size on COCO).

hancing these models from various angles. Some algorithm
design applications often necessitate a large number of itera-
tive evaluations, such as: (1) Model & Schedule Selection:
The quality of image generation exhibits varying trends over
different timesteps for different models and solvers. Conse-
quently, evaluations and comparisons are needed to strike
a balance between generation quality and computational
cost. (2) Weight Tuning: In the process of training and
fine-tuning the model, evaluating the performance of current
parameters is required for refining the training strategy. (3)
Design Choices: The iterative testing of multiple design
options, such as layer-wise pruning rates, layer-wise mixed
precision configurations, and other hyperparameter choices.

To evaluate the diffusion model, prior research [15,21,37]
points out that the denoising loss does not necessarily re-
flect the generation quality. Therefore, existing evalua-
tion schemes estimate the image quality (e.g., FID [14],
IS [30], ImageReward [39]) over text annotations of existing
text-image datasets [20, 36] or manually-designed textual
dataset [16] (we refer them as “test prompts”). However, as

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16122

test prompts have a relatively large size (e.g., COCO [20]
47K, PicScore [16] 15K), the evaluation process has a signif-
icant computational burden.1 Iterative evaluations required
in the model design phase are thus impractical, and full set
evaluation is often only adopted in the final evaluation (e.g.,
in DALL-E [26] and Stable-Diffusion [27]). To circumvent
this challenge, the common practice is to randomly sam-
pling a smaller subset (e.g., 1K prompts in [7, 21]) for a
proxy evaluation. However, we find that such random sub-
sampling exhibits a poor accuracy-efficiency trade-off. In
Fig. 1, we use this approach to evaluate a model zoo with
various schedules. Even with 1000 samples, this approach
only achieves a rank correlation of 0.87 (value of 1 indi-
cates perfect correlation). More aggressive sub-sampling
(for more speed-up) would result in an acute drop in ranking
correlation and a large variation of results.

In this paper, we aim to improve the accuracy-efficiency
trade-off of diffusion evaluation by seeking “representa-
tive subsets” of the test prompts. Firstly, we systematically
explore the potential characteristics in representative sets.
Then, we design baseline search methods to validate these
characteristics and delve into the reasons for their failure
when dealing with small item sizes. We conclude that the
key issue leading to suboptimal search results is the inade-
quate exploration of the vast search space. Finally, inspired
by the evolutionary algorithm, we design an improved itera-
tive search algorithm on both the set and prompt levels. The
proposed FlashEval search method could effectively miti-
gate variance and improve evaluation quality under small
item sizes. Our acquired 50-item subset demonstrates a rank-
ing correlation comparable to that of a 200-item baseline-
acquired subset, and a randomly sampled 500-item subset.
We will release the condensed subsets of different sizes for
the commonly used datasets to assist researchers in selecting
the appropriate prompt quantity for evaluation. Addition-
ally, FlashEval could be used to search condensed evaluation
subsets for new datasets.

In summary, our contributions can be listed as follows:

• We identify the need to improve the accuracy-efficiency
trade-off of diffusion model evaluation and introduce
the idea of identifying a representative subset to
speed up evaluation.

• We systematically investigate the potential properties
of representative sets and propose an improved search
method to effectively acquire representative subsets
even with small item size.

• We aim not to replace but to provide an accurate proxy
of the existing evaluation scheme. We hope that Fla-
shEval could assist researchers in selecting the proper

1For example, evaluating stable diffusion V1.5 on the whole COCO
dataset requires 60 GPU hours (RTX 3090).

prompt quantity, and help accelerate and facilitate the
broader diffusion algorithm design.

2. Related Work
Metrics for Text-to-Image Generation. The currently
widely used metrics are often on one or more of the fol-
lowing aspects: image fidelity, image-text alignment, and
image aesthetic. To assess fidelity, FID [14] and IS [30] are
commonly used metrics that measure the feature distance
between generated images and real images. CLIPScore [13]
is widely used to measure image-text alignment. It calculates
the similarity of features extracted from the image and text
domains by dedicated encoders, respectively. As for aes-
thetic, Schuhmann et al. [31] train a score predictor using a
dataset dedicated to aesthetics to facilitate evaluations.

To better align metric scores with human preference, re-
cent methods perform manual scoring for generated im-
ages and train a predictor capable of evaluating models.
PickScore [16] and HPS [38] generate two or more images
for a given prompt, enabling users to choose the best one.
ImageReward [39] involves users comprehensively consider-
ing both alignment and fidelity to assign explicit scores to
each image. We apply metrics for all the aspects mentioned
above, validating that FlashEval can be efficiently utilized to
assess various aspects of models.
Diffusion Model Evaluation Datasets. To comprehensively
evaluate Text-to-Image (T2I) models, there are currently var-
ious datasets available. Among them, the COCO validation
set [20] is one of the most widely used datasets [7,11,12,23].
In addition, to enhance benchmark precision, Saharia et
al. [29] conduct the first attempt to consider multiple evalu-
ation aspects and propose DrawBench, which contains 200
prompts specifically designed for evaluating T2I tasks. Cho
et al. [8] introduce PAINTSKILLS, an evaluative dataset
crafted to assess three essential visual reasoning skills: ob-
ject recognition, object counting, and spatial relationships.
Kirstain et al. [16] create a web app to build a large, open
dataset of T2I prompts and real users’ preferences over gen-
erated images. Chen et al. [7] utilize GPT to provide scores
and more detailed evaluative descriptions.

Recently, Bakr et al. [3] categorize different metrics and
design distinct datasets for each category, aiding users in
evaluating specific metrics more effectively. Similarly, Lee
et al. [18] craft different scenarios and propose various
datasets for each scenario. For any aforementioned datasets
that are too large to evaluate efficiently, FlashEval can be
applied to enhance the efficiency of evaluating models.
Training/Test Set Selection. There is a category of methods
called "coreset selection" that accelerates the model training
process by choosing subset from the training data, which
aim to retain challenging examples in the subset [4, 22, 40].
Depending on the implementation, they can be categorized
into two types: supervised learing [10, 24, 34] and unsuper-

16123

vised learning [6, 32, 33]. For supervised learning methods,
it is common to assess each example during the training
process to decide whether it should be included in the subset.
Toneva et al. [34] track how often each example is forgotten
during training. They assume that those forgotten less often
have a smaller impact on the final results. Paul et al. [24]
believe examples with high training loss should be retained,
which indicate difficulty in learning. They train for only a
few epochs for filtering, aiming to reduce the cost of subset
selection. Unsupervised methods often select subsets based
on clustering results. Ozan et al. [33] argue that examples
farther from the centroid present greater learning challenges
and should be retained. Sorscher et al. [32] use the K-center
to find a diverse cover for active learning.

There are also some approaches that intend to reduce
testing cost and do unbiased evaluation with unlabeled test
dataset. Kossen et al. [17] actively select examples to be
labeled by learning a surrogate model that directly predict
losses at all data. Deng [9] obtain the transformed images
and labels from training data to train a regression model
for predicting scores of unlabeled data. Unlike them, our
method wants to find the subset that are representative of the
entire validation dataset. Recent work by [35] attempts to
obtain the subset for evaluating language models. To best
of our knowledge, we are the first to identify representative
subset to accelerate evaluation for T2I models.

3. Problem Formulation
In this section, we provide a brief overview of the prob-

lem formulation for “identifying a representative subset”
that has a good accuracy-efficiency trade-off. We choose the
application scenario of ranking a variety of models (which
is typically the case in the examples in Sec. 1), and use the
ranking correlation for measuring the evaluation quality.
More specifically, we consider a set of models Nm models:
M = {Mi|i ∈ {1, . . . , Nm}} (with diverse model architec-
tures, parameters, solvers, and/or step sizes). Given a dataset
P = {pi|i ∈ {1, ..., N}} of size N , we aim to find a repre-
sentative subset P̂ = {pi|i ∈ I} of item size N ′ with index
list I = {i1, ..., iN ′} that maximizes the evaluation quality.
For single-image evaluation metrics (e.g., CLIPScore, HPS,
ImageReward), the metric score of prompt pi for model Mj

is described by Sij . We use the averaged metric scores on the
entire textual dataset as the “ground-truth performance” of
certain model Ŝj =

∑N
i=1

1
N Sij . For multiple-images met-

rics (e.g., FID), we use the full set evaluation as ground-truth.
We adopt Kendall’s Tau (KD) [2] to measure the ranking
correlation, which is computed as follows. Let’s denote the
ground-truth metric and the approximated metric (computed
using P̂) as x1, ..., xNm

and y1, ..., yNm
. For each pair of

models Mi and Mj , we denote them as a concordant pair
if xi < xj and yi < yj , or xi > xj and yi > yj (i.e., they
have a consistent ranking). Similarly, we denote them as

a discordant pair if xi < xj and yi > yj , or xi > xj and
yi < yj . Among all pairs of models, we count the number
of concordant and discordant pairs as Nc and Nd, respec-
tively. Furthermore, we define n1 as the number of pairs
that have a tie only in the ground-truth metric (i.e., xi = xj

and yi ̸= yj), and n2 as the number of pairs that have a tie
only in the approximated metric. Here, metric equivalence is
deemed if the difference between values is smaller than a cer-
tain threshold, which is determined by the 3 times standard
deviation across the scores of 50 randomly generated images
from the same model. Given the values of Nc, Nd, n1, and
n2, KD is computed as

Nc −Nd√
(Nc +Nd + n1)(Nc +Nd + n2)

, (1)

4. Methods
In T2I tasks, we can identify subsets from both the tex-

tual feature space and image metric space. In this section,
we systematically investigate the potential properties of the
representative subsets in the two spaces. Then, we design
baseline methods to use these properties and analyze the
reasons for their failure under smaller item sizes. Finally, we
present an improved search algorithm that addresses such
issues in Sec. 4.2.

4.1. Baseline Approaches for Subset Selection

A straightforward way of identifying the representative
subset is by seeking samples that cover the entire dataset in
terms of categories (Baseline 1) or distribution (Baseline 2)
in the textual feature space following previous methods [32,
41]. However, abundant experiments in the appendix show
that relying solely on textual features is not adequate for
identifying the representative subset.

Therefore, we turn to examine the characteristics of the
direct metric scores of generated images (image-based met-
rics). We propose to directly optimize the ranking corre-
lation, and design search-based algorithms on the set and
prompt level and validate their effectiveness on relatively
medium-sized subsets. However, for smaller subset sizes
like 10-50, their identified subsets exhibit significant vari-
ance and may yield poor performance. We further analyze
the reasons for their failure.

Baseline 3: KD-based random search algorithm. To
identify a representative set, we introduce a straightforward
KD-based random search algorithm. There are two units
for searching—set-wise search and prompt-wise search. For
set-wise search, the fundamental search unit is “set”. The
process involves sampling a large number of (e.g., 1 million)
subsets randomly from the entire dataset P , and then iden-
tifying the subset P̂ that yields best KD. For prompt-wise
search, the fundamental search unit is “prompt”. We find
the top K prompts with the highest KD to identify the rep-
resentative subset with K prompts. We randomly split the

16124

Methods Type
N ′ = 10 N ′ = 100

Train Test Train Test

RS - 0.355 0.346 0.706 0.692

B3-set
Image

Metrics

0.827 0.603 0.925 0.800
B3-prompt 0.822 0.610 0.914 0.764

Ours 0.934 0.796 0.966 0.867

Table 1. Comparisons of the Kendall’s Tau of CLIP-Score for
subsets acquired by FlashEval and baseline methods. The “RS”
represents sampling N ′ prompts randomly from dataset.

 Initialize the Population
Population: All prompts

 Evolutionary Operations
(e.g. Mutation, Crossover)

Construct random subsets
from current population

Prompt Set Sampled Subsets

 Fitness Evaluation

Sort subsets based on KDs

 Population Update

Select top K percent of prompts
appear most in top-KD sets

Selected Prompts that appear most frequently:

Updated Population: Top prompts

Output: Representative Subset Search Result

1st: 2nd: 3rd:

Prompt-1

Prompt-2

Prompt-3

Subset

GT Ranking:

Model-A Model-B Model-C

1st 2nd 3rd

3rd 2nd 1st

1st 2nd 3rd

2nd 3rd 1st

2nd 1st 3rd

1 Wrong
Model-Pair

1 Wrong
Model-Pair

ALL Wrong
Model-Pair

0 Wrong
Model-Pair

-

Model A Model B Model C

Metric Scores.

Figure 2. Illustration of the reasons for baseline-3’s failing
under small item sizes N ′. When combining multiple prompts
with standalone high KD, the set-wise KD is lower.

model zoo to be ranked as training/testing, and adopt the
above mentioned search on the training models.

Results for KD-based search. As could be seen from
Tab. 1, the results of prompt-wise search (brief for “B3-
prompt”) and set-wise search (brief for “B3-set”) achieve
better results than RS. When N ′ = 100, the searched subset
achieves a KD of 0.75-0.8 on test set, whereas when N ′ =
10, the KD is worse (≈0.6).

Analysis of why B3-prompt failed. For “B3-prompt”,
we conduct detailed analysis for searched prompt and com-
posed set. When combining multiple prompts with stan-
dalone high KD, the set-wise ranking KD notably decreases.
As shown from the toy examples in Fig. 2: the prompt-1,2,3
have high standalone KD (rank one or none of the models
wrong), but the combined subset have low KD (rank all
model wrong). It reveals that searching the top prompts and
combining them may not produce the optimal subset.

Analysis of why B3-set failed. Based on the analysis
above, the set-wise search might be a better approach be-
cause it takes the interference between prompts into consid-
eration. However, the improvement of set-wise search over
prompt-wise search is marginal even on the training set as
shown in Tab. 1. We attribute such a phenomenon to the
insufficient exploration of the search space. Take N ′ = 10
as example, the complete search space of constructing 10

 Initialize the Population
Population: All prompts

 Evolutionary Operations
(e.g. Mutation, Crossover)

Construct random subsets
from current population

Prompt Set Sampled Subsets

 Fitness Evaluation

Sort subsets based on KDs

 Population Update

Select top K percent of prompts
appear most in top-KD sets

Selected Prompts that appear most frequently:

Updated Population: Top prompts

Output: Representative Subset Search Result

1st: 2nd: 3rd:

Prompt-1

Prompt-2

Prompt-3

Subset

GT Ranking:

Model-A Model-B Model-C

1st 2nd 3rd

3rd 2nd 1st

1st 2nd 3rd

2nd 3rd 1st

2nd 1st 3rd

1 Wrong
Model-Pair

1 Wrong
Model-Pair

ALL Wrong
Model-Pair

0 Wrong
Model-Pair

-

Model A Model B Model C

Metric Scores.

Figure 3. Illustration of FlashEval search method. Inspired by
the evolutionary algorithm, we design an iterative search algorithm
on both the set- and prompt-level.

prompts from 40,504 text annotations (COCO dataset), the
search space size is C10

40504, which is impractical to traverse
through. Even we construct numerous subsets (i.e. 1M), it is
still restricted compared with the enormous search space size.
Therefore, an improved search algorithm with enhanced sam-
ple efficiency is required to generate representative subsets.

4.2. FlashEval Search Method

As discussed above, the prompt-wise search is efficient
but results in suboptimal subsets because it doesn’t consider
interactions between prompts. The set-wise search considers
the interactions but suffers from insufficient exploration of
enormous search space. The key problem is to improve the
sample efficiency of set-wise searching. In light of the prior
that well-performing prompts are more likely to construct
well-performing sets, we propose to utilize the prompt-level
information to provide guidance for the set-level search.
Inspired by the evolutionary algorithms [1, 5], we design
an iterative search method on both the prompt and set level.
We provide an overall introduction to the workflow of our
method in Sec. 4.2.1. Then, we elaborate on our frequency-
based filtering method in Sec. 4.2.2. The detailed description
of FlashEval search algorithm flow is listed in Algo. 1.

4.2.1 Set- and Prompt-level Iterative Filtering

The flowchart of the typical evolutionary algorithm and our
FlashEval search method is presented in Fig. 3. Firstly, an ini-
tial population containing candidate solutions is generated.
Then, the “recombination” process employs evolutionary
operators (e.g., mutation, crossover) to generate new indi-
viduals (offspring) from existing ones, which will be the
new population. After that, the fitness of each individual

16125

Algorithm 1: FlashEval Search Algorithm
Input: Whole textual dataset P = {pi|i = 1, ..., N}, The
train split of the model zooMtrain, the number of candidate
subsets to rank Nset, the number of iterations Niter, keep
ratio of prompts Kp, keep ratio of sets Ks;
Ouput: Representative subsets P̂ of size N ′;
Get the model ranking Rgt on P;
// Initialize the population
Initialize P ′ ← P;
for i← 1 to Niter do

for j ← 1 to Nset do
// Evolutionary Operations
Construct random subset Pj ∼ P ′ of size N ′, get
its model ranking Rj onMtrain;

Calculate KDj values between Rj and Rgt;

// Fitness Evaluation

Sset ← subsets among {Pj}Nset
j=1 with top Ks percent

of KD;
// Population update
Sprompt ← top Kp percent of prompts that appear most

frequently in Sset;
Update candidate prompt set P ′ ← Sprompt;

Construct subsets {Pj}Nset
j=1 of size N ′ from P ′;

return P̂ with best KD in {Pj}Nset
j=1

in the population is evaluated based on a pre-defined ob-
jective. Furthermore, based on the fitness values of each
individual, a selection is applied to filter subpar individuals
to acquire the updated population. Such process is repeated
until convergence and the last population is acquired.

Inspired by the process of the evolutionary method, we
design an iterative search on both the set- and prompt-level
as presented in Alg. 1. We treat the well-performing prompts
as the “population”, and use the entire text annotations as
initialization. For each iteration, we construct a large num-
ber of subsets with the prompts within the population P ′.
It could be viewed as the “recombination” process. Then,
the generated subsets (offspring) are evaluated using the KD
value as the “fitness”. A novel frequency-based prompt “se-
lection” scheme is designed to effectively distinguish promis-
ing prompts. The population is updated after the selection
process and used in the next iteration. The search algorithm
progressively filters the redundant subpar prompts and sig-
nificantly enhances the search space exploration efficiency,
and acquires top-performing subsets with low variance.

4.2.2 Frequency-based Prompt Selection

An effective “population update” (or prompt selection) is cru-
cial for the success of the search method. As shown in Fig. 2,
the selected prompts should avoid such corner cases whose
standalone KD is high, but interfere with each other, leading
to poorly performing subsets. We aim to seek prompts that

satisfy the property of “when combined with any other
prompts within the population, it has a higher probabil-
ity of achieving high KD”. With the intention of that, we
design a frequency-based prompt selection method that se-
lects prompts that appear most frequently in top-performing
subsets. In the top-performing sets from a large variety of
constructed subsets, the most frequently appearing prompts
are likely to satisfy the desired property. The prompts se-
lected this way exhibit high standalone KD, and retain high
KD when randomly combined.

5. Experiments
5.1. Experimental Details

Dataset. We conducted our experiments on two widely
used large-scale datasets: COCO validation dataset (i.e.,
val2014) [20] and DiffuisonDB dataset [36]. In COCO, each
image corresponds to several prompts. We randomly select
one for each image to result in 40,504 prompts. DiffusionDB
contains 2 million prompts, divided into 2,000 parts. In each
part, we uniformly select samples, resulting in a total of
5,000 prompts for our experiments.

Metric setting. We adopt five popular evaluation metrics.
Specifically, FID [14], CLIP [25], and Aesthetic [31] are
employed to assess three distinct aspects including image
fidelity, alignment, and aesthetic. ImageReward [39] and
HPS [38]) are utilized for evaluating human preference.

Model zoo setting. We construct 78 model config-
urations from the StableDiffusion Models [27] to form
the model zoo by considering multiple perspectives. The
model zoo comprises 12 variant models (v1.2, v1.2-
6bit quant, v1.2-8bit quant, v1.4, v1.5, small-v1.5, v2.1,
dreamlike-photoreal, v1.4-6bit quant, v1.4-8bit quant, v1.5-
6bit quant, v1.5-8bit quant) and 8 schedules (DDIM-10step,
DDIM-20step, DDIM-50step, PNDM-10step, PNDM-
20step, PNDM-50step, DPM-10step, DPM-20step). Quan-
tization models are based on the q-diffusion [19] frame-
work, which encompasses both the DDIM and DPM solvers.
For each model, we maintain consistency by fixing seed=0
and guidance scale=7.5 to ensure fairness in ranking across
models. This model zoo covers various scenarios discussed
in Sec. 1 where users want to evaluate and compare diffu-
sion models, including (1) parameter tuning, such as tuning
training iterations/datasets (v1.2, v1.4, v1.5, and dreamlike-
photoreal are from different training iterations/datasets of
the same model), (2) schedule selection, and (3) validating
design choices (e.g., quantization).

5.2. Comparison to Baseline Methods

We design three sub-tasks based on the composition of
different models to validate the effectiveness of FlashEval
across various settings. Furthermore, to ensure applicabil-
ity in diverse scenarios, the representative subset needs to

16126

models item size N ′=50 N ′=500

methods \sub-tasks random model variants schedulers random model variants schedulers

Train

RS 0.607±0.000 0.594±0.000 0.632±0.000 0.857±0.000 0.858±0.000 0.857±0.000
B3-prompt 0.900 0.909 0.862 0.895 0.917 0.872

B3-set 0.895±0.002 0.912±0.002 0.894±0.002 0.971±0.002 0.970±0.001 0.966±0.002
Ours 0.956±0.004 0.969±0.004 0.960±0.004 0.984±0.003 0.986±0.003 0.978±0.003

Test

RS 0.597±0.000 0.588±0.000 0.560±0.000 0.829±0.000 0.826±0.000 0.827±0.000
B3-prompt 0.729 0.784 0.810 0.805 0.822 0.851

B3-set 0.750±0.014 0.680±0.021 0.721±0.013 0.875±0.007 0.836±0.008 0.863±0.008
Ours 0.851±0.004 0.800±0.008 0.850±0.005 0.906±0.003 0.899±0.004 0.909±0.003

Table 2. Comparisons of the Kendall’s Tau of CLIP-Score on COCO dataset (the error bars are standard errors). B3-prompt only
requires finding prompts once, hence there’s no need to calculate standard errors. “Random”, “model variants”, “schedulers” are the three
sub-tasks mentioned in 5.2. The “RS” represents sampling N ′ prompts randomly from dataset.

models item size N ′=5 N ′=100

methods \sub-tasks random model variants schedulers random model variants schedulers

Train

RS 0.395±0.000 0.307±0.000 0.413±0.000 0.730±0.000 0.721±0.000 0.755±0.000
B3-prompt 0.819 0.725 0.820 0.879 0.843 0.920

B3-set 0.839±0.003 0.827±0.003 0.833±0.002 0.935±0.002 0.924±0.001 0.933±0.002
Ours 0.908±0.004 0.891±0.004 0.897±0.006 0.966±0.002 0.968±0.002 0.967±0.003

Test

RS 0.350±0.000 0.423±0.000 0.323±0.000 0.763±0.000 0.681±0.000 0.738±0.000
B3-prompt 0.520 0.266 0.657 0.752 0.683 0.806

B3-set 0.643±0.031 0.516±0.033 0.601±0.018 0.826±0.010 0.792±0.018 0.836±0.014
Ours 0.789±0.009 0.691±0.011 0.748±0.014 0.851±0.007 0.861±0.007 0.873±0.007

Table 3. Comparisons of the Kendall’s Tau of CLIP-Score on DiffusionDB dataset (the error bars are standard errors).

 ImageReward

item size

item size

 K
D

va
lu

e
 K

D
va

lu
e

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 HPS

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

 Aesthetic

item size

 K
D

va
lu

e

item size

 K
D

va
lu

e

FID

(a) Train

(b) Test

Figure 4. Comparisons with Baseline3 of the Kendall’s Tau of different metrics on COCO dataset for “Random” sub-task. The red,
green, and blue dots respectively represent ours with 100 items, B3-set with 200 items, and random sample with 500 items.The shaded area
are standard errors. The complete comparison results on the two datasets are in the appendix.

possess the ability to generalize across different models. In
this regard, we split the model zoo with different partition-
ing strategies to obtain training models for searching and
testing models for assessing generalization capabilities for

each sub-task. The three partitioning ways are as follows:
random split, across model variances (different architec-
tures and parameters for training and testing models), across
schedules (different solvers and step sizes for training and

16127

testing models). The detailed strategies are in the appendix.
FastEval finds subsets with better accuracy-efficiency

trade-off. We conduct comparisons with the previously men-
tioned baseline approaches on each metric for every sub-task.
For the sake of fair comparison, we ensure that the search
space for each method, i.e., the total number of candidate
subsets, remains consistent (N = 107). In addition, each
set-based search algorithm is executed 10 times to compute
standard errors. Due to FID is only applicable to the evalua-
tion of two distributions and cannot evaluate a single image,
it does not support prompt-based searches. Therefore, we
just compare FlashEval with set-based methods for FID.

From Tab. 2 and Tab. 3, we can observe that FlashEval
can easily achieve KD values around 0.9 on training models
when the number of prompts is relatively low. FlashEval
surpasses all methods with equal search space, particularly
evident when the item size is small. FlashEval at N ′ = 100
performs comparably to B3-set at N ′ = 200 (Red and green
dots in Fig. 4-(a)) across all metrics. For prompt-based
method, as the number of items in the subset increases, the
KD values do not improve, which validates our hypothesis in
Sec. 4.1 that prompt-based method is not suitable for search-
ing representative subset. In addition, Fig. 4-(a) shows that
the commonly used random sampling strategy’s performance
drops notably below 500 items (especially on FID).

FlashEval generalizes across diverse model setting. We
aim for users to utilize the representative set directly on the
new models. Thus, we test the generalization performance
of FlashEval on test models across three sub-tasks. We find
that FlashEval’s set with N ′ = 5 surpasses the average KD
values of randomly selected sets with N ′ = 100 on Diffu-
sionDB (Tab. 3). Moreover, the N ′ = 50 set identified by
FlashEval is on par with the randomly selected N ′ = 500 set
on COCO (and Tab. 2). As depicted in Fig. 4-(b), FlashEval
exhibits superior generalization across all metrics compared
to the baseline methods. Additionally, it notably excels when
the representative set has a limited number of prompts. The
dots in Fig. 4 also signify that our method achieves com-
parable performance with N ′ = 50 compared to B3-set’s
N ′ = 200 and random sampling’s N ′ = 500 even for un-
seen models. Furthermore, the standard error of FlashEval is
relatively smaller compared to B3-set, indicating its higher
robustness and stability.

5.3. Use Cases of FlashEval

To validate the practicality of FlashEval, we present two
examples of downstream use cases here.
Application A: Model selection from different versions. Ex-
periment settings: We adopt a 10-item RS and FlashEval
to rank 44 testing models, and the full set (40K) averaged
ImageReward is used as ground truth. We illustrate the supe-
riority of FlashEval using 3 variants of SD1.5 (with DDIM
solver & 20 steps) in testing models: dreamlike (fine-tuned),

set small-sd1.5 weight-8bit dreamlike

RS-10 item (KD=0.286) 20 28 25
Ours-10 item (KD=0.761) 34 23 3

Ground Truth 39 25 4

Table 4. The ranking of three models among 44 testing models.

time step

 Im
ag

eR
ew

ar
d

Sc
or

e

15

Figure 5. The evolution of model scores (sd1.5, DPM solver)
with increasing steps.

small-sd1.5 (reduce params), and weight-8bit (quantized).
Result: Tab. 4 provides specific rankings for 3 models. Fla-
shEval with significantly higher KD (0.761) not only reason-
ably predicts that the dreamlike is better than small-sd1.5 but
also accurately ranks the two efficient models (small-sd1.5,
weight-8bit) that are not intuitively comparable. However,
RS failed in both scenarios.
Application B: Given a model & solver, the performance
increase saturates as steps increase. Identifying the “saturate
point” is vital for striking good performance-efficiency trade-
off. Experiment settings: We search the “saturate point”
by observing that the score remains relatively unchanged in
several steps. Result: Fig. 5 shows that FlashEval identifies
an accurate saturation point (15) matching ground truth (15).
In contrast, RS fails to find a saturation point in 20 steps due
to continuous performance fluctuations.

5.4. Analysis

5.4.1 Ablation Studies

Effectiveness of frequency-based selection. To vali-
date the impact of frequency-based selection, the algorithm
is modified by selecting prompts with higher KD values,
instead of choosing prompts based on their frequency.

As shown in Tab. 5, the results are worse than FlashEval,
especially on testing models. In addition, the gap is larger
when N ′ = 10, further illustrating the effectiveness of the
frequency-based selection module when N ′ is small.

Effectiveness of iterative filtering. As shown in Tab. 5,
our algorithm demonstrates significantly superior perfor-
mance on both the training and testing models even with-
out iterative filtering compared to the average performance
achieved through random selection. In addition, from Fig. 6,
it is evident that with an increase in the number of iterations,
the KD values of the representative set steadily increase. In
each iteration, the KD values of the filtered set are consis-
tently lower than those of selected set. The results validate
our algorithm’s iterative process of gradually filtering out

16128

Methods N’=10 N’=100

Train Test Train Test

RS 0.355 0.142 0.706 0.692

Ours (w/o FS) 0.876 0.640 0.953 0.760
Ours (w/o IF) 0.821 0.667 0.839 0.812

Ours 0.934 0.796 0.966 0.867

Table 5. Comparison of ablation experiments of CLIP-score
on COCO dataset. “Ours (w/o FS)” is our algorithm without
frequency-based selection, “Ours (w/o) IF” is our algorithm without
iteration filtering.

(a). ranking train models (b). ranking test models
iteration iteration

 K
D

va
lu

e

 K
D

va
lu

e

Figure 6. The change in KD values as the algorithm progresses
through iterations (N ′ = 50, CLIP-Score, COCO, random split).

relatively inferior prompts in each iteration.

5.4.2 Consistent Superiority of FlashEval

A high KD value may arise from the correct ranking of only
some specific positions (e.g. only the ranking of bottom
models are correct). In such a scenario, a high KD value is
irrelevant for users aiming to select the top model. We add
two criteria to verify that FlashEval consistently outperforms
RS, rather than focusing on correct ranking at specific posi-
tions: (1) Top-K Ranking: KD of the true top-K models.
(2) Top-K Proportion: the proportion of true top-K models
in predicted top-K models. Tab. 6 shows that FlashEval
consistently outperforms RS across Ks.

5.4.3 Search Cost of FlashEval

The search of FlashEval is a one-time cost; the subset found
by FlashEval can be used in all evaluations of the same
dataset. Here, we aim to further reduce this one-time search
cost for identifying the representative set for a new dataset.

Assume that user has a new dataset of size Nall, and we
aim to identify a representative set N ′ of Nall. The main
computational cost of FlashEval is to evaluate the scores
of Nall samples against all models in the model zoo. As
shown in Sec. 5.2, random sampling shows poor accuracy
with small item size. However, when the number of items is
large enough, it is still a cheap approach to achieve reason-
able accuracy. Inspired by this observation, we propose the
following two-step approach: To find N ′, we first randomly
select a Neval subset (N ′ < Neval < Nall) and treat it as

Top-K Top-K Ranking Top-K Proportion

RS Ours RS Ours

K = 5 0.400 0.800 40% 80%
K = 10 0.520 0.810 50% 80%
K = 20 0.458 0.793 55% 95%

Table 6. Results of 10-item subsets obtained by RS and Ours
for various K values. The total number of testing models is 39.

�푒푣�� �푒푣��

KD
 v

al
ue

(a). ranking train models (b). ranking test models

KD
 v

al
ue

Figure 7. The variation of KD values with the increase in Neval

(N ′ = 50, CLIP-Score, COCO, random split).

the ground-truth when running FlashEval. This approach
reduces the one-time cost fromO(Nall) toO(Neval). Neval

is the critical parameter that controls the trade-off between
search efficiency and accuracy. On one hand, Neval should
not be too small, as otherwise, it is not representative enough
for the true ranking of models (Sec. 5.2). On the other hand,
when Neval is larger, this approach provides less speed-up
compared to the vanilla FlashEval.

To validate the searched set’s effectiveness, we compare
the ranking results of N ′ with the rankings of Nall. As
depicted in Fig. 7, when reducing Neval to 5000, there is no
significant decrease in the results. In addition, the trade-off
in Fig. 7 illustrates the relationship between search cost and
performance, aiding users in making their own choices.

6. Conclusion
In this paper, we identify the excessive cost and subopti-

mal quality-speed trade-off of the current diffusion model
evaluation. We propose to address the issues by identifying
representative subsets to condense the evaluation datasets
and designing a search method to solve the challenging task.
Extensive experiments demonstrate the effectiveness and
generalization capability of the representative sets identi-
fied by FlashEval. We hope that FlashEval can assist re-
searchers in selecting an appropriate prompt quantity in dif-
fusion model evaluation, and help accelerate and facilitate
the broader diffusion algorithm design.
Acknowledgements. This work was supported by National
Natural Science Foundation of China (No. 62325405, 62104128,
U19B2019, U21B2031, 61832007, 62204164), Tsinghua EE Xil-
inx AI Research Fund, and Beijing National Research Center for
Information Science and Technology (BNRist). We thank for all
the support from Infinigence-AI.

16129

References
[1] Evolutionary algorithm. https://en.wikipedia.

org/wiki/Evolutionary_algorithm. 4
[2] Hervé Abdi. The kendall rank correlation coefficient. En-

cyclopedia of Measurement and Statistics. Sage, Thousand
Oaks, CA, pages 508–510, 2007. 3

[3] Eslam Mohamed Bakr, Pengzhan Sun, Xiaogian Shen,
Faizan Farooq Khan, Li Erran Li, and Mohamed Elhoseiny.
Hrs-bench: Holistic, reliable and scalable benchmark for text-
to-image models. In ICCV, pages 20041–20053, 2023. 2

[4] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets
via bilevel optimization for continual learning and streaming.
NeurIPS, 33:14879–14890, 2020. 2

[5] Thomas Bäck. Evolutionary algorithms in theory and prac-
tice - evolution strategies, evolutionary programming, genetic
algorithms. Oxford University Press, 1996. 4

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. NeurIPS,
33:9912–9924, 2020. 3

[7] Yixiong Chen. X-iqe: explainable image quality evaluation
for text-to-image generation with visual large language mod-
els. arXiv preprint arXiv:2305.10843, 2023. 2

[8] Jaemin Cho, Abhay Zala, and Mohit Bansal. Dall-eval: Prob-
ing the reasoning skills and social biases of text-to-image
generation models. In ICCV, pages 3043–3054, 2023. 2

[9] Weijian Deng and Liang Zheng. Are labels always neces-
sary for classifier accuracy evaluation? In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 15069–15078, 2021. 3

[10] Vitaly Feldman and Chiyuan Zhang. What neural networks
memorize and why: Discovering the long tail via influence
estimation. NeurIPS, 33:2881–2891, 2020. 2

[11] Jiayi Guo, Chaoqun Du, Jiangshan Wang, Huijuan Huang,
Pengfei Wan, and Gao Huang. Assessing a single image
in reference-guided image synthesis. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages
753–761, 2022. 2

[12] Jiayi Guo, Chaofei Wang, You Wu, Eric Zhang, Kai Wang,
Xingqian Xu, Humphrey Shi, Gao Huang, and Shiji Song.
Zero-shot generative model adaptation via image-specific
prompt learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11494–
11503, 2023. 2

[13] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation metric
for image captioning. arXiv preprint arXiv:2104.08718, 2021.
2

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
NeurIPS, 30, 2017. 1, 2, 5

[15] Dongjun Kim, Seung-Jae Shin, Kyungwoo Song, Wanmo
Kang, and Il-Chul Moon. Soft truncation: A universal training
technique of score-based diffusion model for high precision
score estimation. In ICML, 2021. 1

[16] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Ma-
tiana, Joe Penna, and Omer Levy. Pick-a-pic: An open
dataset of user preferences for text-to-image generation. arXiv
preprint arXiv:2305.01569, 2023. 1, 2

[17] Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Thomas
Rainforth. Active surrogate estimators: An active learning
approach to label-efficient model evaluation. Advances in
Neural Information Processing Systems, 35:24557–24570,
2022. 3

[18] Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai,
Joon Sung Park, Agrim Gupta, Yunzhi Zhang, Deepak
Narayanan, Hannah Benita Teufel, Marco Bellagente, et al.
Holistic evaluation of text-to-image models. arXiv preprint
arXiv:2311.04287, 2023. 2

[19] Xiuyu Li, Long Lian, Yijiang Liu, Huanrui Yang, Zhen
Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.
Q-diffusion: Quantizing diffusion models. ICCV, 2023. 5

[20] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 1, 2, 5

[21] Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and
Yu Wang. Oms-dpm: Optimizing the model schedule for
diffusion probabilistic models. ICML, 2023. 1, 2

[22] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
Coresets for data-efficient training of machine learning mod-
els. In ICML, pages 6950–6960. PMLR, 2020. 2

[23] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 1, 2

[24] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dz-
iugaite. Deep learning on a data diet: Finding important
examples early in training. NeurIPS, 34:20596–20607, 2021.
2, 3

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 5

[26] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, pages 8821–
8831. PMLR, 2021. 2

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 2, 5

[28] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,
Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael
Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language
understanding. NeurIPS, 35:36479–36494, 2022. 1

[29] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li,
Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael

16130

Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language
understanding. NeurIPS, 35:36479–36494, 2022. 2

[30] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. NeurIPS, 29, 2016. 1, 2

[31] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes,
Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al.
Laion-5b: An open large-scale dataset for training next gener-
ation image-text models. NeurIPS, 35:25278–25294, 2022.
2, 5

[32] Ozan Sener and Silvio Savarese. Active learning for convo-
lutional neural networks: A core-set approach. ICLR, 2018.
3

[33] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Gan-
guli, and Ari Morcos. Beyond neural scaling laws: beating
power law scaling via data pruning. NeurIPS, 35:19523–
19536, 2022. 3

[34] Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during
deep neural network learning. ICLR, 2018. 2, 3

[35] Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela.

Anchor points: Benchmarking models with much fewer ex-
amples. arXiv preprint arXiv:2309.08638, 2023. 3

[36] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang
Yang, Benjamin Hoover, and Duen Horng Chau. Diffusiondb:
A large-scale prompt gallery dataset for text-to-image genera-
tive models. ArXiv, abs/2210.14896, 2022. 1, 5

[37] Daniel Watson, Jonathan Ho, Mohammad Norouzi, and
William Chan. Learning to efficiently sample from diffu-
sion probabilistic models. ArXiv, abs/2106.03802, 2021. 1

[38] Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hong-
sheng Li. Better aligning text-to-image models with human
preference. arXiv preprint arXiv:2303.14420, 2023. 2, 5

[39] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai
Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward:
Learning and evaluating human preferences for text-to-image
generation. arXiv preprint arXiv:2304.05977, 2023. 1, 2, 5

[40] Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover
and relabel: Dataset condensation at imagenet scale from a
new perspective. arXiv preprint arXiv:2306.13092, 2023. 2

[41] Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,
Dongze Lian, Yifan Zhang, Yang You, and Jiashi Feng.
Dataset quantization. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 17205–
17216, 2023. 3

16131

