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Abstract

Model stealing (MS) involves querying and observing the
output of a machine learning model to steal its capabilities.
The quality of queried data is crucial, yet obtaining a large
amount of real data for MS is often challenging. Recent
works have reduced reliance on real data by using gener-
ative models. However, when high-dimensional query data
is required, these methods are impractical due to the high
costs of querying and the risk of model collapse. In this
work, we propose using sample gradients (SG) to enhance
the utility of each real sample, as SG provides crucial guid-
ance on the decision boundaries of the victim model. How-
ever, utilizing SG in the model stealing scenario faces two
challenges: 1. Pixel-level gradient estimation requires ex-
tensive query volume and is susceptible to defenses. 2. The
estimation of sample gradients has a significant variance.
This paper proposes Superpixel Sample Gradient stealing
(SPSG) for model stealing under the constraint of limited
real samples. With the basic idea of imitating the victim
model’s low-variance patch-level gradients instead of pixel-
level gradients, SPSG achieves efficient sample gradient es-
timation through two steps. First, we perform patch-wise
perturbations on query images to estimate the average gra-
dient in different regions of the image. Then, we filter the
gradients through a threshold strategy to reduce variance.
Exhaustive experiments demonstrate that, with the same
number of real samples, SPSG achieves accuracy, agree-
ments, and adversarial success rate significantly surpassing
the current state-of-the-art MS methods. Codes are avail-
able at https://github.com/zyl123456aB/SPSG attack.

1. Introduction
Machine Learning as a Service (MLaaS), enhances effi-
ciency in both work and daily life [17, 30, 32, 53]. These in-
valuable MLaaS models have become targets for malicious
users to steal. Model Stealing (MS) [3, 4, 27, 28, 33, 40, 44–
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46, 48, 51, 52] involves constructing a proxy model similar
to the victim model by acquiring query results of input sam-
ples. Beyond the direct utilization of the proxy model, mali-
cious users can also generate a series of attacks based on the
proxy model and transfer them to the victim model, includ-
ing membership inference attacks [36], adversarial attacks
[54], and model inversion attacks [11], etc.

The basic paradigm of MS is to construct a sample at-
tack set and train a proxy model through the samples in the
attack set and the corresponding query results of the vic-
tim model. Data-free MS is based on generative networks
and uses noise to synthesize artificial images for the train-
ing of the proxy model. Although data-free MS claims that
real samples are not needed, in practical applications that
require high-dimension samples, data-free MS still has the
inevitable real sample demand. As shown in Table 1, on
the one hand, high-dimensional inputs would significantly
increase the query volume for data-free MS. For color im-
ages of 224x224 pixels, the query volume for data-free MS
could reach tens of millions. On the other hand, due to
the inherent risk of model collapse in GANs [14], train-
ing proxy models with data-free MS is prone to failure. By
giving data-free MS a small amount (10k to 20k) of real
samples related to the domain of the victim model as image
priors, data-free MS can reduce the query cost and model
collapse risk and improve the stealing effect. However, ac-
quiring high-quality real samples that meet specific MLaaS
requirements is challenging. Different MLaaS have varying
requirements for input images, and blurred input images can
distort MLaaS query results. Privacy and copyright protec-
tions further complicate the acquisition of high-quality real
samples. Additionally, even with a plethora of real sam-
ples, the marginal benefit of each real sample for improving
the proxy model diminishes as the cardinality of real sam-
ples increases. Therefore, expensive real samples should be
fully utilized.

To make full use of each real sample, our idea is to obtain
more information about the model from real samples. How-
ever, for black-box models, it is challenging to obtain other
types of information to train proxy models. For example, all
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Table 1. Results of data-free MS without using real samples and with using 10k domain-relevant real samples. Results are queries, real
samples, the failure times, and test accuracy (in %), of each method with querying probability. The failure times are determined by the
number of model collapses observed over 10 training runs. we report the other average result computed over 10 runs. The training strategies
and experimental configurations used are described in the experimental section 4. (1k=1000)

Data-free MS(probability) CUBS200(0) Indoor67(0) CUBS200(10k) Indoor67(10k)
queries failures accuracy queries failures accuracy queries failures accuracy queries failures accuracy

ZSDB3KD [46] 5183k 3 48.72 5771k 4 51.77 1202k↓ 2↓ 51.47↑ 1112k↓ 2↓ 59.41↑
DFMS [33] 4987k 2 51.28 4771k 2 55.21 1021k↓ 1↓ 55.21↑ 1009k↓ 0↓ 61.11↑
EDFBA [52] 1623k 2 51.46 1792k 1 56.27 459k↓ 0↓ 55.61↑ 349k↓ 0↓ 61.17↑
DS [4] 4310k 3 50.26 4291k 2 54.21 1077k↓ 1↓ 54.97↑ 1021k↓ 1↓ 60.27↑
DFME [40] 4102k 2 48.82 4671k 2 52.78 1489k↓ 1↓ 52.31↑ 1339k↓ 1↓ 58.71↑

Figure 1. The columns from left to right are grad-CAM [34], grad-
CAM++ [6], Smooth-gradCAM [26], X-gradCAM [12], layer-
CAM [20], and SG-map. The neural network is ResNet34 pre-
trained on ILSVRC-2012.

feature maps from the intermediate layers of the black-box
model [19, 22, 29, 49] are unknowable. Our focus shifts
to the input of the model, specifically, the Sample Gradi-
ent (SG) backpropagated from the model’s output layer to
the input sample. SG is used to assist in generating the in-
terpretability heat map of the model in many interpretabil-
ity works. Actually, SG itself contains a lot of model in-
terpretability decision information. As shown in Figure 1,
we compare the heat map generated by average pooling SG
with other CAM methods, and we can see that SG fully
reflects the model’s decision. However, the obstacles for
imitating sample gradients in MS include: (1) The most
primitive method to obtain sample gradients involves per-
turbing each pixel individually and acquiring query results
for all perturbed images, a process with enormous query
costs. Specially, obtaining sample gradients for a single im-
age requires over a hundred thousand queries. Furthermore,
inputting perturbed images at the pixel level into the victim
model is akin to inputting adversarial images, which could
be easily detected and thwarted by defense mechanisms like
Prada [21]. (2) Sample gradients have significant variance
due to certain specific or redundant neurons backpropagat-
ing. Then, we introduce a novel SuperPixel [1, 9, 42] Sam-
ple Gradient Model stealing (SPSG) to solve the issues.
SPSG comprises two modules: superpixel gradient query-

ing (SPGQ) and sample gradient purification (SGP). For is-
sue (1), SPGQ module first segments the image into multi-
ple superpixels based on a segmentation algorithm. Then,
it applies perturbations to these superpixels and queries the
output to obtain the sample superpixel gradients. For is-
sue (2), SGP module eliminates significant variance from
the sample gradients by filtering extremum information and
normalizing, ensuring the extraction of clean and useful gra-
dient information. Then, purified superpixel gradients are
associated with the pixel gradients of the proxy model to
train proxy models.

Our contributions are enumerated as follows:
• We design SPSG to extract the maximum amount of avail-

able model information from each real sample. The su-
perpixel querying module significantly reduces the query
volume required to acquire the tacit knowledge in one
sample gradient from 106 to 102 while simultaneously
evading defenses like Prada [21]. Meanwhile, the gra-
dient purification module effectively removes noise from
the sample gradients. The effectiveness of the gradient
purification module is further validated through ablation
experiments.

• Through various experiments, SPSG enables the proxy
model to achieve accuracy, agreement, and attack suc-
cess rate substantially surpassing state-of-the-art algo-
rithms with the same number of real samples. Specifi-
cally, when stealing a resnet34 model trained on CUBS-
200 using 20,000 real samples, SPSG achieves an accu-
racy of 61.21% and an agreement of 67.48%, significantly
outperforming the second-best method with an accuracy
of 56.39% and agreement of 58.44%. To match the ac-
curacy achieved by SPSG with 10,000 real samples, the
second-best method requires at least 20,000 real samples.

2. Related work

2.1. Sample Gradient

Sample gradients, obtained through the backpropagation of
a model’s final loss function, depend on the parameters and
structure of the neural network. They are primarily used in
adversarial training and model interpretability.

Adversarial Training Based on Sample Gradients. By
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introducing small perturbations along the direction of sam-
ple gradients, new samples capable of deceiving the model
can be generated. Techniques like FGSM [24] are sensitive
to the sign of sample gradients, whereas FGM [15] normal-
izes the gradients. PGD [5] and FreeAT [35] implement
multiple iterations with smaller step sizes on sample gra-
dients, keeping the perturbations within a specified range.
YOPO [50] reduces gradient calculation costs by leverag-
ing the network’s structure, with perturbations related only
to the first layer. FreeLB [55] accumulates gradients during
training, giving perturbations a more directional tendency.

Model Interpretability Based on Sample Gradi-
ents. Techniques like ”Saliency Map” [37] create saliency
maps by calculating gradients of input images to high-
light the model’s focus areas in image classification
tasks. Guided Backpropagation [39] helps understand the
decision-making process and the features learned by each
convolutional layer. GRAD-CAM [34] and SmoothGrad
[38], while not directly using sample gradients, generate
heatmaps using feature map gradients to show the focused
image areas. [10] proposes a method for explaining black-
box models through input perturbations, generating inter-
pretability masks to illustrate the model’s focus areas.

2.2. Superpixel Segmentation

Superpixels were introduced to create image over-
segmentation based on similarity criteria. Algorithms like
SLIC [2] efficiently generate superpixels by clustering pix-
els in a five-dimensional color and image plane space. Sub-
sequent methods [9, 42] have improved superpixel segmen-
tation.

2.3. Model Stealing

Data-Free Model Stealing. Data-free model stealing tech-
niques [3, 4, 33, 40, 44, 46, 51, 52] do not require any orig-
inal training data. Attackers generate synthetic queries, of-
ten through prior knowledge or assumptions about the data
distribution, to probe the model and reconstruct its function-
ality. All data-free model stealing (MS) inevitably draws on
the concept of Generative Adversarial Networks (GANs).
Therefore, there is an unavoidable risk of model collapse.
Given that the querying cost required for a single instance
of model theft is quite high, a collapse during the extraction
process would further increase the querying costs. Addi-
tionally, since the training and querying phases in data-free
MS are coupled, each training of a proxy model requires a
new round of queries, which also increases the query vol-
ume.

Data-Driven Model Stealing. Data-driven model steal-
ing attacks [27, 28, 45], utilize real data, allowing for all
attack set samples to be queried before training the proxy
model. Therefore, it is not necessary to query the victim
model again with each training of a new proxy model. The

real samples can be domain-irrelevant to the victim model.
Although domain-relevant real samples can achieve cer-
tain improvements in the effectiveness of the theft, domain-
irrelevant real samples are more commonly used. Data-
driven MS can also further refine the selection of real sam-
ples based on information from the training process of the
proxy model to enhance the stealing effect.

3. SuperPixel Sample Gradient Model Stealing

3.1. Overview

In the fundamental paradigm of offline Model Stealing
(MS), MS begins with the construction of a query set com-
prising all input samples and their corresponding query re-
sults. Subsequently, this pre-assembled query set is utilized
to train different proxy models. SPSG, falling under the
category of offline MS, mainly encompasses two distinct
modules: SuperPixel Gradient Query (SPGQ) and Sample
Gradient Purification (SGP), as shown in Figure 2. SPGQ
is designed for the assembly of the query set. In addition to
acquiring the predictive probabilities or hard labels for each
sample’s output, SPGQ is also adept at obtaining superpixel
gradients for each sample at a low query cost, while simul-
taneously circumventing adversarial attack monitoring. On
the other hand, SGP is employed for the training of the
proxy model. Within this module, the superpixel sample
gradients from the query set undergo a denoising process.
This process ensures the retention of the extremal portions
of the superpixel gradients across each channel of the im-
age. Based on every superpixel range filtered by the vic-
tim model, the pixel gradients of the proxy model are av-
eraged to obtain the simulated superpixel gradients. In the
final stage, we introduce a novel loss function that estab-
lishes a connection between simulated superpixel gradients
and their ground-truth. Through this connection, the proxy
model is effectively trained, culminating in a comprehen-
sive and robust offline MS framework.

3.2. SuperPixel Gradient Query

For black-box models, the finite difference method for cal-
culating pixel gradients of input images is a primitive yet
effective approach. The finite difference method estimates
gradients by applying a small perturbation to the input sam-
ple and observing the resultant output changes. Finite dif-
ference includes forward difference, central difference, and
backward difference. In this paper, we default to using the
forward difference. Specifically, for an input sample x and
a small perturbation ε, an approximation of the gradient for
each pixel i in channel c = 1∨2∨3 can be calculated using
the following formula:

qci =
∂f

∂x
≈ f(x+ ε · eci )− f(x)

ε
(1)
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Figure 2. Four steps of SPSG. The first step is to obtain superpixel gradients and query results through SGPQ. The second step involves
acquiring pixel gradients and output logits of the proxy model through backpropagation on the input sample. The third step is to obtain
purified superpixel gradients and simulated superpixel gradients of the proxy model using SGP. The fourth step involves updating the proxy
model based on the loss function. The gray arrow represents the direction from input to output.

Here, ε must be sufficiently small to capture the function’s
variations at x, yet not too small to avoid numerical preci-
sion issues. In this paper, the value of ε is set to 1e − 5. ei
is a standard basis vector with only the i-th pixel in chan-
nel c as 1. However, pixel-level forward differences re-
quire one perturbed query per input dimension, rendering
this method computationally expensive in high-dimensional
input spaces. In addition, MLaaS can track and store a se-
ries of pixel-level perturbed images of the input. Under nor-
mal circumstances, the pairwise distance between queried
images with the same label follows a Gaussian distribution.
However, with the addition of tiny perturbations, the pair-
wise distance no longer follows a Gaussian distribution and
tends to an extreme distribution. Prada [21] can detect such
changes in distribution and outputs a noisy prediction result
upon detection of change.

Therefore, we propose SuperPixel Gradient Query
(SPGQ), whose core idea is to extend the pixel-level for-
ward difference to the superpixel level. Superpixels are a
concept in image processing and computer vision, referring
to the technique of combining similar pixels into a unified
region or cluster. Each superpixel Pj =

⋃Nj

i pi contains ad-
jacent pixels pi of Nj number, similar in color, brightness,
texture, or other attributes. SPGQ performs forward dif-
ferences on three different channels of each superpixel in-
dependently. For all pixels within the same channel of each

superpixel, the same disturbance is added: Ec
j =

Nj∑
i

eci . The

victim model is queried to calculate the difference and ob-
tain an approximate gradient:

gcj =
∂f

∂P c
j

≈
f
(
x+ εEc

j

)
− f (x)

ε
(2)

Since a superpixel typically contains 900 or more pixels
within a channel, perturbing all these pixels will not pro-
duce an extremely small pairwise distance, which would
not affect the Gaussian distribution of the queried images.
Thus, superpixel queries can circumvent Prada attacks.

3.3. Sample Gradient Purification

Sample gradients have a significant variance, and numer-
ical discrepancies between different models can be inher-
ited through the backpropagation process, manifesting in
the sample gradients. superpixel gradient also has the same
drawbacks. Hence, we have formulated a Sample Gradient
Purification Mechanism to mitigate the interference from
variance and other extraneous factors.

Concerning the gradient of every queried superpixel
channel Gc =

⋃J
j gcj , we initially perform a denoising op-

eration. The core objective of denoising is to preserve the
extreme values of the sample gradients, eliminating non-
extreme gradient values, as the extreme portions encapsu-
late the focal points of the model. Additionally, due to the
divergent implications of positive gradients (indicating fa-
cilitation of the loss function) and negative gradients (in-
dicating impediment), it becomes imperative to indepen-
dently execute denoising operations on the sets of posi-
tive and negative gradients. We commence by calculating
the extreme values of every channel’s positive and nega-
tive gradients: gc+ = max

(
gcj ∈ {gcj |gcj ≥ 0}

)
and gc− =

max
(
gcj ∈ {gcj |gcj < 0}

)
. The filtered gradients are given

by:

Gc
+ = {gcj |gcj > βgc+} Gc

− = {gcj |gcj < βgc−} (3)

In Equation 3, β is a predefined hyperparameter within

24319



the range 0 < β < 1, typically set to 0.5
by default. The Discarded gradient set (Gc)

′
={

gcj |gcj ≤ βgc+
}⋃{

gcj |gcj ≥ βgc−
}

, is assigned the value of
zero. Simultaneously, to avert inheriting numerical dis-
crepancies from the models and potential exaggeration or
diminution of gradient values due to gradient explosion or
vanishing, normalization of the filtered sample gradients is
requisite. The normalization operation is as follows:

Gc
+ =

{
gcj
gc+

|gcj ∈ Gc
+

}
Gc

− =

{
gcj
gc−

|gcj ∈ Gc
−

}
(4)

The gradient values closer to 1 signify a higher degree of fa-
cilitation or impediment of the model’s loss function at that
particular pixel position. Following denoising and normal-
ization, we obtain the purified sample gradients.

The role of SGP is crucial. We demonstrate the effective-
ness of SGP’s purification in the subsequent ablation study
Section 4.7.

3.4. Objective Function for Training

After obtaining the superpixel level gradient of an image
in the victim model fv , the proxy model fs cannot directly
mimic and learn the dark knowledge of the superpixel gra-
dient. Firstly, we use a function similar to the one used for
training the victim model to calculate the sample pixel gra-
dients of the proxy model. Regardless of whether the query
result is hard labels or probabilities, we use a cross-entropy
function similar to that used in training the victim model to
calculate the sample gradients for the proxy model :

f(y, p) = − log(yp) (5)

For equation 5, y is the proxy model’s K-dimensional vec-
tor output. p is the victim model’s predicted label. There-
fore, for the pixel-level gradients Q =

⋃J
j

⋃Nj

i qi =
∂f (y, p)/∂x obtained through backpropagation in the
white-box proxy model, we adopt a mean coverage method
to obtain the same format of the simulated-superpixel gra-
dient. Specifically, based on the superpixel partition of the
victim model, we take the mean of all pixel gradients within
the same superpixel in the proxy model, replace the original
pixel gradients, and obtain the simulated superpixel gradi-
ent:

Q′ =
⋃J

j

⋃3

c

{∑Nj

i qci
Nj

|pci ∈ Pj

}
(6)

Our ultimate objective function or loss function consists
of Lgrad and initial Lprob. For hard-label query mode (giv-
ing top-1 probability ŷ and predicted label p) and probabil-
ity query mode (giving K-dimensional probability ŷ), Lprob

is different:

Lprob (y, ŷ) =

{
−yp • log (ŷ)− log(yp) if of hard-label
−
∑K

k (yk) • log (ŷk) if of probability
(7)

Our gradient loss function Lgrad is set in two parts: the first
part ensures similarity in the gradient values for each super-
pixel, and the second part ensures similarity in the overall
gradient of the sample. For the first part, fv and fs hav-
ing similar gradients for each superpixel is equivalent to the
query results of the image with the perturbed superpixel be-
ing similar. Define xc

j = x + εEc
j and Gc

all = Gc
+

⋃
Gc

−.
Then, we can get:

Lgrad,1 =
∑J

j

∑3

c

(
Lprob

(
fs

(
xc
j

)
, fv

(
xc
j

))
|gcj ∈ Gc

all

)
(8)

For the second part, we need to calculate the cosine similar-
ity between G and Q′:

Lgrad,2 = 1− cos (G,Q′) (9)

Based on Lgrad = Lgrad,1+Lgrad,2, the final loss func-
tion of the victim model is:

L = Lprob (fs (x) , fv (x)) + Lgrad (10)

Through this objective function, the proxy model can ef-
fectively mimic the SG knowledge of the victim model. We
document the visual changes of the simulated superpixel SG
of the proxy model during the training process in Supple-
mentary Material.

4. Experiment
4.1. Experiment Setup

Victim Model. We employ four datasets used in Knock-
off for our experimentation: Caltech256 (256 classes)
[16], CUB-200-2011 (200 classes) [43], Indoor Scenes (67
classes) [31], and Diabetic Retinopathy (5 classes) [7]. For
Diabetic Retinopathy, we strip 200 images from the training
set for each category, forming a test set that in total contains
1000 images. A resnet34 [18] model trained on these four
datasets serves as our victim model. The training proce-
dure for the victim model mimics that of Knockoff’s victim
model. Specifically, the model is trained for 200 epochs
using an SGD optimizer with a momentum of 0.5 and an
initial learning rate of 0.1 that decays by a factor of 0.1
every 60 epochs. The well-trained victim model is avail-
able for download at Knockoff Code. The victim model has
achieved accuracies of 78.4%, 77.1%, 76.0%, and 59.4% on
the datasets mentioned sequentially above.

Baseline and Attack Dataset. Baselines are categorized
based on the necessity of real data. Data-free baselines in-
clude DFME [40], DS [4], DFMS [33], EDFBA [52], and
ZSDB3KD [46], while Knockoff [27], ActiveThief [28],
Black-Box Dissector [45], and InverseNet [13] are Data-
driven baselines that require real data. Notably, DFMS,
EDFBA, ZSDB3KD, DS, Black-Box Dissector, inverseNet,
ActiveThief, and Knockoff remain functional even when
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Table 2. The agreement (in %), test accuracy (in %), and queries of each method with querying probability or hard label. For our model,
we report the average result as well as the standard deviation computed over 10 runs. (Boldface: the best value.)

Method (probability) CUB200 (10k) CUB200 (15k) CUB200 (20k)
Agreement Acc Queries Agreement Acc Queries Agreement Acc Queries

ZSDB3KD 51.47 49.32 1202k 52.31 50.67 1098k 55.33 53.08 1021k
DFMS 55.21 53.19 1021k 57.41 55.36 1003k 58.44 55.98 1007k
EDFBA 55.61 53.12 459k 57.67 55.69 451k 58.12 55.72 451k
DS 54.97 53.98 1077k 57.86 55.71 1021k 57.04 56.39 997k
DFME 52.31 50.17 1489k 53.01 51.27 1344k 55.27 53.18 1311k
SPSG(Ours) 60.71±0.51 55.47±0.23 132k±0.01k 65.98±0.34 59.34±0.52 195k±0.01k 67.48±0.21 61.21±0.11 271k±0.01k

Method (probability) Indoor(10k) Indoor(15k) Indoor(20k)
Agreement Acc Queries Agreement Acc Queries Agreement Acc Queries

ZSDB3KD 59.41 58.37 1112k 63.61 63.07 988k 67.13 65.08 977k
DFMS 61.11 60.12 1009k 64.58 62.26 993k 68.14 67.18 972k
EDFBA 61.17 60.42 349k 64.17 62.12 311k 67.10 64.72 302k
DS 60.27 59.98 1021k 62.12 61.78 1010k 66.04 65.91 982k
DFME 58.71 58.17 1339k 60.21 59.26 1294k 66.27 64.16 1209k
SPSG(Ours) 58.81±0.11 57.99±0.13 137k±0.01k 64.98±0.34 63.34±0.12 181k±0.01k 70.11±0.21 70.27±0.11 267k±0.01k

Method (probability) Caltech256 (10k) Caltech256 (15k) Caltehch256 (20k)
Agreement Acc Queries Agreement Acc Queries Agreement Acc Queries

knockoff 51.47 49.32 10k 52.31 50.67 15k 55.33 53.08 20k
ActiveThief 55.21 53.19 10k 57.41 55.36 15k 58.44 55.98 20k
Black-Box Dissector 55.61 53.12 150k 57.67 55.69 220k 58.12 55.72 300k
InverseNet 56.19 55.32 150k 57.79 55.82 220k 58.73 56.74 300k
SPSG(Ours) 60.71±0.51 55.47±0.23 132k±0.01k 65.98±0.34 59.34±0.52 185k±0.01k 70.21±0.21 63.21±0.11 271k±0.01k

Method (probability) Diabetic5(10k) Diabetic5(15k) Diabetic5(20k)
Agreement Acc Queries Agreement Acc Queries Agreement Acc Queries

knockoff 31.12 29.32 10k 34.43 32.17 15k 39.56 38.17 20k
ActiveThief 32.21 31.19 10k 35.32 34.61 15k 38.14 37.18 20k
Black-Box Dissector 34.81 33.27 150k 36.10 36.27 220k 40.22 39.86 300k
InverseNet 35.67 34.02 150k 36.81 36.01 220k 41.12 40.16 300k
SPSG(Ours) 36.12±0.31 35.25±0.12 122k±0.01k 38.13±0.27 37.24±0.12 179k±0.01k 42.14±0.21 41.27±0.11 278k±0.01k

Method (hard-label) CUB200 (10k) CUB200 (15k) CUB200 (20k)
Agreement Acc Queries Agreement Acc Queries Agreement Acc Queries

ZSDB3KD 24.45 23.56 1299k 26.33 26.01 1098k 31.31 29.78 931k
DFMS 26.21 25.11 1331k 29.31 28.33 1003k 31.24 30.18 939k
EDFBA 25.34 23.54 559k 27.61 26.43 490k 31.12 30.72 431k
DS 24.56 23.53 1237k 27.34 26.78 1191k 30.64 29.78 902k
knockoff 21.11 19.27 10k 24.49 22.76 15k 26.33 25.92 20k
ActiveThief 23.21 22.89 10k 26.55 25.16 15k 27.18 26.96 20k
Black-Box Dissector 25.91 23.57 150k 27.43 26.26 220k 31.59 30.46 300k
InverseNet 26.01 24.07 150k 26.93 26.12 220k 31.43 30.97 300k
SPSG(Ours) 26.78±0.16 25.42±0.23 132k±0.01k 29.97±0.34 29.84±0.52 195k±0.01k 34.66±0.21 34.12±0.19 271k±0.01k

the query results are hard labels. For CUB-200-2011 and
Indoor Scenes, we conduct comparisons in data-free MS.
Even though data-free MS does not necessitate real data,
we employ publicly available, potentially related real im-
ages as weak image priors for the generator for fairness in
comparison. Specifically, for Indoor Scenes, We use indoor
scene images from SUN [47], which are distinct from In-
door Scenes categories. For CUB-200-2011, We utilize bird
images whose classes are included in NAbird [41] but not
present in CUB. In Caltech256 and Diabetic Retinopathy,
comparisons are made for Data-driven MS. Among them,
the number of queries for InverseNet and Black-Box Dis-
sector is not determined by the number of real samples. To
ensure fairness, we set the query volume for these two meth-
ods slightly higher than that of SPSG. ILSVRC-2012 [8]
training set, consisting of approximately 12 million images,
serves as our attack dataset in Data-driven MS. Moreover,
we ensure the consistency of real samples across different
methods.

Training Paradigm and Evaluation Metrics. Train-

ing paradigms are categorized based on the usage of data
generators. Generally speaking, only data-free MS necessi-
tates the use of a generator. Under the generator paradigm,
the Generator is configured as BigGAN and trained using
Adam with a learning rate of 0.001, β1 = 0.5, and β2 =
0.999. The batch size of BigGAN is 128. For data-driven
MS, proxy models are trained from scratch on the attack
dataset using SGD with a momentum of 0.5, a learning rate
of 0.01 (decaying by a factor of 0.1 every 60 epochs), 200
epochs, and a batch size of 64. Evaluation is based on the
accuracy of the proxy model on the corresponding test set
and the similarity in predictions between the proxy and vic-
tim models. We also report the success rate of adversarial
attacks on the victim model as indicators of the transferabil-
ity of the proxy model. The superpixel segmentation for our
method defaults to quickshift [42].

4.2. Experiment Results with Data-free MS

We evaluate the accuracy and agreement of the proxy mod-
els generated by data-free baselines and our algorithm under
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scenarios with 10k, 15k, and 20k real samples. As illus-
trated in Table 2, our method almost outperforms all other
MS methods across both metrics. While the performance
of data-free MS plateaus with increasing numbers of real
samples, our method demonstrates less pronounced dimin-
ishing returns. Additionally, we document the query vol-
ume required by all algorithms. Our method’s query vol-
ume is determined by the number of queries consisting of
an image and its perturbed versions using different super-
pixels, whereas the query volume for data-free MS depends
on when the model converges. Our method requires signifi-
cantly fewer queries than data-free MS, with our query vol-
ume being approximately 25% of that required by the most
efficient data-free MS. Notably, despite the use of weak im-
age priors, DFMS and ZSDB3KD sometimes fail to train,
severely limiting their practical applicability.

4.3. Experiment Results with Data-driven MS

We assess the accuracy and agreement of the proxy mod-
els generated by SPSG and other data-driven MS meth-
ods under scenarios with 10k, 15k, and 20k real samples.
As shown in Table 2, while our method does not min-
imize query volume, it yields substantial improvements.
The marginal effects of data-driven MS are not pronounced
across the 10k to 20k real samples range. Consequently, we
observe the performance across a broader range of real sam-
ple numbers (100k-200k), finding that our algorithm con-
sistently outperforms others in terms of accuracy. Specifi-
cally, as shown in Figure 3 and 4, at 140k real samples for
Diabetic Retinopathy, Knockoff achieves its peak accuracy
of 54.7%, whereas our algorithm surpasses this accuracy at
130k real samples.

4.4. Experiment Results in Hard-label Query

We evaluate all algorithms functional under hard-label
queries, where the query not only returns the predicted label
but also the associated confidence. We argue that providing
users with the confidence associated with the predicted la-
bel is more practical for MLaaS. Despite high confidence
not necessarily equating to accuracy, low confidence allows
users to disregard the model’s prediction. Table 2 presents
our results on CUB-200-2011, showcasing our algorithm’s
superiority with 10k or more real samples.

4.5. Transferability of Adversarial Samples

We assess the transferability of adversarial samples gener-
ated on CUBS-200-2011 test set. The evaluation encom-
passes the success rates of adversarial attacks generated
from different methods (FGSM, BIM, PGDK), with a per-
turbation bound of ε=10/255 and a step size of α=2/255.
The adversarial attacks in our experiments are untargeted
attacks. In untargeted attacks, adversarial samples are gen-
erated only on images correctly classified by the attacked

model. As Table 3 demonstrates, the adversarial samples
generated by our proxy model exhibit higher transferability
to the victim model, affirming the practical applicability of
our method in real-world scenarios.

Table 3. The ASR(in %) of MS methods with different adversarial
attacks on CUB200. (Boldface: the best value.)

Method CUBS200 (hard-label) CUBS200 (probability)
FGSM BIM PGD FGSM BIM PGDk

ZSDB3KD 21.31% 23.62% 23.58% 37.64% 37.10% 39.21%
DFMS 24.34% 22.93% 21.22% 35.22% 34.33% 36.11%
EDFBA 24.21% 23.72% 25.51% 37.88% 39.09% 38.51%
DS 25.21% 28.77% 23.51% 37.88% 39.09% 39.51%
knockoff 21.31% 24.77% 22.51% 35.12% 36.71% 37.57%
ActiveThief 24.34% 26.77% 27.52% 37.88% 36.02% 36.29%
Black-Box Dissector 24.91% 26.57% 26.41% 37.21% 36.11% 36.46%
InverseNet 24.86% 26.76% 27.22% 38.03% 37.21% 37.47%
Ours 25.47% 29.03% 29.31% 38.21% 39.43% 39.68%

Table 4. The agreement (in %) and test accuracy (in %) of different
segment methods on CUB-200-2011.

Method CUBS200 (hard-label) CUBS200 (probability)
agreements accuracy agreements accuracy

quickshift (132k) 26.78% 25.42% 60.71% 55.47%
felzenszwalb (1871k) 30.34% 28.93% 63.22% 59.33%
slic (371k) 29.21% 27.72% 62.28% 58.09%
Grid (2700k) 12.31% 9.72% 21.68% 19.09%

4.6. Model Stealing in Real-World Scenarios

We trained a model on the Oxford 102 Flowers dataset [25]
using the Microsoft Custom Vision [23] service and desig-
nated it as a black-box victim model. The ILSVRC-2012
dataset served as the attack dataset, with the inference re-
sults of the Oxford 102 Flowers test set used as the met-
ric. Hyperparameter settings were consistent with previ-
ous experiments. The victim model’s test accuracy was
86.34%. As Table 5 demonstrates, compared to the second-
best methods using 30k real samples, our method showed a
4.17% increase in test accuracy for the proxy model. This
result indicates that our method possesses stronger practical
applicability in real-world scenarios.

Table 5. Test accuracy of all baselines in Real-World Scenarios.

Method (probability) Real Sample Number
10k 15k 20k 25k 30k

KnockoffNets 58.45% 62.12% 66.48% 69.12% 74.50%
ActiveThief 60.90% 64.21% 68.51% 70.48% 75.24%
Black-Box Dissector 60.21% 64.27% 67.52% 69.88% 73.09%
SPSG 62.49% 65.93% 69.34% 71.37% 79.41%

4.7. Ablation Study

Resistance to Prada. We document the monitoring of the
finite difference query and SPGQ by Prada, represented by
the distribution of image distances. As shown in Figure
6, Finite difference queries are completely detectable by
Prada, exhibiting a significant deviation from the Gaussian
distribution. In contrast, superpixel queries initially have a
few detectable instances but subsequently evade detection
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Figure 6. The first and second row show the 1000k queries’ im-
age distance distribution for SPGQ and finite difference queries,
respectively.

entirely, with their image distribution closely aligning with
the Gaussian distribution.

Figure 7. The first row shows the superpixel SG heatmap for dif-
ferent segment methods, while the second row shows the purified
superpixel SG map for different segment methods.

Superpixel Segmentation. We employed the superpixel
gradients obtained through queries under quick-shift [42],
felzenszwalb [9], slic [1], and grid segmentation methods.
Experimental results in Table 4 indicate that the more su-
perpixels used, the more apparent the effect of model steal-
ing becomes. However, regardless of the number of grid

pixels divided, the grid segmentation method demonstrated
a poor stealing effect. This is attributed to the grid seg-
mentation’s disregard for image attributes such as texture
and color, which are closely associated with the model’s
decision-making process.

Impact of SGP. We conduct experiments on CUB-200-
2011 dataset to compare the performance of SPSG with-
out SGP and the complete SPSG. The experimental results
shown in Figure 5 reveal a significant degradation in the
effectiveness of SPSG when SGP is omitted. This decline
can be attributed to the retention of gradient variance, which
proves to be particularly detrimental to dark knowledge ex-
traction. In Supplementary Material, we further explore the
applications of SGP, including knowledge distillation.

5. Conclusion
SPSG significantly outperforms existing MS algorithms
across various datasets, demonstrating its effectiveness even
in hard-label query scenarios. The success of SPSG in ad-
versarial attacks showcases its practical utility, while its
capability to evade Prada highlights its stealthiness. In
essence, SPSG provides a novel approach to enhancing MS
performance by effectively mimicking additional informa-
tion from victim models. We hope our proposed method
will encourage proactive measures to protect models against
unauthorized access and theft.
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