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Abstract

As wearable cameras become more popular, an im-
portant question emerges: how to identify camera wear-
ers within the perspective of conventional static cameras.
The drastic difference between first-person (egocentric) and
third-person (exocentric) camera views makes this a chal-
lenging task. We present PersonEnvironmentNet (PEN), a
framework designed to integrate information from both the
individuals in the two views and geometric cues inferred
from the background environment. To facilitate research in
this direction, we also present TF2023, a novel dataset com-
prising synchronized first-person and third-person views,
along with masks of camera wearers and labels associ-
ating these masks with the respective first-person views.
In addition, we propose a novel quantitative metric de-
signed to measure a model’s ability to comprehend the re-
lationship between the two views. Our experiments re-
veal that PEN outperforms existing methods. The code
and dataset are available at https://github.com/
ziweizhao1993/PEN .

1. Introduction
Egocentric (first-person) computer vision has received in-
creased attention in the last few years, propelled by new
large-scale datasets [16, 41] and expanding capabilities of
Augmented Reality (AR) and Virtual Reality (VR) tech-
nologies [1, 26, 51], including devices such as head-
mounted displays and smart glasses. Egocentric vision re-
search includes a wide variety of problems such as action
recognition [43, 48], view synthesis [13, 29, 30], and tem-
poral alignment [43, 53].

In this work, we consider a relatively underexplored
task: identifying and segmenting people wearing first-
person (egocentric) cameras. Specifically, our objective is
to identify and segment camera wearers given a third-person
view of a scene and several first-person views indicating

*These authors contributed equally.

Figure 1. Problem definition: Given a third-person (exo) view
and one or more first-person (ego) views synchronized with the
third-person view, the objective is to predict the segmentation
masks of the camera wearers associated with the egocentric views.

their identity, synchronized with the third-person view, as
depicted in Fig. 1. This task is important for many applica-
tions in which multiple first- and third-person cameras are
in the same environment. For example, in immersive teach-
ing environments using virtual reality, a teacher may need to
promptly identify a student encountering a question within
their view. Similarly, in security scenarios, identifying a po-
lice officer in a surveillance camera becomes crucial when
their body camera detects anomalies.

This task poses unique challenges compared to conven-
tional identification or re-identification tasks, where a per-
son’s appearance is usually the key evidence [7, 54, 57].
First, the camera wearer’s appearance is not visible within
their own field of view (FOV). Second, the camera wearer’s
limited, forward-facing viewpoint may not align with the
exocentric camera’s FOV. In addition, the presence of the
camera wearer in the third-person view introduces occlu-
sions, further complicating the extraction of shared visual
cues.

While prior studies [14, 52] have explored related top-
ics, our task is different from them in several ways. First,
we do not rely on any information from previous frames.
Prior research [52] necessitates the use of such information
in two forms: the ground truth mask of the camera wearer in
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the preceding frame (referred to as the “pre-mask”) as well
as motion information in both the first-person view and the
third-person view in the form of optical flow. We find it un-
realistic to assume access to such information in many real-
world scenarios. This could be due to various reasons, such
as the unavailability of this information due to occlusions or
privacy concerns, the high cost of storing and accessing this
data, or the need for the model to run fully autonomously.

Second, prior work [14, 52] uses body-worn cameras as
“third-person” views. However, this does not accurately re-
flect the characteristics of real-world third-person cameras,
which typically have the capability to view an entire scene
from a higher vantage point.

Third, our research focuses on scenarios where multiple
camera wearers are present in the same scene. This requires
that our model not only identify who wears a camera but
also associates the camera wearer candidates with their re-
spective first-person views.

Modern computer vision backbones, such as Vision
Transformer (ViT) [11] and Swin Transformer [32], have
demonstrated the capability to effectively memorize the pat-
terns of camera wearer appearances, scene backgrounds,
and other cues in the third-person view. Consequently, as
we show, they can predict the identity of the camera wearer
in the largest existing dataset for this task (IUShareView
[52]) without relying on the first-person view, which should
be impossible. This suggests that the model is overfitting
to the third-person input. This observation emphasizes the
need for both a more complex and challenging dataset and
a method for quantifying the extent to which a model uses
information from the egocentric view, or conversely, how
much it overfits to the third-person input.

Our contributions can be summarized as follows:
• We present a new dataset, comprising synchronized first-

person and third-person views, accompanied by masks
corresponding to each camera wearer and other actors.
Our dataset surpasses the current state-of-the-art by two
orders of magnitude in terms of the total number of
frames and masks. Additionally, it is much more com-
plex in terms of actor interaction and the average number
of actors present in each scene.

• We introduce a novel quantitative metric (EgoRate), de-
signed to assess the degree to which a model leverages
information from the egocentric view.

• We propose a novel model that not only outperforms prior
work and baseline methods but also achieves a higher per-
formance on our introduced quantitative metric.

2. Related Work
Joint first and third video understanding. There has
been significant progress in bridging the gap between first-
person (egocentric) and third-person (exocentric) video un-
derstanding. Several studies have focused on relating vi-

sual representations across these two views to enhance var-
ious tasks. Interesting work includes considering both
first- and third-person views for understanding human ac-
tions [5, 15, 43, 46, 48, 49], generating first-person video
sequences from third-person views [13, 30, 31], temporal
alignment to identify the corresponding frame in different
views [43, 53], and retrieving the correct exocentric video
given an egocentric video query and vice versa [6, 39].
Work in robotics [27, 35] has investigated integrating ego-
centric and exocentric views to identify “action possibili-
ties” in objects and to enable precise robotic manipulation,
while [10, 50] study pose estimation that uses cross-view
information as a guide. Other work includes summariz-
ing first-person videos from third-person views [25], using
third-person data to improve egocentric vision models [28],
and using the predicted region of attention (ROA) of both
first- and third-person videos to guide co-segmentation [56].

Person identification and segmentation has been studied
using both egocentric and exocentric views, such as cross-
view matching involving a top-view camera [2–4, 18, 20–
22]. This camera setting provides less appearance informa-
tion but offers a better angle to overlook the entire scene.
Our research builds upon the task of identifying camera
wearers in a side-view third-person camera, as initially in-
troduced in [14, 52]. Fan et al. [14] take into account both
spatial and temporal information from both perspectives
and create a joint embedding space from first- and third-
person matches. Xu et al. [52] introduces a segmentation
task and runs person identification and segmentation con-
currently. Our methods overcome their limitation of requir-
ing information from past frames. In addition, we enhance
the framework to accommodate multiple camera wearers si-
multaneously in the same third-person view.

Cross-view matching. Cross-view matching involves
aligning and identifying the corresponding elements be-
tween different perspectives to improve spatial understand-
ing. Recent work has revolutionized feature point matching
with Graph Neural Network (GNN) and attention mecha-
nisms. SuperGlue [40] employs GNNs in processing key-
point descriptors from dual images, enhanced with posi-
tional encodings to distinguish similar patterns. LoFTR
[44] utilizes both self-attention and cross-attention to up-
date cross-view features, with additional improvements in-
troduced by [9]. Meanwhile, [8, 42] focus on improving
efficiency, while [12, 45] attempt to bridge the gap between
dense and sparse methods. GlueStick [38] jointly estab-
lishes correspondences between points and lines. In our
work, we choose GlueStick as the matching model between
first- and third-person views due to its superior performance
when compared to other available methodologies.

Egocentric and exocentric datasets. Ego4D [16] cap-
tures a wide range of daily activities around the world, en-
riched with densely narrated videos and a variety of annota-
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Figure 2. Overview of the PersonEnvironmentNet (PEN). Given a first-person (ego) view and a third-person (exo) view, the personal branch
analyzes the relationship of individuals. Concurrently, the environmental branch utilizes a matching model to understand geometric cues.
Finally, the outputs from the individual and environmental branches are integrated through feature fusion. The final score is a numerical
value ranging from 0 to 1, indicating the confidence score that the candidate mask is associated with the query first-person view.

tions. Ego-Exo4D [17] is a large scale video dataset with
synchronized egocentric and exocentric views. UTokyo
Ego-Surf [55] involves groups of two or three people wear-
ing cameras in both indoor and outdoor settings while en-
gaging in face-to-face conversations. IUShareView [14]
includes first-person videos with 3-4 participants perform-
ing everyday activities in various indoor settings. Elfeki et
al. [13] present a dataset containing 531 temporally aligned
egocentric and exocentric video pairs of an actor performing
a range of actions. Charades-Ego [43] encompasses a col-
lection of first- and third-person videos with temporal an-
notations and action classes, while Han [19] synchronizes
top and horizontal views and label subjects with bounding
boxes and ID numbers. Assembly101 [41] contains videos
of participants assembling and disassembling toy vehicles,
notable for its multi-view recordings. CvMHAT [23] con-
sists of synchronous drone-mounted cameras and multiple
horizontal-view cameras.

3. Methodology

Given the first-person (egocentric) view of one or more
camera wearers, our objective is to identify and segment
these individuals, as observed by a third-person camera po-
sitioned to capture the entire scene. Our work differs from
previous research [52] in multiple ways: Firstly, we have
eliminated the dependency of the camera wearer’s mask
in the previous frame (pre-mask), a condition not always
met in real-world scenarios. Pre-mask also gives the model
more information than necessary, given that the mask of the
same person typically undergoes minimal changes between
successive frames. Secondly, prior work [52] used one of
the two wearable cameras as the third-person view, limiting

each third-person view to only one camera wearer. In con-
trast, our task can have multiple camera wearers in the same
third-person view. This means that we cannot rely on a sim-
ple binary classification for each person to determine if they
are camera wearers. Instead, our methodology involves pre-
dicting a score for each candidate based on each first-person
view. Furthermore, our third-person camera configuration
more closely resembles typical real-world camera angles,
offering a comprehensive overview of the entire scene.

In this section, we first introduce a two-stream baseline
for this task (Sec. 3.1). Subsequently, we present a novel
model: PersonEnvironmentNet (PEN), which is comprised
of three modules: a personal branch (Sec. 3.2) that learns
the relationship between individuals in the two views, an
environmental branch (Sec. 3.3) designed to capture geo-
metric cues in the background environment, and a fusing
model (Sec. 3.4) that integrates information from the two
preceding branches.

3.1. Two-stream Baseline

First, we introduce a two-stream baseline for this task. This
design shares similarities with [52], but utilizes more recent,
transformer-based vision backbones. This baseline allows
us to demonstrate a traditional model design for this task
and evaluate other methodologies without the confounding
variable of backbone performance.

We apply two backbones (e.g., ViT), one dedicated for
first-person input, and the other one for third-person input,
as depicted in Fig. 3. We modify the first convolution layer
of the third-person ViT to accept 4-channel input, as ex-
plained below.

During training, the model is given combinations of a
third-person view, a first-person view, and a mask for a can-

16479



Figure 3. Structure and inference pipeline of the two-stream
baseline. Given a first-person (ego) view, a third-person (exo)
view, and a pool of candidate masks, the model selects the mask
with the lowest L2 distance between the output features.

didate in the third-person view. These combinations can
be either positive or negative; a positive combination sig-
nifies that the candidate’s mask corresponds to the camera
wearer whom the first-person view belongs to, while a neg-
ative combination indicates otherwise. To process these in-
puts, we start by concatenating the candidate’s mask with
the third-person input, creating a 4-channel input. Subse-
quently, the 3-channel first-person input and the 4-channel
third-person input are individually passed through their re-
spective backbones. Finally, we apply a contrastive loss on
the outputs,

Lcontrastive =
1

2N

N∑
i=1

y ·d2i +(1−y) ·max(α−di, 0)
2. (1)

Here N is the total number of elements in the output vec-
tors, di indicates the difference of the ith element between
the first-person output and the third-person output, and y
is a binary indicator variable that is 1 if the combination is
positive, and 0 if negative. α is a constant margin.

During inference, each mask candidate, in combination
with both the first-person view and the third-person view, is
fed into the two-stream model. The mask candidate with the
smallest L2 distance between the first-person output and the
third-person output is selected as the final prediction. The
structure and inference pipeline of the two-stream baseline
is shown in Fig. 3.

3.2. Personal Branch

While the two-stream baseline method implicitly learns the
connection between first-person and third-person perspec-
tives, it is vulnerable to overfitting on the third-person input.
To address this issue, we propose our novel model, Person-
EnvironmentNet (PEN). Our approach places greater em-
phasis on integrating cues from diverse sources between the
first-person and third-person viewpoints, thereby enhancing
overall performance and reducing the over-dependency on
third-person input.

Figure 4. Structure of the personal branch. Given a first-person
(ego) view, a third-person (exo) view, and a candidate mask, we
apply a Mask R-CNN to find individuals in the ego view and es-
tablish their connection to the candidate in the exo view.

To begin, we introduce a personal branch, as illustrated
in Fig. 4. The objective of this branch is to establish a con-
nection between the two views by identifying the individu-
als present in them. Our input configuration is the same as
the two-stream baseline, incorporating a first-person view,
a third-person view, and a candidate mask. During train-
ing, we first utilize a Mask R-CNN to generate masks and
extract all visible individuals from the first-person view. Si-
multaneously, we use the third-person view and the can-
didate mask to crop out the candidate in the third-person
view. Subsequently, we resize all extracted individuals to
the same size and pass them through the same ViT to ex-
tract their features. We then apply a multi-head attention
layer [47], which learns the relationship between the ap-
pearance of every individual in the first-person view of the
camera wearer and the appearance of the third-person can-
didate. This mechanism effectively captures the likelihood
of the candidate being able to see these individuals. The
result is then fed through a multi-layer perceptron (MLP)
head followed by a Sigmoid activation function. The final
output is a numerical value between 0 and 1, indicating the
confidence score that this candidate is associated with the
queried first-person view. Finally, we apply binary cross-
entropy loss (BCE loss) to the output, where a target value
of 1 denotes a positive combination and 0 for a negative
combination,

LBCE = −y · log(p) + (1− y) · log(1− p). (2)

In the above loss function, y denotes the target value as-
sociated with the combination, while p signifies the output
score generated by the personal matching branch.

3.3. Environmental Branch

Considering the motion-intensive characteristics of ego-
centric cameras, we find it important to explore multiple
sources of input. For instance, the camera wearer’s field of
view may encompass only a small subset of all candidates
visible in the third-person view. To augment the personal
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Figure 5. Structure of the environmental branch. Given a
first-person (ego) view, a third-person (exo) view, and a candidate
mask, the environmental branch applies GlueStick to match the
two views and infer geometric cues.

branch outlined in Sec. 3.2, we introduce a novel environ-
mental branch that leverages the information in the back-
ground environment from both first- and third-person views
to deduce geometric cues between the two perspectives.

To accomplish this, we first apply a matching network on
the two views. Specifically, we use GlueStick [38], which
applies an attention-based Graph Neural Network (GNN)
on a set of points, their associated descriptors, and a set of
line segments connecting these points.

Subsequently, we utilize the matched lines generated by
Gluestick to produce masks for both the first-person and
third-person views, with the line intensity representing con-
fidence. We also use the third-person view and the can-
didate mask to filter out the background of the third-person
view, retaining only the candidate, as shown in Fig. 5. Then,
we concatenate the two line masks and the filtered candi-
date along the channel dimension and apply a Vision Trans-
former (ViT) and a Multi-Layer Perceptron (MLP) head
with a Sigmoid activation function, similar to the structure
of the personal branch outlined in Sec. 3.2. The underlying
concept of this module is that the two line masks signify
which part of the third-person view the camera wearer can
perceive, while the filtered candidate denotes its pose and
location in the third-person view. The loss function of the
environmental branch follows Eq. (2), with p denoting the
output score of the environmental branch.

To enhance the training process, we involve the inclu-
sion of “ghost samples” for this task. This measure is par-
ticularly important when certain candidates appear exclu-
sively as either negative or positive candidates, where ‘al-
ways negative’ signifies a lack of an associated first-person
view, while ‘always positive’ indicates that they only appear
as camera wearers. Consequently, the model may learn to
predict these candidates by memorizing their appearances,
undermining the objective of understanding the relationship
between the first-person and third-person views. To address
this issue, we introduce “ghost samples” for these candi-
dates. These ghost samples have randomly generated masks

Figure 6. Adding “ghost samples.” When a candidate does not
have an associated positive combination or negative combination,
we generate a random mask with label 0.5 to discourage the model
from overfitting on the candidate’s appearance.

and are assigned a label of 0.5, signifying a state of nei-
ther positive nor negative. This action forces the model to
learn from the environmental cues (lines) rather than rely-
ing solely on the visual appearance of the candidates, as
visualized in Fig. 6.

3.4. Fusing Network

The two branches introduced in Sec. 3.2 and Sec. 3.3 both
exhibit limitations when operating independently. For in-
stance, the personal branch may struggle to gather sufficient
information to deduce relationships between the two views
when the Field Of View (FOV) of the first-person cam-
era lacks a sufficient number of individuals. Additionally,
disparities between the first-person and third-person views
present challenges for the environmental branch, as match-
ing networks such as Gluestick are designed to match views
with adequate shared FOVs. However, in the case of first-
person and third-person, the geometric disparity between
the two views can be too significant, causing the matching
network to fail. An extreme instance occurs when the cam-
era wearer is looking in the direction of the third-person
camera, resulting in a 180-degree difference and no shared
FOV between the two views.

To address these limitations, we introduce a fusing net-
work to capitalize on the information from both sources
harnessed by the two branches in the PEN model. This is
achieved by removing the MLP heads of the two branches,
concatenating their output features along the channel di-
mension, and applying a multi-head attention layer, fol-
lowed by an MLP head and Sigmoid activation. The fi-
nal output of the fusing network is a numerical value rang-
ing between 0 and 1, representing the confidence score that
the candidate mask is associated with the query first-person
view. We then apply the loss function in Eq. (2) on the out-
put of the fusing model. A visual representation of the full
PEN model is shown in Fig. 2.
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4. Experiments

First, we evaluated the two-stream baseline on IUShare-
View [52], the previously largest dataset available for this
task. We implemented the two-stream baseline with ViT
backbones using the PyTorch framework [37], and we
utilized pre-trained weights from TorchVision [36]. We
trained this baseline on IUShareView for a total of 100
epochs, with a batch size of 32, and an empirically set learn-
ing rate of 6 × 10−5. During inference, we provided the
model with combinations of a first-person view, a third-
person view, and several mask candidates provided by the
IUShareView dataset. Then we selected the mask candidate
with the minimal L2 distance between the outputs of the
first-person stream and the third-person stream. We evalu-
ated the performance using the accuracy metric from [52].

The two-stream baseline achieved an astounding 99.3%
accuracy. However, further investigation revealed that the
model did not truly capture the relationship between first-
and third-person as we hoped. Instead, it achieved this high
accuracy by overfitting solely to the third-person input.

In the context of this work, we define overfitting as the
scenario in which a model excels on familiar data (e.g.,
IUShareView) but fails to generalize to new observations
(e.g., real-world applications). This phenomenon often oc-
curs when a model memorizes specific patterns or biases in
the dataset, and may be challenging to detect through con-
ventional testing methods, as the testing set may share the
same dataset biases as the training sets.

To illustrate this issue, we introduce an evaluation mech-
anism that substitutes all first-person inputs with random
tensors generated from a normal distribution. The under-
lying concept is that if the model had truly learned the re-
lationship between first- and third-person perspectives, re-
placing the first-person input with random tensors would
lead to model failure, resulting in random guesses.

Furthermore, we propose a novel quantitative metric,
Egocentric Utilization Rate (EgoRate) to evaluate how
much a model utilizes information from the first-person
view,

EgoRate = 1− Accoverfit −Accguess
Acc−Accguess

. (3)

In the equation above, Acc represents the accuracy of the
normal test, Accguess denotes the accuracy of a random
guessing model, and Accoverfit signifies the accuracy of
the model when first-person inputs are replaced with ran-
domly generated tensors.

Essentially, EgoRate quantifies the extent to which per-
formance improvement, when compared to random guess-
ing, can be attributed to the model’s understanding of the
connection between first-person and third-person views. To
clarify, let’s consider two extreme scenarios.

• In the case of a model that entirely overfits on the third-
person input, meaning that it can identify the camera
wearer in the third-person view without utilizing any in-
formation from the first-person view, its overfit accuracy
matches the normal accuracy, resulting in an EgoRate of
0. This indicates that the model’s performance is solely
achieved by overfitting on the third-person input.

• Conversely, if a model fully leverages the relationship be-
tween first-person and third-person perspectives, its over-
fit accuracy drops to random guessing, leading to an Ego-
Rate of 1. This suggests that the model’s performance
can be entirely attributed to its comprehension of the link
between these two views.

Therefore, EgoRate serves as a valuable metric for quan-
tifying the model’s ability to comprehend the relationship
between first-person and third-person viewpoints, instead of
overfitting on third-person input only.

4.1. Dataset

The two-stream baseline was able to achieve a 99.3% accu-
racy on the IUShareView [52] dataset due to both the high
performance of the Vision Transformer (ViT) backbone,
and the limitation of size and diversity of the IUShareView
dataset. To address this, we introduced a novel dataset,
TF2023, and primarily conducted the evaluation of our pro-
posed model (PEN) on this new dataset.

IUShareView dataset was released in [52] as the largest
dataset for the first-person and third-person cross-view
matching and segmentation problem. It contains 1824 pairs
of cross-view synchronized images for training and 580
pairs for testing.

TF2023 dataset was collected and annotated by us with
the aim of better understanding the cross-view relationship
in egocentric videos. The actors and scenes were carefully
partitioned into training and testing sets, ensuring that no
camera wearer appearing in the training set appears in the
test set. Moreover, the scenes in the testing set differed from
those in the training set. For TF2023, we collected and an-
notated 208,794 pairs of cross-view synchronized images
for training and 87,449 pairs for testing.

On average, each scene in TF2023 featured 4.29 actors in
the third-person view, surpassing the average of 2.18 actors
in IUShareView. Furthermore, TF2023 included more com-
plicated participant interactions including puzzle games and
presentation scenes, in contrast to the predominantly eating
and chatting activities in IUShareView. We believe that the
increase in both scale and complexity will make TF2023
particularly valuable for training and evaluating cross-view
matching problems in the egocentric vision community, es-
pecially when utilizing larger models.
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Methodology Backbone Loss function IoU↑ Acc↑(%) EgoRate↑(IoU) EgoRate↑(Acc)

Random guess N/A N/A 0.21 25.2 N/A N/A
Third-first [52] FCN [33] Contrastive 0.26 31.1 0.52 0.52

Two-Stream baseline ViT Contrastive 0.33 39.9 0.31 0.32
Two-Stream baseline ViT BCE loss 0.27 31.9 0.24 0.31
Two-Stream baseline Swin Contrastive 0.31 36.9 0.11 0.11
Two-Stream baseline Swin BCE loss 0.26 31.4 0.11 0.05

Personal branch ViT BCE loss 0.40 48.9 0.95 0.94
Environmental branch ViT BCE loss 0.39 47.2 0.95 0.95

Fusing (Add) ViT BCE loss 0.43 52.5 0.95 0.94
Fusing (Concat) ViT BCE loss 0.43 52.4 0.96 0.96
Fusing (Self-attention)(PEN) ViT BCE loss 0.44 52.9 0.97 0.96

Table 1. Experiment results on TF2023. Our method (PEN) achieved the highest performance in IoU, Acc, and EgoRate.

4.2. Experimental Results

Setup We conducted evaluations of our model (PEN) on
our proposed dataset, TF2023. We implemented our model
on PyTorch, and all ViTs in our model utilized pre-trained
weights from the torchvision library. All experiments were
conducted on a single Nvidia Tesla V100s 32GB GPU.

Our training process comprised multiple stages. Ini-
tially, we fixed the ViT backbone of the personal branch and
trained the multi-head attention layer and MLP head for 3
epochs. This phase was conducted with a batch size of 32,
and we used the AdamW optimizer [34] with a learning rate
of 6 × 10−5. Subsequently, we unfroze the ViT backbone
and continued training with the same hyperparameters for
an additional 30 epochs.

Next, we trained the environmental branch for 30
epochs, using a batch size of 64 and the AdamW optimizer
with a learning rate of 6× 10−5.

Finally, we froze both the personal branch and environ-
mental branch backbones and conducted fine-tuning of the
self-attention layer and MLP head for 30 epochs with a
batch size of 64 and the AdamW optimizer with a learning
rate of 5× 10−6.

To evaluate the effectiveness of each methodology, we
employed two metrics: Intersection over Union (IoU) and
Accuracy (Acc) of the mask. For the purpose of our eval-
uation, a mask is considered accurate if the IoU value sur-
passes 0.5. In contrast to prior study [52], we used Mask
R-CNN [24] to generate a pool of potential masks rather
than relying on a set of ground truth masks provided by
the dataset. This choice resulted in an overall reduction in
the numbers across all methodologies, given that Mask R-
CNN’s segmentation results may miss or over-segment can-
didates. Nevertheless, we adopted this evaluation approach
as it better simulates real-world scenarios where perfect seg-
mentation is unattainable.

Specifically, we utilized a pre-trained Mask R-CNN with
a score threshold of 0.9 to generate a pool of candidate

masks for evaluation. The pool of candidate masks is shared
for all evaluated methods to ensure fairness.

Comparison with other methods Given the novelty of
our research question, we were unable to identify any exist-
ing state-of-the-art method for direct comparison. The most
closely related method we found is the “third-first” model
introduced in [52]. The third-first model was designed
to perform both segmentation and identification given the
ground truth mask in the preceding frame (referred to as the
pre-mask). For the purpose of our evaluation, we excluded
the segmentation branch of the third-first model, as it re-
lies on the availability of the ground truth pre-mask. Fur-
thermore, it is rare for the mask of the same candidate to
change significantly between two consecutive frames. Nev-
ertheless, we adopted the third-first model as a baseline by
modifying its identification branch to accept the candidate
mask from the current frame as input, allowing it to predict
whether it corresponds to the first-person view.

We also compared our model against the two-stream
baseline introduced in Sec. 3.1, using two backbones: Vi-
sion Transformer (ViT) [11] and Swin Transformer [32].
Since our model (PEN) does not contain a two-stream struc-
ture, we utilized Binary Cross-Entropy loss (BCE loss) in-
stead of the contrastive loss used in the third-first model [52]
and the two-stream baselines. To verify that the observed
performance improvement was not solely attributed to this
change in the loss function, we also adjusted the two-stream
baseline model to utilize BCE loss. This was achieved by
concatenating the output from the first-person stream and
the third-person stream, followed by attaching an MLP head
with Sigmoid activation. We implemented a random guess
model by randomly selecting a candidate mask generated
by a pre-trained Mask R-CNN as output.

The evaluation results on TF2023 are presented in Tab. 1.
To provide a more comprehensive assessment, we also ex-
tended our experiments to include the IUShareView dataset.
As shown in Tab. 2, the two-stream baseline demonstrated
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IUShareView Acc(%) EgoRate(Acc)

Random Guess 50 N/A
Third-first [52] 74.5 0.20
Two-stream (ViT) 99.3 0.0
PEN(Ours) 99.7 0.77

Table 2. Evaluation results on IUShareView.

Figure 7. Variation in performance (IoU) with different numbers
of people visible in the first-person view.

that a high accuracy can be achieved by overfitting on the
third-person input. PEN was able to achieve similar perfor-
mance while maintaining a high EgoRate.

4.3. Ablation Studies

Tab. 1 illustrates the effectiveness of each module within
the PEN model. Both the personal branch and the envi-
ronmental branch demonstrate a significant improvement in
both IoU and Acc performance, compared to the baselines.
Furthermore, we observed a further enhancement in perfor-
mance when these two branches were combined via the fus-
ing network. Additionally, as depicted in Figure 7, adding
the environmental branch to the personal branch proves ef-
fective, especially when the number of visible people in the
first-person view is low.

Our evaluation also includes the evaluation of three fu-
sion methodologies: self-attention fusing, concatenate fu-
sion, and add fusing. The latter two methods were imple-
mented by concatenating or adding the outputs of the two
branches before the MLP head. As shown in Tab. 1, the
variation in performance across these methods is minor, in-
dicating a consistent enhancement in performance through
the fusion of output features from the personal and environ-
mental branches. We selected the self-attention fusion ap-
proach as our final design, due to its superior performance
during our evaluation.

The impact of incorporating ghost samples during the
training of the environmental branch is presented in Tab. 3.
Compared to conventional training, the inclusion of ghost
samples did not yield substantial improvements in IoU or

TF2023 IoU Acc(%) EgoRate(IoU/Acc)

Random Guess 0.21 25.2 N/A
Two-stream (ViT) 0.33 39.9 0.31/0.32
Without ghost case 0.39 47.1 0.67/0.65
With ghost cases 0.39 47.2 0.95/0.95

Table 3. Effect of adding ghost cases for the environmental branch.

Acc. However, it led to a significant increase in the EgoRate
metric, affirming its effectiveness in discouraging the model
from overfitting on third-person input.

5. Conclusion

In this paper, we addressed the challenge of identifying and
segmenting camera wearers in a third-person view, given
their associated first-person views. We introduced a novel
dataset, TF2023, comprising synchronized first-person and
third-person frames, segmentation masks for all individu-
als in third-person frames, and labels associating them with
the first-person frames. Compared to previous datasets,
TF2023 is larger in terms of the number of frames and
masks, while also containing more complex scenes and in-
teractions.

Furthermore, we proposed a new quantitative metric,
EgoRate, designed for assessing the model’s tendency to
overfit on third-person input.

In addition, we presented a novel method that integrates
information from two sources: a personal branch dedicated
to matching the individuals in the two views, and an envi-
ronmental branch focusing on geometric cues. Our evalu-
ation showed our proposed method outperformed previous
state-of-the-art on both TF2023 and existing dataset, while
also exhibiting a higher EgoRate.
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