
I’M HOI: Inertia-aware Monocular Capture of 3D Human-Object Interactions

Chengfeng Zhao1 Juze Zhang1,2,3 Jiashen Du1 Ziwei Shan1 Junye Wang1

Jingyi Yu1 Jingya Wang1 Lan Xu1,†

1ShanghaiTech University 2Shanghai Advanced Research Institute, Chinese Academy of Sciences
3University of Chinese Academy of Sciences

{zhaochf2022,zhangjz,dujsh2022,shanzw2022,wangjy22022,yujingyi,wangjingya,xulan1}@shanghaitech.edu.cn

Figure 1. Taking a monocular RGB video and a single inertial measurement unit (IMU) sensor recording, our approach, I’m-HOI, efficiently

and robustly captures challenging and dynamic human-object interactions (HOI), such as skateboarding.

Abstract

We are living in a world surrounded by diverse and “smart”

devices with rich modalities of sensing ability. Conveniently

capturing the interactions between us humans and these

objects remains far-reaching. In this paper, we present I’m-

HOI, a monocular scheme to faithfully capture the 3D mo-

tions of both the human and object in a novel setting: using

a minimal amount of RGB camera and object-mounted Iner-

tial Measurement Unit (IMU). It combines general motion

inference and category-aware refinement. For the former,

we introduce a holistic human-object tracking method to

fuse the IMU signals and the RGB stream and progressively

recover the human motions and subsequently the companion

object motions. For the latter, we tailor a category-aware

motion diffusion model, which is conditioned on both the raw

IMU observations and the results from the previous stage

under over-parameterization representation. It significantly

refines the initial results and generates vivid body, hand, and

object motions. Moreover, we contribute a large dataset

with ground truth human and object motions, dense RGB
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inputs, and rich object-mounted IMU measurements. Exten-

sive experiments demonstrate the effectiveness of I’m-HOI

under a hybrid capture setting. Our dataset and code will

be released to the community.

1. Introduction

Capturing human-object interactions (HOI) is essential to

understanding how we humans connect with the surrounding

world, with numerous applications in robotics, gaming, or

VR/AR. Yet, an accurate and convenient solution remains

challenging in the vision community.

For high-fidelity capture of human-object interactions,

early high-end solutions [6, 9, 29] require dense cameras,

while recent approaches [4, 10, 26, 70] require less RGB

or RGBD video inputs (from 3 to 8 views). Yet, such a

multi-view setting is still undesirable for consumer-level

daily usage. Instead, the monocular method with more hand-

iest captured devices is more attractive. Specifically, most

recent methods [80, 82, 83, 101, 104] track the rigid and

skeletal motions of objects and humans using a pre-scanned

template or parametric model [46] from a single RGB video

input. Yet, inherently due to the RGB-setting, they remain
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vulnerable to depth ambiguity and the occlusion between

human and object, especially for handling challenging fast

motions like skateboarding. In contrast, the Inertial Mea-

surement Units (IMUs) serve as a rescue to provide motion

information that is robust to occlusion. Actually, IMU-based

motion capture is widely adopted in both industry [84] and

academia [22, 60, 61, 90]. Recent methods [45, 53] further

combine monocular RGB video and sparse IMUs, enabling

lightweight and robust human motion capture. However,

these schemes mostly focus on human-only scenarios and

ignore the interacted objects. Moreover, compared to the

sometimes tedious requirement of body-worn IMUs, it’s

more natural and convenient to attach the IMU sensor to

the captured object, since IMUs have been widely integrated

into daily objects like phones and smartwatches. Researchers

surprisingly pay less attention to capturing human-object in-

teractions with a minimal amount of RGB camera and IMU.

The lack of motion data under rich interactions and modali-

ties also constitute barriers to exploring such directions.

In this paper, we propose I’m-HOI – an inertia-aware and

monocular approach for robustly tracking both the 3D human

and object under challenging interactions (see Fig. 1). In

stark contrast to prior arts, I’m-HOI adopts a lightweight and

hybrid setting: a minimal amount of RGB camera and object-

mounted IMU. Given the expected technological trend of

mobile sensing as more and more RGB cameras and IMUs

will be integrated into our surrounding devices, we believe

that our approach will serve as a viable alternative to tradi-

tional human-object motion capture.

In I’m-HOI, our key idea is to adopt a two-stage paradigm

to make full use of both the object-mounted IMU signals

and the RGB stream, which consists of general motion infer-

ence and category-aware motion refinement. For the former

stage, we introduce holistic human-object tracking in an

end-to-end manner. Specifically, we generate human mo-

tions via a multi-scale CNN-based network for 3D keypoints,

followed by an Inverse Kinematics (IK) optimization layer.

To reason the companion object motions, we progressively

fuse the human features with IMU measurements via object-

orientated mesh alignment feedback. We also adopt a robust

optimization to refine the tracked object pose and improve

the overlay performance, especially when the object is in-

visible in the RGB input. For the second refinement stage,

we propose to tailor the conditional motion diffusion mod-

els [20, 42] for utilizing category-level interaction priors.

During training the diffusion model corresponding to a cer-

tain object, we treat the tracked motions and the raw IMU

measurements from the previous stage as the condition in-

formation. We also adopt a novel over-parameterization

representation with extra regularization designs to jointly

consider the body, object, and especially hand regions during

the denoising process. Thus, our refinement stage not only

projects the initial human-object motions onto the category-

specific motion manifold but also infills possible hand mo-

tions for vividly capturing human-object interactions. To

train and evaluate our I’m-HOI, we contribute a large multi-

modal dataset of human-object interactions, covering 295

interaction sequences with 10 diverse objects in total 892k

frames of recording. We also provide ground truth body,

hand, and 3D object meshes, with dense RGB inputs and

rich object-mounted IMU measurements. To summarize, our

main contributions include:

• We propose a multi-modal method to jointly capture hu-

man and object motions from a minimal amount of RGB

camera and object-mounted IMU sensor.

• We adopt an efficient holistic human-object tracking

method to progressively fuse the motion features, com-

panion with a conditional diffusion model to refine and

generate vivid interaction motions.

• We contribute a large dataset for human-object interac-

tions, with rich RGB/IMU modalities and ground-truth

annotations. Our data and model will be disseminated to

the community.

2. Related Work

Monocular Human-centric Capture. Since the release

of the parametric body model SMPL [46, 55, 65], there has

been tremendous progress [5, 31, 35–39, 41, 49, 52, 54, 63,

72, 86, 97, 98, 100] in human motion capture from single

RGB images and videos. However, reconstructing contex-

tual human-object and human-scene interactions (HOI/HSI)

from monocular input is far more challenging. The pio-

neer work PHOSA [101] proposes a purely optimization-

based framework to estimate static human-object spatial

arrangements relying on handcrafted contact heuristics. This

approach is unscalable and error-prone to depth ambigu-

ities. Benefited from emerging 3D interaction motion

datasets [4, 7, 11, 14, 15, 21, 23, 25, 66, 81, 106], learning-

and-optimization work [24, 82] has shown promising results

by modeling human-object relative distance field in data-

driven manner, followed by joint post-optimization. The

state-of-the-art video-based method, VisTracker [83], fur-

ther incorporates motion infilling techniques [93] to enable

space-time coherent tracking. However, these approaches

still suffer from unacceptable runtime costs and unsatisfying

accuracy under complex interaction scenarios.

Inertial and Multi-modal Motion Capture. Complemen-

tary to vision-based methods, human motion capture us-

ing inertial measurement units (IMUs) has also been exten-

sively studied. Previous commercial solutions [51, 84] can

capture accurate and detailed motion with dense sensors.

Since the exploration of SIP [78], data-driven methods un-

der sparse sensors configurations [22, 27, 76, 90, 91] have

been developed to achieve real-time performance, deriving

consumer-level products [69]. To address the limitations
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Figure 2. The pipeline of I’m-HOI. Assuming video and inertial measurements input, our approach consists of a general interaction motion

inference module (Sec. 3.1) and a category-specific interaction diffusion filter (Sec. 3.2) to capture challenging interaction motions.

of single-modal systems, multi-modal approaches [17] fuse

inertial signals with RGB [12, 19, 30, 45, 47, 48, 53, 59,

60, 75, 77, 79, 107], RGBD [18, 109], ego-view [92], and

LiDAR [64] references, achieving balanced local pose esti-

mation and global localization. In this work, we extend the

multi-sensor fusion strategy to 3D human-object interactions

capture, which is beneficial for both accuracy and efficiency.

Object-specific Interaction Prior. Human motion priors

have been demonstrated crucial for realism in the capture and

synthesis by multiple modeling methodologies, including

predefined kinematic structure [2, 110], GMM [55], GAN [3,

13, 31], VAE [33, 57, 63, 102], MLP [74] and more cutting-

edge, diffusion models [20, 32, 67, 68, 73, 94]. Addition-

ally, context-aware human motion synthesis [50, 103, 108]

and scene placement generation [88, 89] successfully ex-

tract contextual prior knowledge from data. More recent

work [43, 56, 85] modeled dynamic interaction patterns but

ignored object category-level distribution differences. Other

methods [40, 105] focus on specific interactions with chairs,

which are static and lack diversity. This work aims to learn

object category-specific interaction prior to model dynamic

interaction distributions between human and diverse objects.

3. Method

We present a new paradigm for 3D human-object interac-

tions capture in a lightweight and hybrid setting: utilizing a

minimal amount of RGB camera and object-mounted Inertial

Measurement Unit (IMU). As illustrated in Figure 2, we pro-

pose a general interaction motion inference module (Sec. 3.1)

to jointly recover human-object spatial arrangements in an

end-to-end fashion. An category-specific interaction diffu-

sion filter (Sec. 3.2) is tailored to refine capture results from

the former with the learned object category-level prior.

3.1. General Interaction Motion Inference

Current vision-based methods [82, 83] typically adhere to

fitting-learning-optimization framework, which we have ob-

served to be susceptible to substantial or prolonged human-

object occlusions, inefficient in inference time and limited

in generalization capabilities, as discussed in Sec. 5.2. In

contrast, we treat the object as an additional body joint and

propose to estimate human-object spatial arrangements holis-

tically and end-to-end. An optional optimization procedure

can be incorporated to enhance capture accuracy further.

Preprocessing. Given a monocular image sequence I ∈
R

T×h×w×3, we first segment human and object mask

Sh,So ∈ R
T×h×w×1 separately using SAM [34]. Fol-

lowing that, a pre-trained ResNet-34 [16] image encoder

is adopted to extract image feature from stacked RGB image

and object mask. After that, We take the raw inertial rotation

Q ∈ R
T×6, acceleration A ∈ R

T×3 and normalized ob-

ject template O, combined with I,So as our network input.

Our approach outputs human shape β ∈ R
T×10 and pose

θ ∈ R
T×3NJb , object rotation Ro ∈ R

T×6 and translation

To ∈ R
T×3. Here, T = 64 is the sequence length, h× w is

the resolution of images and masks, NJb
= 22 is the number

of body joints. We adopt standard SMPL model [46] for

human motion representation.

End-to-end Holistic Human-Object Tracking. We first

introduce a multi-scale CNN-based network to jointly detect

3D human body joints J ∈ R
T×3NJb and the object center.

Leveraging the extracted image feature, we feed it into a
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series of deconvolution layers followed by a final convolu-

tion layer to reconstruct 3D keypoint heatmaps. The 3D

keypoint positions are then determined by the expectation of

each heatmap [71], with all keypoints canonicalized to root-

relative representation except for the root joint. Commonly

used combination of 3D keypoints and 2D reprojection loss

Lkp3d + λj2dLj2d is utilized to train the CNN network, and

simultaneously fine-tune the image extractor. Subsequent to

3D keypoint estimation, we employ and fine-tune an off-the-

shelf pre-trained inverse kinematics layer [100] by Ltwist to

recover human pose θ and shape β based on Ĵ . Please refer

to [41, 82, 83, 100] for detailed loss functions.
For object tracking, we get an initially-posed object

through C(Q)O + T̂o with estimated object translation and
raw rotation data from the object-mounted IMU sensor,
where C(·) is the mapping from 6D rotation representa-
tion [111] to rotation matrix. In order to eliminate systematic

biases in Q and correct inaccurate T̂o under occlusions, we
attach one MLP-based regressor to each intermediate image
feature grid [97, 98], which forms a feedback loop to esti-
mate corrective increment of object motion progressively.
In the i-th loop, we first uniformly sample NS = 400 ver-

tices on the posed object mesh C(R̂(i)
o )O + T̂

(i)
o . Then,

we project sampled vertices onto the i-th feature map to
obtain object mesh-aligned feature, which is subsequently

fed into the i-th regressor to predict ∆R̂
(i)
o and ∆T̂

(i)
o . Par-

ticularly, R̂
(0)
o = C(Q). The training loss of the feedback

network group is defined as Lmaf = λocc-silLocc-sil+λareaLarea,
where Locc-sil is the occlusion-aware silhouette loss proposed
in [101]. We find that better results can be achieved with an
augmented silhouette area loss:

Larea =
1

T

T−1∑

t=0

NF−1∑

i=0

||
∑

D(R̂
(i)
o,tO+ T̂

(i)
o,t )−

∑
So,t||

2
2, (1)

where D(·) refers to differentiable rendering function [28]

and NF = 3 is the number of feedback iterations. Here, we

re-define R̂o = R̂NF−1
o and T̂o = T̂NF−1

o .

Overall, our training loss of the end-to-end inference

module is:

L = Lkp3d + λj2dLj2d + Ltwist + Lmaf. (2)

It’s noteworthy that human mask Sh is only required in

Locc-sil during training but not when testing.

Robust and Lightweight Optimization. To improve ob-

ject tracking precision, especially in invisible cases, we pro-

pose an optional optimization module. In addition to visual

cues, we further constraint object rotation and trajectory to

inertial measurements. The energy function is formulated

as:

E = Evisual + wimuEimu. (3)

Specifically, Evisual minimizes the discrepancy between the

rendering result and the segmentation of object: Evisual =

1
T

∑T−1
t=0

∑ ||D(R̂o,tO+ T̂o,t)−So,t||22. At the same time,

Eimu regularizes object motion temporally:

Eimu =
1

T − 1

T−1∑

t=1

||(T̂o,t−1 + T̂o,t+1 − 2T̂o,t)− 0.5A2
t ||22

+
1

T

T−1∑

t=0

||R̂o,t −Qt||22.

(4)

3.2. Categoryspecific Interaction Diffusion Filter

In the second refinement stage, a category-specific interac-

tion motion filter is proposed to (i) project capture results

from the preceding stage onto the manifold; (ii) infill hand

motions conditioned on body-object interaction motions.

Interaction Representation. We propose a novel over-

parameterization interaction representation containing hu-

man, object motion and raw inertial measurements. At times-

tamp t and noise level n, xn
t ∈ R

486 consists of body-hand

joint positions jh,t ∈ R
156 and rotations θh,t ∈ R

312; ob-

ject translation jo,t ∈ R
3 and rotation θo,t ∈ R

6; inertial

rotation qt ∈ R
6 and free acceleration signal at ∈ R

3. We

use 6D representation [111] for all the rotation data, and the

52 joints body-hand model SMPL-H [65] is adopted. The

target interaction motion is represented as x0.

Conditional Diffusion Denoising Process. Given x0, for-

ward diffusion process adds Gaussian noise iteratively along

an N -step Markov chain. For each noising step n, the noised

interaction motion is drawn from conditional probability

distribution determined by a pre-defined schedule {αn}Nn=1:

q(xn
1:T |xn−1

1:T ) = N (
√
αnx

n−1
1:T , (1− αn)I). (5)

In reverse process, we formulate condition information as

a tuple c = (jhb
, jo,θhb

,θo, q,a) ∈ R
216 and concate-

nate it with masked hand motion m = (jhh
,θhh

) ∈ R
270,

where jhb
∈ R

66, θhb
∈ R

132 represents body-only joint

positions and rotations. We follow [62] to predict x0 it-

self as x̂φ(xn, n, c), where φ represents the parameters of

neural network. The training loss is L1-norm simple objec-

tive [20, 42]:

Lsimple = Ex0,n||x̂φ(xn, n, c)− x0||1. (6)

Inspired by [63], components inside of the over-

parameterization representation have mutual constraints. We

accordingly introduce four regularization terms:

Lreg = λoffLoff + λvelLvel + λconsistLconsist + λimuLimu. (7)

Specifically, Loff enforces the predicted object center to lie

in a small region determined by the distance offsets relative

to 52 body-hand joints as:

Loff =
1

T

T−1∑

t=0

NJ∑

i=0

||(ĵo,t − ĵ
(i)
h,t)− (jo,t − j

(i)
h,t)||1. (8)
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Figure 3. We exhibit selected highlights of IMHD2 on the left side, and 10 well-scanned objects on the right side. In total, our dataset

comprises 295 sequences and captures approximately 892k frames of data.

We then constraint the reproduced human body-hand joints

consistent with the body model skinned from predicted joint

rotations:

Lconsist =
1

T

T−1∑

t=0

||ĵh,t − J (M(β̂, θ̂h,t))||1, (9)

where M(·) refers to forward function of SMPL-H model

and J (·) is the joint regressor. In order to temporally smooth

human motion, the velocity term Lvel is formulated as:

Lvel =
1

T − 1

T−1∑

t=1

||(ĵt − ĵt−1)− (jt − jt−1)||1, (10)

where jt = [jh,t, jo,t]. Finally, Limu guides the generated

object poses and the trajectory conform to IMU measure-

ments, which improves robustness under invisible scenarios:

Limu = Lrot +
1

T − 1

T−1∑

t=1

Lacc,t. (11)

Wherein, object rotation is directly regularized by:

Lrot =
1

T

T−1∑

t=0

||θ̂o,t − qt||1, (12)

and the trajectory is constrained to acceleration through:

Lacc,t = ||(ĵo,t− ĵo,t−1+
atτ

2

2
)− (jo,t+1−jo,t)||1, (13)

where τ is the time interval between two consecutive frames.

It’s noteworthy that, related work [83] simulates such second-

order constraints in a pseudo manner [96] to eliminate muta-

tion of first-order signals. In contrast, we incorporate accel-

eration explicitly [45, 64].

4. Dataset

To train and evaluate our I’m-HOI, we collect an Inertial

and Multi-view Highly Dynamic human-object interactions

Dataset (IMHD2), consisting of human, object motions,

inertial measurements and object 3D scans.

Capture Preparations. A high-end multi-view camera

system consisting of 32 Z CAMs [95] was set up to capture

4K videos at 60 fps. Simultaneously, two Xsens DOT IMU

sensors [84] mounted on the object and the leg of performer

were used to record object inertia and align timestamps at 60

Hz respectively. We invited 15 subjects (13 males, 2 females)

to participate in 10 different interaction scenarios. Sequence-

level textual guidance was provided for each capture split to

ensure reasonable and meaningful interactions. Each split

lasted from half a minute to one minute. We conducted

visual-inertial system calibration once per ten minutes to

eliminate disturbances caused by magnetic field changes.

Data Processing. Given multi-view videos, we reproduced

human motions in SMPL-H format [65] using an open-

source toolbox [1]. To accurately track object pose in a

3D scene, we manually annotated single key-frame seg-

mentation in all views and broadcasted it to the entire se-

quence [8, 34, 44, 87]. Subsequently, we optimized Eu-

clidean transformations, which precisely define object mo-

tions, by fitting reprojected silhouette to multi-view masks.

For object geometries, we utilized a public application [58]

to obtain 3D scan templates. In terms of inertial signals,

we adopted primitive rotation data Rs in matrix form and

transformed raw acceleration araw in sensor coordinate

to free acceleration afree in global coordinate through

afree = Rsaraw − g, where g = [0, 0, 9.81]T is the gravi-

tational acceleration.

5. Experiments

In this section, we first introduce the datasets and metrics

used for training and evaluation. We then provide a com-

prehensive comparison between our approach with baseline

methods. We also perform extensive ablation studies to

demonstrate the effectiveness of pivot components in our

network design and the necessity of the IMU modality.
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Figure 4. Qualitative 3D capturing results of I’m-HOI on IMHD2 dataset. Each sample includes an RGB image input, captured motion from

camera view, and side-view visualization.

IMHD2 (fast) BEHAVE (slow to medium) [4] InterCap (slow) [23]

CD (per-frame) CD (10s) CD (per-frame) CD (10s) CD (per-frame) CD (10s)

Method smpl object smpl object smpl object smpl object smpl object smpl object

PHOSA [101] 29.20 20.26 41.26 56.80 12.86 26.90 27.01 59.08 11.20 20.57 24.16 43.06

CHORE [82] 14.20 16.81 24.32 31.76 5.55 10.02 18.33 20.32 7.12 12.59 16.11 21.05

VisTracker [83] 19.96 23.28 17.02 18.10 5.25 8.04 7.81 8.49 6.76 10.32 9.35 11.38

Ours 6.50 6.93 5.36 8.53 5.26 7.43 5.65 4.82 5.66 8.92 5.81 7.14

Table 1. Quantitative comparison was conducted with several baselines on both human and object tracking accuracy.

5.1. Datasets and Evaluation Metrics

We train I’m-HOI using BEHAVE [4], InterCap [23] and

IMHD2, and evaluate it on five datasets which also include

HODome [99] and CHAIRS [25]. We adhere to the offi-

cial train-test data partitioning of BEHAVE and InterCap,

which is established by VisTracker [83]. Given the relatively

slow inference speeds of baselines [82, 83, 101], we curate

partial yet representative data from IMHD2, HODome, and

CHAIRS to construct sub test sets for thorough evaluation.

Evaluation Metrics.

• Per-frame Chamfer Distance (cm) [82] computes the

chamfer distance between predicted human and object

mesh with the ground truth respectively after holistic Pro-

crustes alignment for every single frame.

• Sliding Window Chamfer Distance (cm) [83] computes

the chamfer distance in the same way but performing

holistic Procrustes alignment on the combined mesh of

10-second results with the ground truth.

5.2. Comparison

Results. As shown in Table 1, I’m-HOI consistently out-

performs the baselines on several datasets, especially on

IMHD2 which is characterized by fast interaction motions,

with a large margin around 15cm. We visualize qualitative

results in Figure 5, I’m-HOI captures better human-object

spatial arrangements, including both relative pose and posi-

tion. In addition, our approach shows better robustness than

baselines under severe occlusions.

Generalization. To assess the generalization capabilities,

we evaluate the performance of purely optimization-based

method PHOSA [101], learning-and-optimization methods

CHORE[82] and VisTracker[83], as well as our proposed

approach trained on BEHAVE[4] and InterCap[23], across

HODome[99] and CHAIRS[25]. As shown in Table 2, I’m-

HOI generalizes better than the baselines by a large margin

and achieves more balanced performance between per-frame

and sequential results. Furthermore, Figure 5 demonstrates
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Figure 5. Qualitative comparison results. I’m-HOI outperforms the baselines and generalizes well to new datasets.

the adaptability to diverse scenarios of I’m-HOI.

Runtime Cost. We conduct a comparative analysis of the

inference efficiency across different methods using a specific

sequence from InterCap dataset [23]. Among the meth-

ods evaluated, the purely optimization-based framework

PHOSA [101] takes the longest inference time which is

approximately 2 minutes per frame. CHORE [82] speeds up

to 1 minute per frame, while VisTracker [83] further reduces

the time cost to 20 seconds. Notably, I’m-HOI requires only

about 0.5 seconds per frame for the complete pipeline. It

is worth mentioning that omitting the optional optimization

module could lead to additional enhancements in efficiency.

5.3. Ablation Study

Extensive ablation studies are conducted on IMHD2 to eval-

uate our network architecture design and IMU modality.

Network Architecture. Table 3 shows the performance

of models with and without the mesh alignment feedback

(maf.), optimization module (optim.) and diffusion filter

(filter.). It is demonstrated that maf. improves per-frame

object tracking results and optim. brings better temporal

consistency. In addition, filter. further corrects human-object

spatial arrangements onto the learned interaction manifold.

Compared to the naive implementation, the full pipeline of
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CD (per-frame) CD (10s)

Dataset Method smpl object smpl object

HODome [99]

PHOSA [101] 34.41 29.70 60.15 54.98
CHORE [82] 23.18 16.18 43.35 31.64
VisTracker [83] 11.87 19.86 32.77 34.53
Ours 8.19 9.05 12.07 15.31

CHAIRS [25]

PHOSA [101] 35.26 28.35 43.17 37.67
CHORE [82] 19.10 36.13 16.71 52.95
VisTracker [83] 17.42 23.31 15.23 16.85
Ours 9.55 9.91 6.34 7.85

Table 2. Quantitative evaluations of generalization ability.

Module CD (per-frame) CD (10s)

maf. optim. filter. smpl object smpl object

: : : 8.42 15.12 13.88 27.85
6 : : 8.02 9.73 10.31 19.87
: : 6 37.35 35.14 48.90 65.03
6 6 : 7.16 7.42 7.25 10.75
6 : 6 7.52 8.80 8.56 12.41
6 6 6 6.50 6.93 5.36 8.53

Table 3. Quantitative evaluation of network architecture design.

Figure 6. Qualitative evaluation of our network architecture. The

figure illustrates the effectiveness of each key design.

I’m-HOI performs 4 times better. Figure 6 illustrates that

inaccurate prediction is progressively corrected when maf.

and optim. are applied. Also, the hand motion generated by

filter. makes the capture result more vivid and realistic.

Input Modality. We experiment on several different base-

lines with IMU modality input by adding an additional in-

ertial optimization term described in Equation 4 to their

pipelines. The qualitative results shown in Figure 7 clearly

demonstrate the improvements in object pose estimation

of the baselines after introducing the IMU modality, com-

pared to Figure 5. The quantitative performance reported

in Table 4 shows a decent increase in the performance of

baselines, compared to the statistics in Table 1. Additionally,

we observe that our approach achieves better results when

the IMU modality is involved, especially for object tracking.

Furthermore, Table 4 shows that naively incorporating the

IMU modality input into baselines is unable to maximize

its benefits, which further verifies the effectiveness of our

network design.

5.4. Limitation

The proposed I’m-HOI is the first trial to explore challeng-

ing 3D human-object interactions capture using a minimal

amount of RGB camera and object-mounted IMU sensor.

CD (per-frame) CD (10s)

Modality smpl object smpl object

PHOSA+imu 28.41 18.60 39.19 38.44
CHORE+imu 12.98 11.92 22.09 23.31
VisTracker+imu 15.87 14.61 14.68 12.82

Ours w/o imu 10.58 14.49 6.55 15.23
Ours 6.50 6.93 5.36 8.53

Table 4. Quantitative evaluations on input modality configurations.

Figure 7. Qualitative evaluation of the IMU modality. This figure

shows the importance of inertial measurements input.

However, it still has limitations. Firstly, our method re-

lies on pre-scanned object templates and manual manipula-

tion of sensor-template coordinate alignment. Additionally,

our method is restricted to rigid object tracking. Extending

this method to articulated or even deformable objects in a

template-free framework is promising.

6. Conclusion

We have presented a novel and monocular scheme to faith-

fully capture the 3D motions of human-object interactions,

using a minimal amount of RGB camera and object-mounted

IMU. Our general motion inference stage progressively fuses

the IMU signals and the RGB stream via holistic and end-to-

end tracking, which efficiently recovers the human motions

and subsequently the companion object motions via mesh

alignment feedback. Our category-aware motion diffusion

further treats the previous results as conditions and jointly

considers the body, object, and especially hand regions dur-

ing the denoising process with an over-parameterization rep-

resentation. It encodes category-aware motion priors, so as

to significantly improve the tracking accuracy and generate

vivid hand motions. Our experimental results demonstrate

the effectiveness of I’m-HOI for faithfully capturing human

and object motions in a lightweight setting. As more and

more sensors like RGB cameras or IMUs will be integrated

into our surrounding world, we believe that our approach and

dataset will serve as a critical step towards hybrid human-

object motion capture, with many potential applications in

robotics, embodied AI, or VR/AR.
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