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Abstract

The recent progress in language-based open-vocabulary
object detection can be largely attributed to finding better
ways of leveraging large-scale data with free-form text an-
notations. Training such models with a discriminative ob-
jective function has proven successful, but requires good
positive and negative samples. However, the free-form na-
ture and the open vocabulary of object descriptions make
the space of negatives extremely large. Prior works ran-
domly sample negatives or use rule-based techniques to
build them. In contrast, we propose to leverage the vast
knowledge built into modern generative models to automat-
ically build negatives that are more relevant to the orig-
inal data. Specifically, we use large-language-models to
generate negative text descriptions, and text-to-image dif-
fusion models to also generate corresponding negative im-
ages. Our experimental analysis confirms the relevance of
the generated negative data, and its use in language-based
detectors improves performance on two complex bench-
marks. Code is available at https://github.com/
xiaofeng94/Gen-Enhanced-Negs.

1. Introduction

Using natural language in object detection to describe se-
mantics bears the potential to significantly increase the size
of the detector’s label space and enable novel applications.
While standard detectors operate on a fixed label space [23,
38, 42], natural language allows for a broad spectrum of ob-
ject descriptions, ranging from generic terms like ”vehicle”
to specific expressions like ”the red sports car parked on the
left side” [12, 17, 25, 30, 41, 53, 54]. Several works ad-
vanced language-based object detection over the past few
years with novel training strategies [3, 5, 19, 22, 32, 34, 57]
and model architectures [11, 15, 33, 45].

Referring expression or visual grounding datasets [14,
30, 36, 50, 54] provide the natural language object descrip-
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Figure 1. The key contribution of our work is to leverage large-
language-models and text-to-image diffusion models to automati-
cally generate negative object descriptions and images for training
language-based object detectors. In contrast to prior work, our
generated negatives are more relevant to the original data and pro-
vide a better training signal for detectors.

tions along with bounding box annotations needed for train-
ing. However, this data only describes what is present in the
images, but misses to describe what is not. Yet, the notion of
negatives is crucial for training discriminative models like
language-based detectors [7, 24, 39].

Detection datasets with a fixed label space provide nega-
tive classes implicitly or explicitly, with exhaustive [23, 42]
or federated [6, 16] annotations, respectively. Any part of
an image that does not overlap significantly with a bound-
ing box of category c is verified to not be of that category
(for exhaustive annotation). On the other hand, the space
of negatives for a free-form text description of an object is
extremely large. While some existing datasets provide neg-
ative samples in free-form text [43, 46], they were not anno-
tated with bounding boxes. Hence, existing language-based
detectors often define the negatives for one object as the de-
scriptions of all other objects in the same image or descrip-
tions of other random samples [3, 11, 19]. However, such
negatives may not be directly related to the original positive
description and define a weaker training signal (see Fig. 1).
By explicitly evaluating on human-curated negatives, a re-
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cent benchmark [41] identified a bias of existing language-
based detectors to perform clearly better on positive rather
than negative descriptions. However, creating a dataset with
high-quality human-curated negatives for large-scale train-
ing is labor-intense and costly.

In this work, we propose to explicitly and automati-
cally generate negative data in the form of free-form texts
as well as images. Prior works [4, 7, 29, 43, 46, 55]
rely on rule-based approaches with knowledge graphs and
focus only on the language domain or the classification
task. In contrast, we leverage generative large-language-
models (LLMs) [35, 47] and text-to-image diffusion mod-
els [21, 40] to automatically create relevant but contradict-
ing object descriptions along with the corresponding images
for language-based object detection, see Fig. 1.

Given an object description of a dataset, we first use
LLMs to generate a semantically contradicting description
as the negative. Besides changing individual words (foils)
based on explicit knowledge graphs or LLMs, like in prior
work [4, 7, 20], we demonstrate improved detection perfor-
mance with two alternative approaches. (Re-combination):
An LLM first identifies all objects in a sentence, and then
creates a contradicting one by re-arranging, ignoring or
adding objects. (In-context summaries): We prompt an
LLM to summarize the differences of a few (less than 100)
positive-negative pairs collected from an existing image-
level dataset [46]. This summary is then used as context
to generate more such examples. Note that we do not need
visual input for this step, allowing us to leverage power-
ful LLMs for semantic and textual reasoning. Moreover,
while prior work only focused on the text [4, 7, 29, 43, 55],
we also leverage text-to-image diffusion models like GLI-
GEN [21] to create images that match the generated nega-
tive descriptions of objects, which serves as additional train-
ing signal. While the direct output of such image-generation
models is often noisy and even wrong (not matching the in-
put description), we propose two filtering steps to reduce
noise considerably (from 53% to 16% according to an em-
pirical study). Having both negative object descriptions and
the corresponding image, allows us to improve the discrim-
inative loss for training language-based object detectors.

Our experiments demonstrate clear accuracy gains on
two challenging benchmarks, +2.9AP on OmniLabel [41]
and +3.3AP on D3 [53], when adding our automatically-
generated negative data into the training of baseline mod-
els like GLIP or FIBER. Moreover, we provide an in-depth
analysis of the generated data (text and images) and how
they contribute to better language-based detection.
Summary of contributions: (1) Automatic generation of
semantically relevant but contradicting negative text and
images with large-scale generative models. (2) Recipes to
integrate such negative data into language-based detection
models like FIBER [3] and GLIP [19] (3) Clear improve-

ments on language-based detection benchmarks [41, 53] in-
cluding a thorough analysis of the generated data.

2. Related work

Vision & language localization tasks: Open-vocabulary
detection (OVD) requires a model to localize object cat-
egory names without having seen explicit bounding box
annotation for them [5, 7, 15, 52, 56, 59]. In contrast,
we focus on the more general language-based object de-
tection task [41, 53], which goes beyond simple category
names. Referring expression comprehension (REC) aims at
localizing the subject of a free-form text expression. How-
ever, REC benchmarks [30, 50, 54] fall short in evaluat-
ing all aspects of the more general language-based detec-
tion task [41, 53]. In visual grounding (VG) [36], the
task is to localize noun phrases of a caption in the im-
age. Although being a task on its own, VG datasets have
recently been used mostly as training data for OVD. Our
work focuses on general language-based object detection,
which subsumes and generalizes standard detection, OVD
and REC [12, 25, 41, 53].

Language-based object detectors: Two critical abilities
of language-based detection are accurate localization and
tight text-image fusion. Works like [1, 9, 28] use language-
models like BERT [2, 27] to align regions extracted from
(pre-trained) detectors with captions. The outstanding zero-
shot classification accuracy of large-scale pre-trained mod-
els like CLIP [37] or [10, 13, 18] then sparked interest in
extensions for localization, with different approaches like
distillation [5], fine-tuning [15, 33], pseudo-labeling [34,
57, 58], or combinations thereof [3, 19]. We use such mod-
els as test bed, but explore the underlying training data with
respect to negative samples.

Negative samples for object detection: The notion of
negatives is crucial for training discriminative models [24,
39]. Also for object detection, hard negative mining [44]
has proven beneficial for model training. However, these
prior works aim to find hard negative training examples
rather than negatives in the label space, because the la-
bel space is fixed in standard detection. For language-
based datasets, the space of potential negatives is extremely
large because object descriptions are free-form text. Prior
works [4, 29, 43, 46, 55] investigate negative texts for
general vision & language models with different strate-
gies, including changing individual words (foil) with rules
based on knowledge graphs [31] or with LLMs. Sugar-
Crepe [8] shares a similar idea as us to get negative texts
with in-context learning but for image-text level pretrain-
ing. For language-based detection, [7] explores such rule-
based foils, while [20] uses LLMs with specific templates to
replace object names with alternative descriptions. In con-
trast, our work (1) focuses on the localization task, (2) ex-
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Figure 2. In language-based object detection, a detector receives
as input an image and a (variable-length) list of free-form text
descriptions of objects. For each description, the model predicts
bounding boxes for objects that match the description.

plores more comprehensive strategies to generate negatives
with LLMs, and (3) proposes to also generate correspond-
ing negative images with text-to-image diffusion models.

3. Method
3.1. Language-based object detection

Task definition: Given an image and a list of object de-
scriptions, the task is to output bounding boxes along with
confidence scores for each description, as shown in Fig. 2.
Note the multi-label setting where one object instance can
be referred to by multiple descriptions, like “person” and
“person looking at book”. Also note that an object descrip-
tion might refer to zero objects in the image and the desired
output is an empty set of boxes.

Training data: Many language-based detection mod-
els [3, 19] use a combination of object detection [23, 42] and
visual grounding datasets [14, 36] for training their models.
Both types of datasets provide images I and bounding boxes
bl to localize individual objects. Object detection data as-
signs each bounding box bl a unique category c out of fixed
label space C. The exhaustive labeling of the fixed label
space in detection datasets implies the space of negatives.
An object of category c is not any of the categories C \ c.
On the other hand, grounding data provides an image cap-
tion t in free-form text, where subsets of words ml (defined
as indices of starting and ending characters in t) are linked
to bounding box bl. For grounding data, the space of nega-
tives is extremely large because one can find as many textual
descriptions that do not match t as desired due to the com-
positionality of free-form text. Many language-based de-
tectors [3, 19] only use the words in t that are not referred
to by ml as negatives for the bounding box bl. We argue
that this choice is sub-optimal because these words may re-
fer to entirely different objects and are easy to discriminate.
In the following section, we explain how we can automati-
cally generate negative samples that semantically related to
the original text t and hence provide a better training signal.

3.2. Generating negative samples

Our goal is to automatically and explicitly generate nega-
tive samples based on the original text descriptions t to im-

prove the training signal for language-based detectors. A
key observation of our work is to leverage the vast knowl-
edge encoded into large-language models (LLMs) [35, 47]
and text-to-image diffusion models (T2I) [21, 40]. Besides
proposing novel ways to instruct LLMs for generating neg-
ative text descriptions (Sec. 3.2.1), we also propose to gen-
erate negative images (Sec. 3.2.2).

3.2.1 Generating negative descriptions with LLMs

Given an object description t that matches the visual con-
tent inside a bounding box bl, we define a “negative” de-
scription t′ as any text that is semantically different to the
original text. Furthermore, our intuition is that good nega-
tive descriptions are still semantically related to the original
description, but not the same. An example is: “Person in red
shirt” as the original description and “Person in blue shirt”
as a contradicting negative one.

Prior work [4, 7, 43] explored rule-based approaches to
generate negative text. However, such rules are typically
limited to simple knowledge graphs and are limited to re-
placing only individual words, often just nouns, or swap-
ping words. In contrast, we explore more powerful LLMs
to automatically generate relevant negatives. To make the
negative text generation efficient and economic, in all cases,
we first leverage a strong instruction-tuned LLM [35] to
generate 50k positive-negative pairs, and then finetune a
LLaMA-7B [47] model with those pairs to then generate
negative captions on large grounding datasets. In the fol-
lowing, we describe three ways to instruct an LLM for gen-
erating positive-negative pairs of object descriptions:

LLM-based foils: We first prompt an instruction-tuned
LLM [35] to find concepts (i.e., objects, attributes and re-
lationships) in object descriptions. Compared to rule-based
parsers [51], LLMs can provide richer information. For ex-
ample, for the caption “A transportation vehicle is carrying
a crowd of people who are sitting and standing.”, the parser
ignores “sitting” and “standing”, while LLMs regard them
as attributes. Then, we pick one concept from the first step
sequentially and prompt LLMs again to generate a nega-
tive caption by changing the concept. For both steps, the
prompts are manually curated with the task definition and
step-by-step instructions for the generation. Please find the
exact prompt for the LLM in the supplement.

Re-combination: Next, we give the LLM more freedom
in generating negative descriptions. We first prompt the
LLM to identify all objects in the original caption, and then
to re-combine them to create a new sentence different from
the original one. We allow the LLM to ignore, change or
add new objects. For example, given the caption “A boy is
playing with his dog” and two objects “boy” and “dog”, the
LLM can output “The girl and her dog are playing fetch in
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the park”. Detailed prompts for both identifying objects and
re-combination are in the supplement.

In-context summary: Third, we enable LLMs to learn
how to generate negative descriptions by providing human-
annotated positive-negative pairs as in-context samples.
We randomly sample 80 pairs of positive and negative
texts from the Winoground dataset [46] and prompt the
instruction-tuned LLM [35] to summarize the difference of
those pairs in plain text. Then, instead of manually creat-
ing prompts to generate positive-negative pairs, we lever-
age the summary together with three randomly sampled
Winoground pairs as prompts to the LLM, and generate sev-
eral positive-negative pairs to finetune LLaMA. After fine-
tuning, the LLaMA model is used to generate negative texts
for given descriptions. This pipeline does not require hand-
crafted prompts to LLMs as the explanation of the concept
of negatives and how to create them. The supplement con-
tains full prompts for generating a summary, and generating
positive-negative pairs for finetuning.

3.2.2 Generating negative images with T2I models

Given an original image I , a bounding box b and a corre-
sponding object description t, we define a negative image
I ′ as any image that has a different semantic content inside
b. The rest of the image can be equivalent to I . To obtain
such imagery, we start with visual grounding data that pro-
vide bounding boxes, positive captions with text phrases,
and alignment between them. We propose a two-step pro-
cess: First, we turn the positive caption into a negative one.
Second, we use conditioned image generation tools to alter
the visual content inside the bounding box b.

Negative text for negative images: Although we have al-
ready described an approach to generate negative descrip-
tions in Sec. 3.2.1, doing so to generate a negative image re-
quires a different approach. In this case, the generated neg-
ative text needs to preserve the alignment ml to the ground
truth bounding box bl in order to instruct the generative im-
age model GLIGEN [21]. Hence, we first select a bounding
box bl and mask out the corresponding words (known via
ml) in the text t. For example, “A boy is playing with his
dog” turns into “A boy is playing with [Mask]” if the se-
lected bounding box refers to “his dog”. Again, we leverage
LLMs [35] to fill in text for “[Mask]” to generate a negative
text without reusing the original text. Please refer to Fig. 3
for illustrations.

We finetune a LLaMA-7B for the mask filling task with
triplets of positive texts, masked texts, and negative texts.
To reduce manual efforts, we follow the approach of in-
context summary to get triplet samples. We apply this pro-
cess twice: We start with only 5 manually created triplets
to build a summary and generate 100 samples from the
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Figure 3. Overview of using LLMs [35, 47] and text-to-image
diffusion models [21, 40] to generate negative images.

LLM [35] with human checks. We then repeat the pro-
cess to generate 50k examples without human checks from
a summary of the 100 generated examples. This increases
diversity in the generated data.
Conditional image generation: Given an image I , a
bounding box b and the altered text t′, we generate a nega-
tive image I ′ that is equal to I except inside b, where the vi-
sual content is altered to match the text t′. To do so, we use
the inpainting and conditioning abilities of GLIGEN [21], a
T2I model [40]. Refer to [21] and our supplemental mate-
rial for more details, and to Fig. 3 for an illustration of the
process.
Mitigating noise in image generation: We found that the
generated images are often noisy for any of the following
reasons: (1) The altered text refers to a big bounding box
that covers other smaller boxes. Large portions of the im-
age are then generated and often do not match the concepts
those smaller boxes originally covered. (2) The generated
negative text does not match the bounding box that is either
too small, too large or in a inappropriate position. (3) The
T2I model fails to understand the negative text and gener-
ates wrong content. We propose two steps to filter such
noisy images. First, we simply ignore ground truth boxes
bl for image generation if the box covers more than 75% of
any other boxes in the image. Second, we adopt CLIP [37]
to verify the semantic similarity of the generated image re-
gions and the corresponding text. Specifically, we compute
the similarity with CLIP between the generated image re-
gion (visual input) and the original and generated negative
texts (text input). We filter out generated images that have
a similarity score to the generated negative text lower than
a user-defined threshold. Details on the filtering steps are
given in the supplemental.

3.3. Learning from negative samples

Detector design and training objective: The generated
data does not prescribe any specific architecture for the de-
tector. A common choice, which we also use for our exper-
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Figure 4. Illustration of the grounding loss used for training. Pre-
dictions that are matched with ground truth receive a positive sig-
nal from the associated text (tall rectangles). All other words re-
ceive a negative signal (short rectangles). The top left quarter
shows the original loss used in [3, 19]. The other three quarters
are related to our proposed generated negative data and provide
additional training signals.

iments, is [3, 19]. The inputs are image I and text t, and
the output is a set of bounding boxes b̂i with corresponding
logits p̂i ∈ RT . Here, T is the number of tokens required
to represent text t. The ground truth can be represented
by a binary assignment matrix A ∈ BL×T . Rows refer to
ground truth boxes l and columns to tokens in t. Each el-
ement indicates if a token corresponds to a box l, which is
given by the ground truth indices ml. To define a loss, bi-
partite graph matching associates predictions with ground
truth. For matched predictions, the target vector gi ∈ BT is
the corresponding row from A, while it is an all-zero vec-
tor for unmatched targets. The loss is then computed as
L =

∑
i ℓFL (p̂i, gi) where FL refers to a focal loss. Fig. 4

illustrates the loss.

Integrating negative text: When sampling an image I ,
along with text t, boxes bl and indices ml, we also ran-
domly sample K > 1 negative descriptions from {t′j} that
defines the pool of negatives generated for text t. We ran-
domly shuffle the order of all texts to avoid any biases on
the location of the one positive description, and then con-
catenate them into one text string.

Integrating negative images: We explore two options:
(1) Simply add the generated images I ′ along with their
generated (but semantically matching) captions t′ as addi-
tional visual grounding data. The original caption t, which
was the starting point to generate the negative image I ′, is
now used as the negative caption. In this way, both the orig-
inal image I and the generated one I ′ have positive and neg-
ative descriptions. This option is illustrated in Fig. 4. (2) To
better leverage the relation between the original and gener-
ated data, the second option is to pack them into a single
training sample. We simply concatenate the images I and
I ′, as well as the texts t and t′. The ground truth information
ml is updated accordingly. See supplement for details.

OmniLabel OmniLabel-Negative

AP APc APd APdP AP APc APd APdP

Detic [60] 8.0 15.6 5.4 8.0 - - - -
MDETR [11] - - 4.7 9.1 - - - -

GLIP-T [19] 19.3 23.6 16.4 25.8 13.9 24.8 9.6 26.1
+ Ours 22.2 27.2 18.8 29.0 16.5 28.6 11.6 30.2

FIBER-B [3] 25.7 30.3 22.3 34.8 18.7 31.2 13.3 36.3
+ Ours 28.1 32.1 25.1 36.5 22.3 33.3 16.7 38.3

Table 1. Evaluation on the OmniLabel [41] benchmark.

4. Experiments

4.1. Experimental design

Training procedure: We choose two recent methods,
GLIP-T [19] and FIBER-B [3], to demonstrate the effect of
our automatically generated negatives. We use the official
code and publicly available checkpoints as a starting point.
The Flickr30k dataset [36] serves as our grounding dataset
to generate the negative data. We then fine-tune GLIP-T and
FIBER-B with both positive and negative data, along with
the Objects365 detection dataset [42] for 1 epoch. Note that
both Objects365 and Flickr30k are part of the original train-
ing set. We do not introduce any extra data except our gen-
erated negatives. Most hyper-parameters are equal to the
original settings of GLIP and FIBER. Any exceptions are
described in the supplement.

Evaluation benchmarks: We choose two recently pro-
posed benchmarks, OmniLabel [41] and D3 [53], as our
test beds. These benchmarks evaluate more aspects of
language-based detection than existing referring expres-
sions [30, 50, 54] or open-vocabulary detection [6, 17]
benchmarks. Specifically, both benchmarks contain com-
plex object descriptions that go beyond simple category
names from open-vocabulary detection benchmarks. More-
over, the descriptions can refer to zero, one or multiple
instances in the image, in contrast to standard referring
expression benchmarks. These properties enable a more
stringent evaluation metric as in object detection, which is
based on average precision (AP) in both OmniLabel [41]
and D3 [53]. Both benchmarks provide more fine-grained
metrics. OmniLabel evaluates separately for categories, de-
scriptions, and descriptions referring to at least one object,
with APc, APd and APd-P, respectively. D3 differentiates
descriptions on absence (“Abs”) and presence (“Pres”) that
indicate whether or not they contain any form of negation
(e.g., “without”), as well as on text lengths. Finally, we cre-
ate a specific split for OmniLabel, “OmniLabel-Negative”,
to evaluate the model only on images that contain at least
one negative description (i.e., not referring to any object).
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D3 (default) D3 (by length of texts)

Full Pres Abs S M L XL

OFA-L [49] 4.2 4.1 4.6 4.9 5.4 3.0 2.1
OWL-ViT-L [33] 9.6 10.7 6.4 20.7 9.4 6.0 5.3
G-DINO-B [26] 20.7 20.1 22.5 22.6 22.5 18.9 16.5
OFA-DOD [53] 21.6 23.7 15.4 23.6 22.6 20.5 18.4

GLIP-T [19] 19.1 18.3 21.5 22.4 22.0 16.6 10.6
+ Ours 21.4 20.6 23.7 28.1 24.5 17.4 11.5

FIBER-B [3] 22.7 21.5 26.0 30.1 25.9 17.9 13.1
+ Ours 26.0 25.2 28.1 35.5 29.7 20.5 14.2

Table 2. Evaluation on the D3 [53] benchmarks.

4.2. Benchmark comparisons

Tabs. 1 and 2 evaluate the impact of our generated negative
training data on the OmniLabel [41] and D3 [53] bench-
marks. In both tables, the first set of rows are baselines
provided by the benchmarks. The following rows show the
main comparisons for GLIP-T [19] and FIBER-B [3] with
and without adding our generated negative training data.
First, we can see that adding negative data improves results
across all metrics for both models and both benchmarks. On
OmniLabel, we can see a +2.9% and +2.4% increase in AP
for GLIP-T and FIBER-B, respectively. Similarly, we ob-
serve a +2.3% and +3.3% increase in the main metric of D3

(AP on full descriptions) for GLIP-T and FIBER-B.

4.3. Analysis on negative texts

Effectiveness of different negative texts: We finetune
FIBER-B without and with different kinds of negative texts
mentioned in Sect. 3.2.1, i.e., Rule-based foils, LLM-
based foils, Re-combination with LLMs, In-context sum-
mary with LLMs, and present results in Table 3. We find all
kinds of negatives improve the original FIBER-B on both
OmniLabel and D3 benchmarks. Negative texts from LLMs
generally achieve better results compared to LLM-based
foils, which indicates that LLMs are powerful tools for neg-
ative text generation. Moreover, both recombination and in-
context summary with LLMs outperform LLM-based foils
in all metrics except APd-P. Note that APd-P refers to evalu-
ations without negative label spaces, which is a task weaker
than language-based detection. Based on such results, we
argue that although word foils provide promising results in
traditional studies [7, 43], it is sub-optimal to LLMs. We
need to explore varied ways to unlock the ability of LLMs.
We believe that our two solutions, i.e., Re-combination and
In-context summary, provide a good starting point for future
studies. Besides using only one kind of negative texts, we
also explore the combinations of different kinds of negative
texts in the supplement.

Diversity of rule-based and LLM-based negatives: In
this part, we investigate the diversity of different negative

Figure 5. Percentage of negative texts with the numbers of words.
Four negative generation methods are compared.

Figure 6. Percentage of negative texts with the numbers of words
that are different from the original caption. Four negative genera-
tion methods are compared.

Figure 7. Average numbers of extra unique words per thousand
generated negative texts, which are not included in the original
dataset. We group words by their part-of-speech.

texts. First, we count number of words for each negative
text and provide the distribution for negatives of different
sources in Fig. 5. As shown, all four distributions have a
peak around 10 words, but the one of rule-based foils is
higher than others. That means rule-based foils provide
more negative texts with similar lengths.

Second, we count the number of different words between
the original positive caption and the negative caption, and
present the distributions in Fig. 6. We find that LLM-based
methods usually changes more words than rule-based foils,
which increases the diversity. Moreover, in-context sum-
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Whole OmniLabel OmniLabel-Negative D3

AP APc APd APd-P AP APc APd APd-P Full Pres Abs

Original FIBER-B 25.7 30.3 22.3 34.8 18.7 31.2 13.3 36.3 22.7 21.5 26.0
+ Rule-based foils 26.4 31.7 22.6 34.9 19.2 32.6 13.6 36.4 24.1 23.2 26.9
+ LLM-based foils 26.5 30.7 23.3 35.9 20.8 32.1 15.4 38.0 24.6 24.0 26.5
+ Re-combination 26.9 30.8 23.9 35.9 21.1 32.3 15.6 37.6 25.3 24.6 27.3
+ In-context summary 26.6 30.8 23.4 34.2 21.1 32.2 15.7 36.4 25.7 25.2 27.5

Table 3. Performance of FIBER-B trained with negative texts from four negative
generation methods.

OmniLabel D3

APc APd APd-P

Original FIBER 30.3 22.3 34.8 22.7
FIBER w/ neg. texts 30.7 23.9 35.5 25.9
+ W/ neg. img. directly 30.1 22.4 33.7 23.0
+ Box filter 31.0 23.8 35.4 23.6
+ Box&CLIP filters 31.1 24.2 35.9 24.1
+ Above + concat. img. 31.7 24.8 35.9 24.8
+ Above + weight ensemble 32.1 25.2 36.5 26.0

Table 4. FIBER trained with negative images.

Original Caption: A girl with blond spiky hair and a 
black jacket walking along a sidewalk 

Edited Caption w/ LLM: A boy with blond spiky hair 
and a black jacket walking along a sidewalk .

A girl 

a black jacket

a black jacket

A boy 

Original Generated

Figure 8. Noisy generated images. The orange box contains the
red box, and editing the orange changes the red unexpectedly.

mary has a more flat distribution compared to others. Prob-
ably, in-context summary learns how to generate negatives
automatically from data and has less restrictions. Besides,
in-context summary has more cases with no word changed
where negative texts are generated by just shuffling words
or concepts in the original text. Such shuffling is a common
pattern of Winoground [46], and our in-context summary
can learn such data specific patterns.

Third, we count how many extra words that does not
exist in the original Flickr30k dataset are introduced in
different negative generation methods. Fig. 7 shows the
average number of extra words per 1000 negative texts.
We group words into four part-of-speech categories, i.e.,
VERB, NOUN, ADP/ADJ, and others. As shown, LLMs
introduce more extra words on average than rule-based foils
probably because rule-based foils are limited in a predefined
set of words. However, LLMs are open to any concepts and
have great potentials of generating diverse texts. In-context
summary introduces the most extra words for all categories,
which is likely a benefit of learning negative generation
from data. The above statistics indicate a clear view that
LLMs generate more diverse data than rule-based foils.

4.4. Analysis on negative images

Noise in generated images: As mentioned in the last para-
graph of Sect. 3.2.2, the raw generated images are noisy in

several ways. First, the editing of a large box will override
the context of smaller boxes that are covered by the large
box. As shown in Fig. 8, GLIGEN did follow the instruc-
tion to generate a boy in the orange box, but the black jacket
in the red box is missing. As a remedy, we apply our first
de-noise step “Box Filter”. That is, we ignore boxes that
contain any other boxes when generating negative images
Second, GLIGEN may generate contents with wrong at-
tributes or objects, as shown in Fig. 9 (Left). Moreover, our
generation pipeline includes some cases where the edited
text and the bounding box does not match. As shown in
Fig. 9 (Right), the box for “his lap” cannot be modified as
“his knees”. Thus, GLIGEN generates wrong contents. As
described in Sect. 3.2.2, we adopt a pretrained CLIP model
to judge if generated contents are correct, which mitigates
the noise to some extent. As shown in Fig. 9, both negative
images get low CLIP scores and can be filtered out with a
threshold. We call such thresholding “CLIP Filter”.

Subject studies on Box and CLIP filters: We employ
human experts to check the amount of noisy generated im-
ages. First, for negative images w/o filter, w/ Box filter,
and w/ Box&CLIP filters, we separately and randomly se-
lect 100 samples. Then, we ask two experts to check if a
negative image is not noisy by comparing it with its caption
and the original positive image. We regard an image as not
noisy when both experts agree. As shown in Fig. 10, both
filters reduce the noise. The Box filter improves from 47%
to 63%, and the CLIP filter improves to 84%.

Effectiveness of generated negative images: To show
the effectiveness of generated images themselves, we take
captions of generated images as additional negative texts to
in-context summary, and finetune a FIBER model as base-
line. Then, we compare the baseline with variants of adding
generated negative images in Table 4. As shown, the per-
formance drops if we directly take raw negative images as
new visual grounding data without any filters (i.e., W/ neg.
img. directly). Probably, there are too much noise in raw
negative images as shown in Fig. 10. When applying both
Box and CLIP filters on negative images, we can achieve
slight improvement on OmniLabel compared to using neg-
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Positive: A woman in a black mesh skirt plays acoustic guitar

Negative: A woman in a white lace dress plays acoustic guitar

CLIP score: 0.234

Original Generated
Generating wrong attributes

Positive: A man is sitting on a chair with his hands above his lap

Negative: A man is sitting on a chair with his hands above his knees

CLIP score: 0.135

Original Generated
Generation with inappropriate boxes or texts

a black mesh skirt a white lace dress
his lap His knees

Figure 9. Left: Noisy negative images due to wrong attributes or objects generated by text-to-image models. Right: Noisy negative images
caused by inappropriate bounding boxes or negative texts from LLMs. CLIP scores of generated images refer to the similarity between the
box and the negative text compared to the positive text. Thresholding on CLIP scores remove those noisy images.

Figure 10. Percentage of good generated negative images.
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Figure 11. Distributions of image regions from Omnilabel, D3,
and our generated images. Visualization with t-SNE.

ative texts only.

Concatenating images during training: Following the
idea of concatenating the positive and negative captions as
the text input, we concatenate the positive and negative im-
ages as one input image during training. See supplement
for an example. In this way, models are forced to tell the
difference between the positive and negative images within
one training iteration, which helps detectors to learn better
about the negative. As shown in Table 4, such a simple tech-
nique improves upon “+ Box&CLIP filters” both on Omni-
Label and D3. Furthermore, we ensemble the weights of
two FIBER models, one finetuned with negative texts only,
and the other finetuned with both negative texts and images.
Finally, compared to using negative texts only, we gain 1.3
APd on OmniLabel and no performance drop on D3.

Looking into generated images and benchmarks: Ta-
ble 4 shows that negative images help on OmniLabel but
not much on D3. We explore this on a data basis. We first
crop image regions for generated images, OmniLabel im-
ages, D3 images, and Flickr30k images based on the bound-
ing boxes. Then, we randomly select 1000 image regions
and feed them into a CLIP image encoder to get CLIP em-
beddings. Later, we input those embeddings to t-SNE [48]
to illustrate the similarities between different image regions.
As shown in Fig. 11, D3’s regions are grouped into several
clusters, while OmniLabel and our generated regions are
scattered in the center. This indicates that there is a clear
domain gap between D3 and the others. Thus, it is plausi-
ble that our generated images only helps on OmniLabel. In
our view, the gap comes from that D3 collect data in groups
based on categories. In contrast, OmniLabel collects data
randomly.

5. Conclusion
Language-based detection requires localization of objects
by a referring free-form text descriptions. To train accu-
rate models in a discriminative way, the training data must
contain good negative samples. Starting with an existing
dataset, we propose (1) novel ways to prompt LLMs for
generating additional negative texts, and (2) generating neg-
ative images to complement the training signal. Based on
our experimental evaluations, we conclude that such addi-
tional negative training data indeed translates into improved
detection accuracy on standard benchmarks. Our analy-
sis demonstrates the importance of diversity in the gener-
ated text, which is higher with our approach than with prior
works, and the quality of the generated images, which our
proposed filtering steps can significantly increase.
Acknowledgments: This research project has been par-
tially funded by research grants to Dimitris N. Metaxas
through NSF: 2310966, 2235405, 2212301, 2003874, and
FA9550-23-1-0417.
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