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Abstract

In this paper, we present a tensor decomposition and
low-rank recovery approach (LowRankOcc) for vision-
based 3D semantic occupancy prediction. Conventional
methods model outdoor scenes with fine-grained 3D grids,
but the sparsity of non-empty voxels introduces consider-
able spatial redundancy, leading to potential overfitting
risks. In contrast, our approach leverages the intrinsic low-
rank property of 3D occupancy data, factorizing voxel rep-
resentations into low-rank components to efficiently miti-
gate spatial redundancy without sacrificing performance.
Specifically, we present the Vertical-Horizontal (VH) de-
composition block factorizes 3D tensors into vertical vec-
tors and horizontal matrices. With our ”decomposition-
encoding-recovery” framework, we encode 3D contexts
with only 1/2D convolutions and poolings, and subse-
quently recover the encoded compact yet informative con-
text features back to voxel representations. Experimental re-
sults demonstrate that LowRankOcc achieves state-of-the-
art performances in semantic scene completion on the Se-
manticKITTI dataset and 3D occupancy prediction on the
nuScenes dataset.

1. Introduction

Accurate and comprehensive perception of the 3D environ-
ment is pivotal in the applications of autonomous driving
systems. Vision-based 3D perception [1, 12, 29, 30, 51]
has recently emerged as a promising alternative to LiDAR-
based approaches [16, 32, 52], offering an effective means
to extract 3D information from 2D images. Despite the
absence of direct depth sensing, vision-based models, en-

*Corresponding author.

hanced by surrounding cameras, exhibit promising perfor-
mance across a spectrum of 3D perception tasks, including
depth estimation [33, 40, 49, 50], semantic map reconstruc-
tion [19, 47], and 3D object detection [13, 20].

The primary challenge in vision-based 3D semantic oc-
cupancy prediction [15, 21, 24, 26, 38, 39] is the precise
capture of the nuanced 3D geometry in real-world scenes.
Voxel and Bird’s Eye View (BEV) representations emerge
as the two most widely adopted methods for tackling this
challenge. Voxel representations offer detailed 3D informa-
tion at the cost of computational complexity, while BEV
representations prioritize efficiency and simplicity, albeit
with potential information loss, especially in scenarios with
complex vertical structures. TPVFormer [14] extends BEV
by incorporating three orthometric perspectives: frontal,
lateral, and overhead views, aiming to balance efficiency
and information preservation.

However, existing methods overlook the spatial redun-
dancy inherent in modeling 3D occupancy data, resulting in
capturing noise and specific patterns that do not generalize
well to new data. For example, a significant portion (over
95 % in nuScenes [3]) of voxels representing empty space
is concentrated in the upper region of the scene. Conven-
tional approaches that densely encode all voxels, regardless
of their occupancy status, may inadvertently emphasize ir-
relevant information, leading to overfitting. This spatial re-
dundancy highlights that not all spatial dimensions or com-
ponents of 3D occupancy data carry unique and indepen-
dent information.

To address the overfitting caused by spatial redundancy,
in this paper, we present LowRankOcc, a tensor decom-
position and low-rank recovery approach for vision-based
3D semantic occupancy prediction. Inspired by the classi-
cal tensor decomposition theories, we aim to leverage the
low-rank property inherent in 3D outdoor occupancy data.
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(c) Recovery time and loss w.r.t. R
Figure 1. In the toy experiment, we show the low-rank property inherent in 3D outdoor occupancy data without involving a deep neural
network. (a) We compare various low-rank decomposition modes by iteratively updating randomly initialized parameters for a fixed number
of steps. The optimization objective is to minimize the cross-entropy loss between the prediction of the recovered low-rank tensor and the
target occupancy. (b) With the same R (for TV M , RX = RY = RZ = R) and updating steps, TCP is inferior to TV M , among which
TZ plays a more significant role compared to TX + TY . (c) As the value of R increases, TZ demonstrates a superior trade-off between
performance and forward recovery speed compared to TV M . To mitigate the bias of individual samples, the plot in (c) represents the results
obtained by averaging over 100 randomly selected samples in SemanticKITTI.

We factorize voxel representations into low-rank compo-
nents (e.g. vectors and matrices) to mitigate spatial redun-
dancy without sacrificing performance. To achieve this, we
first introduce the Vertical-Horizontal (VH) decomposition
block as the cornerstone, factorizing a 3D tensor into ver-
tical vectors and horizontal matrices. The outer product
of VH components constitutes a low-rank recovery, effec-
tively summarizing crucial information within the tensor.
By stacking multiple VH decomposition blocks, we can
represent dense voxel data as the sum of multiple vector-
matrix outer products. To prevent VH components from
capturing homogeneous information and thus losing repre-
sentation capability, we introduce a recursive residual de-
composition strategy, which encourages VH components to
learn diverse frequency contexts while ensuring their com-
plementarity to the original tensor. After the decomposi-
tion phase, VH components are reorganized into two tem-
porary mini-batches specifically designed for vector and
matrix parallel feature encoding, respectively. This paral-
lel mechanism seamlessly achieves multi-scale feature fu-
sion and propagation, presenting a compelling alternative to
the resource-intensive 3D UNet. Finally, we recover multi-
scale low-rank tensors and feed them into the head to predict
the final occupancy results. Experimental results demon-
strate that LowRankOcc outperforms existing methods by a
large margin on SemanticKITTI and nuScenes.

2. Related Works

3D semantic occupancy prediction. Early approaches
tackled autonomous driving perception through 3D object
detection, generating 3D bounding boxes for objects based
on RGB images [1, 12, 13, 20, 27–30, 42, 47, 51] or LIDAR
point clouds [16, 32, 52]. While effective, 3D object detec-
tion falls short in providing detailed geometry crucial for
driving planning. Consequently, recent attention has shifted

towards 3D semantic occupancy prediction, aiming to de-
lineate fine-grained spatial occupancy in voxel grids with
associated semantic labels. The initial focus of 3D seman-
tic occupancy prediction was on scene completion. SSC-
Net [34] pioneered research in semantic scene completion
(SSC), jointly reasoning about the geometry and seman-
tics of partially observed 3D scenes from RGB-D images.
Subsequent works refined geometric representations by in-
corporating explicit depth information. MonoScene [4] in-
troduced the first SSC method for outdoor scenes using
only RGB inputs, leveraging a 3D Unet to process voxel
representations back-projected from visual inputs. TPV-
Former [14] adopted a unique approach, representing the
3D scene with three orthogonal 2D planes and predicting
occupancy for each 3D coordinate through triple-plane in-
terpolation. NDCScene [44] extended 2D feature maps to
3D space by progressively restoring depth dimensions with
deconvolution operations. OccFormer [48] proposes to cap-
ture the fine-grained details and scene-level layouts with the
local and global pathways. SurroundOcc [41] contributed
a densely reconstructed occupancy dataset and an effective
3D convolution-based decoder for more nuanced occupancy
predictions. However, these methods typically overlook the
spatial redundancy inherent in 3D occupancy data, resulting
in challenges related to storage and computation.

Tensor decomposition and low-rank tensor recovery.
Tensor decomposition theory [5, 6] provides an efficient
means of representing tensors through linear combinations
of low-rank tensors, acting as principal components. In
computer vision, this has been applied for tasks like accel-
erating convolutions [17, 46], semantic segmentation [7],
and model compression [45]. Tucker and CP decomposi-
tions are two prevalent methods, with Tucker expressing
tensors as matrices and a core tensor, and CP representing
tensors as a sum of rank-1 tensors. Low-rank tensor re-
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covery aims to estimate desired tensors under a lower-rank
constraint. In this paper, we introduce a ”decomposition-
encoding-recovery” framework, relying solely on 1/2D con-
volutions and pooling operations to capture 3D contexts.
This approach avoids the computational complexity asso-
ciated with 3D convolutions.

3. Approach
3.1. Low-Rank 3D Scene Representation

Let T ∈ RX×Y×Z×C be the dense voxel representations,
where X,Y, Z are the spatial resolution and C refers to the
channel number. In autonomous driving scenarios, the com-
plexity of O(XY Z) not only incurs excessive storage and
computational burdens but also leads to overfitting issues
caused by its rich spatial redundancy. This key observation
motivates us to explore the tensor low-rank representation
as an alternative to dense voxels in the spatial perspective.
Without loss of generality, we omit the channel dimension
in the following equations.

Decomposing tensors into low-rank components. An in-
tuitive way to reduce the redundancy in high-rank tensors is
to employ the classical canonical-polyadic (CP) decompo-
sition [5], which breaks down a tensor into multiple vectors,
each representing a compact rank-1 component. Given a 3D
tensor T ∈ RX×Y×Z , CP decomposition is expressed as:

TCP =

R∑
j=1

λj v
(X)
j ◦ v

(Y )
j ◦ v

(Z)
j , (1)

where v
(X)
j , v

(Y )
j , and v

(Z)
j are vector factors of the three

modes for the j-th component, and the symbol ◦ represents
the outer product operation. λi is a learnable scaling factor.

Unlike CP decomposition which utilizes pure vector fac-
tors, vector-matrix (VM) decomposition [6] factorizes a ten-
sor into multiple vectors and matrices, incorporating the
sum of the three-way vector-matrix components along each
direction:

TV M =TX + TY + TZ

=

RX∑
j=1

v
(X)
j

◦ M
(Y,Z)
j

+

RY∑
j=1

v
(Y )
j

◦ M
(X,Z)
j

+

RZ∑
j=1

v
(Z)
j

◦ M
(X,Y )
j

(2)

where M(Y,Z)
j , M(X,Z)

j , and M
(X,Y )
j are the matrix factors,

allowing two rank-1 vectors to be expanded into matrices of
arbitrary rank.

To prove the low-rank property in 3D outdoor occupancy
data, we conduct a toy experiment (see Figure 1) to com-
pare various low-rank decomposition modes, i.e., TCP , TX ,
TY , and TZ . The qualitative and quantitative comparisons
highlight that the z-axis component TZ exhibits a superior
trade-off between performance and forward recovery speed
compared to TCP and TVM . The reason can be summa-
rized into three aspects. 1) The high compactness of CP de-
composition requires a substantial number of components

Table 1. Comparisons of the proposed VH decomposition with
other representations for 3D semantic occupancy.

Voxel (Target) BEV TPV VH Decomposition
outer product

Height modeling ✗ ✓ ✓
Voxel recovery ✗ ✗ ✓

Complexity O(XY ) O(XY + Y Z + XZ) O(R(XY + Z))

(i.e., rank R) to effectively model complex scenes. When
R is relatively small, CP decomposition struggles to fully
capture the scene structures. 2) By replacing pure vector
factors in CP with matrices along three axes, VM decom-
position is able to capture a more intricate structure within
a 3D scene. 3) Due to fewer occlusions along the z-axis in
autonomous driving scenarios, which has the highest infor-
mation density, TZ contributes the most to VM decompo-
sition. With increasing R, TZ achieves multiple times the
reconstruction speed of TVM while maintaining compara-
ble performance. Considering these factors, we design our
LowRankOcc method based on tensor decomposition along
the z-axis, denoted as Vertical-Horizontal (VH) decompo-
sition, with R as the VH rank.

Comparison with Voxel, BEV, and TPV representa-
tions. Table 1 illustrates the difference between our VH
decomposition and other efficient representations. To avoid
the cubic complexity (O(XY Z)) of voxel representations,
Bird’s-Eye-View (BEV) representations discard height in-
formation, offering improved efficiency with a complex-
ity of O(XY ). Tri-Perspective View (TPV) representa-
tions compress 3D features by projecting them onto three
axis-aligned orthogonal planes, reducing the complexity to
O(XY + Y Z +XZ). However, both BEV and TPV rep-
resentations lack theoretical assurance for recovering the
original voxel representations. Thanks to tensor decompo-
sition, our VH decomposition can represent voxel features
with multiple vectors and matrices, achieving a complexity
of O(R(XY + Z)). Given that occupancy data is typically
low-rank, R is usually much smaller than Z. Crucially, our
representations can be readily converted into low-rank voxel
representations through outer product operations, making
them versatile for various downstream tasks.

3.2. Tensor Residual Decomposition and Recovery

Given a pre-defined VH rank R, our VH decomposition
aims to model a tensor factorization, which is essentially
a function P that maps any tensor T ∈ RX×Y×Z×C to its
vector factors v = {v1,v2, · · ·,vR}, and its matrix factors
M = {M1,M2, · · ·,MR}, where vi ∈ RZ×C is the i-th
rank-1 vector component, and Mi ∈ RX×Y×C denotes the
i-th matrix component. To achieve this decomposition, we
introduce a convolution block (see Figure 2) to employ spa-
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Figure 2. Illustration of the i-th Vertical-Horizontal (VH) decom-
position block. By incorporating spatial partitioning alongside
1/2D convolutions and pooling, we can capture 3D contexts with-
out computationally heavy 3D convolutions.

tial partitioning and encoding on voxel features. This parti-
tion yields Z horizontal slices and X×Y vertical fibers. For
the horizontal slices Si, we first leverage two slice-sharing
convolution blocks Conv2d with a stride of 2 to effectively
summarize the horizontal information from each slice. Sub-
sequently, global average pooling (GAP) is applied to fur-
ther distill each slice into a single point. Consequently, we
obtain the vector component vi by abstracting information
from all slices:

vi = GAP(Conv2d(Si)). (3)

Concerning the vertical fibers Fi, each can be regarded as
a vector with a spatial shape of 1 × 1 × Z. Hence, we can
straightforwardly apply two fiber-sharing 1D convolutions
Conv1d to enhance the vertical receptive field. Given the
relatively low information density in the vertical direction,
we perform max pooling (GMP) to compress each fiber into
a single point, enabling the extraction of the matrix compo-
nent Mi:

Mi = GMP(Conv1d(Fi)). (4)

By extending this subblock, we can effectively model the
i-th decomposition Pi with spatial partition and 1/2D con-
volutions and poolings, thereby avoiding computationally
heavy 3D convolutions.

To acquire R pairs of vector and matrix components, an
intuitive way is to employ R distinct VH decompositions P
on T . The i-th reconstructed tensor, Ti, is given by:

{vi,Mi} = Pi(T ), Ti = vi ◦Mi, (5)

where vi is aligned with the z-axis, and Mi is vertical with
the z-axis. This strategy is termed tensor concurrent de-
composition and recovery (TCDR). However, there is no
guarantee that the sum of all recovered tensors,

∑R
i=1 λiTi,

can effectively reconstruct T since they might capture ho-
mogeneous information.

Recursive residual decomposition. To address this chal-
lenge, we propose that the initial reconstructed tensor com-
ponents focus on low-frequency information in the scene,
such as the scene layout and larger objects. Once these

VH Decomposition VH Decomposition VH Decomposition 

Composing Mini-batches for Parallel Computing

... ...

Spliting Mini-batches for Tensor Recovery

Upsample Upsample

...

Weighted Output Summation with Learnable Coefficients 

(2) Parallel Feature Extraction

(3) Tensor Recovery

(1) Tensor Residual Decomposition

(2) Parallel Feature Extraction

Vector Encoding

Reshape

Linear Layer

BN+ReLU

Matrix Encoding

Attention Layer

Atrous Conv

BN+ReLU

Figure 3. Illustration of the proposed Tensor Residual Decompo-
sition and Recovery (TRDR) module. The input tensor undergoes
an initial recursive factorization into R pairs of VH components.
Subsequently, these VH components are regrouped into temporary
mini-batches to facilitate the efficient extraction of contextual pri-
ors. Finally, the recovered low-rank tensor is computed through a
weighted summation of the updated VH components.

low-frequency details are sufficiently captured, the subse-
quent tensor components shift their focus to the remaining
high-frequency information, including finer details of ob-
ject shapes and smaller objects. To achieve this, we intro-
duce a recursive residual decomposition (RRD) strategy (re-
fer to Figure 3) to iteratively decompose the residual part of
the tensor. Thus, VH components can learn discriminative
low-rank tensors of different frequencies. Specifically, we
apply the first VH decomposition block P1 to the input ten-
sor T to generate v1 and M1, from which the recovered
tensor can be computed as T1 = v1 ◦ M1. Instead of us-
ing the input tensor T as the decomposition target for P2,
we then extract the residual part of the tensor, i.e., T − T1,
which can be considered as the information with a higher
frequency that T1 fails to restore. Following this strategy,
the decomposition target for P3 is T − T1 − T2. Formally,
given the pre-defined VH rank R, the factorized vector and
matrix components in Equation 5 can be rewritten as:

{vi,Mi} =

{
Pi(T ), if i = 1,

Pi(T −
∑i−1

j=1 vj ◦Mj), if i > 1,
(6)

where each VH decomposition block is tasked with gener-
ating components containing distinctive frequency contexts
while ensuring their sufficient complementarity for preserv-
ing crucial information of the input tensor.
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Parallel feature encoding. Having obtained all vector
factors v = {v1,v2, · · ·,vR} and matrix factors M =
{M1,M2, · · ·,MR}, our objective is to extract features
both vertically and horizontally to capture richer contex-
tual priors. This offers two advantages compared to directly
extracting features from 3D tensors. Firstly, the computa-
tional cost of increasing the receptive field on 3D features is
quite high. However, with 1D or 2D features, we can more
economically enhance the long-range semantic modeling,
thereby better capturing macro-level information such as
scene structure and road shapes. For 1D vectors, we utilize
a linear layer, while for 2D matrices, we employ a combi-
nation of a windowed self-attention layer and a dilated con-
volution to encode contexts, as shown in Figure 3 (2). Sec-
ondly, the decomposed vectors and matrices can be com-
bined into temporary mini-batches before feature encoding:

{v1,M1}, · · · , {vR,MR} −→ {v1, · · ·vR}, {M1, · · ·MR}. (7)

The two obtained mini-batches will undergo parallel pro-
cessing and then be split back for tensor recovery. The
advantages of these temporary mini-batches will be further
discussed in the network architecture (see Section 3.3).

Low-rank tensor recovery. After the decomposition-based
3D feature encoding and cross-scale interaction, the recov-
ered low-rank tensor TLR can be expressed as follows:

TLR =

R∑
i=1

λiTi =

R∑
i=1

λi · v′
i ◦M′

i, (8)

where v′ and M′ are the updated VH components, and λi

represents a parameter with gradients, allowing the network
to learn it autonomously. By employing tensor parallel de-
composition and recovery modules, the 3D tensor can be
transformed into a low-rank tensor of identical size using
a ”decomposition-encoding-recovery” manner, all without
the need for 3D convolutions.

3.3. Network Architecture

Image encoding and feature lifting. The overall pipeline
of LowRankOcc is illustrated in Figure 4. Comprising a
backbone network for extracting multi-scale features and
a neck for further fusion, the image encoder produces a
fused feature map with a resolution reduced to 1/16 of
the input. We denote the extracted features as F2d ∈
RN×Cimg×H×W , where N represents the number of cam-
eras, Cimg is the channel number, and H and W refer to
the image resolution. To transform 2D image features into
3D tensors, we employ the widely-used LSS [28] paradigm
for image-to-3D lifting. Specifically, the encoded image
features F2d are processed to generate the context feature
Fcon ∈ RN×Ccon×H×W and a multi-bin depth distribu-
tion D ∈ RN×D×H×W , where D is the number of discrete

Image

Depth Net Context Net

Image Encoder

Voxel Pooling

...

Tensor
Decomposition

Tensor
Decomposition

Tensor
Decomposition

...
...

... ..
......

Matrix EncodingVector Encoding

Matrix EncodingVector Encoding

Matrix EncodingVector Encoding

Tensor
Recovery

Tensor
Recovery

Tensor
Recovery

MSDA

MSDA

Head

Head

Head

Outer Product

Figure 4. The pipeline of our LowRankOcc. The image encoder
first extracts multi-scale features, which are then lifted to multi-
scale 3D feature volumes through depth predictions and voxel-
pooling. The 3D features undergo further factorization into vec-
tor and matrix components, followed by processing through the
decoder composed of multi-scale TRDR modules. Finally, we re-
cover and feed multi-scale low-rank tensors into the head to predict
the final results. For simplicity, skip connections are omitted.

bins. Each element in D represents a probability within the
range of [0, 1]. Then we combine the context feature and
depth distribution via an outer product to create a dense
point cloud representation P = Fcon ◦ D. Finally, we
conduct voxel-pooling to generate the 3D feature volume
T ∈ RX×Y×Z×Ccon . The multi-scale 3D features can be
generated by applying several downsampling convolutions.

3D encoding via multi-scale TRDR modules. State-of-
the-art methods commonly utilize feature pyramids to gen-
erate representations at different scales. With the advan-
tage of regrouped temporary mini-batches, we can effort-
lessly achieve cross-scale feature fusion and propagation.
This flexibility enables our TRDR module to be easily ex-
tended as an UNet-like architecture, presenting a viable al-
ternative to the 3D UNet [41] designed for voxel represen-
tations. Specifically, we construct a 1D UNet and a 2D
UNet to capture 3D contexts from both vertical and horizon-
tal directions. Concerning multi-scale matrix components,
given that each feature level highlights distinct aspects of
both low-level details and high-level semantics, we utilize
multi-scale deformable attention [53] (MSDA) to enhance
interactions within and across scales effectively.

Occupancy head and loss. The recovered multi-scale low-
rank tensors are then input into the occupancy heads to
produce the final outputs. Following OccFormer [48], we
employ a vanilla Mask2Former [9] as the 3D semantic oc-
cupancy head. This involves bipartite matching between
the predicted and ground-truth segments, focusing only on
the sampled positions. The matching cost contains the
class loss and the binary mask loss. Using the Hungar-
ian algorithm, we compute the optimal matching and de-
rive the mask classification loss Lmc based on the matching
cost. Additionally, the depth distribution D for view trans-
formation is supervised by LiDAR points with BCE loss
Ld. The final training loss is a summation of two terms:
L = Lmc + Ld.
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Table 2. Semantic scene completion results on SemanticKITTI test set. * represents these methods are adapted for the RGB inputs, which
are implemented and reported in MonoScene [4]. Our method outperforms all published monocular methods for semantic scene completion
in both the SC IoU and the SSC mIoU.
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LMSCNet* [31] Camera 31.38 7.07 46.70 19.50 13.50 3.10 10.30 14.30 0.30 0.00 0.00 0.00 10.80 0.00 10.40 0.00 0.00 0.00 5.40 0.00 0.00
3DSketch* [8] Camera 26.85 6.23 37.70 19.80 0.00 0.00 12.10 17.10 0.00 0.00 0.00 0.00 12.10 0.00 16.10 0.00 0.00 0.00 3.40 0.00 0.00
AICNet* [18] Camera 23.93 7.09 39.30 18.30 19.80 1.60 9.60 15.30 0.70 0.00 0.00 0.00 9.60 1.90 13.50 0.00 0.00 0.00 5.00 0.10 0.00
JS3C-Net* [43] Camera 34.00 8.97 47.30 21.70 19.90 2.80 12.70 20.10 0.80 0.00 0.00 4.10 14.20 3.10 12.40 0.00 0.20 0.20 8.70 1.90 0.30
MonoScene [4] Camera 34.16 11.08 54.70 27.10 24.80 5.70 14.40 18.80 3.30 0.50 0.70 4.40 14.90 2.40 19.50 1.00 1.40 0.40 11.10 3.30 2.10
TPVFormer [14] Camera 34.25 11.26 55.10 27.20 27.40 6.50 14.80 19.20 3.70 1.00 0.50 2.30 13.90 2.60 20.40 1.10 2.40 0.30 11.00 2.90 1.50
OccFormer [48] Camera 34.53 12.32 55.90 30.30 31.50 6.50 15.70 21.60 1.20 1.50 1.70 3.20 16.80 3.90 21.30 2.20 1.10 0.20 11.90 3.80 3.70
SurroundOcc [41] Camera 34.72 11.86 56.90 28.30 30.20 6.80 15.20 20.60 1.40 1.60 1.20 4.40 14.90 3.40 19.30 1.40 2.00 0.10 11.30 3.90 2.40

LowRankOcc (ours) Camera 38.47 13.56 52.80 27.20 25.10 8.80 22.10 20.90 2.90 3.30 2.70 4.40 22.90 8.90 20.80 2.40 1.70 2.30 14.40 7.00 7.00

■bicycle ■car ■motorcycle ■truck ■other vehicle ■person ■bicyclist ■motorcyclist ■road ■parking
■sidewalk ■other ground ■building ■fence ■vegetation ■trunk ■terrain ■pole ■traffic sign

Figure 5. Qualitative results on SemanticKITTI validation set. For the convenience of comparing results from different methods, we have
highlighted areas with significant differences using red boxes.

4. Experiments
4.1. Experimental Setup

Datasets. SemanticKITTI [2] is an extension of the well-
known KITTI Odometry Benchmark [10]. We evaluate our
method with the monocular left images as input following
MonoScene [4]. The ground-truth semantic occupancy is
expressed through 256 × 256 × 32 voxel grids, each voxel
measuring 0.2m in size. These grids are annotated with
21 semantic classes, comprising 19 specific semantics, one
for free space, and one for unknown regions. We follow
the official data split for comprehensive assessment. The
ablation study is conducted on the SeamnticKITTI vali-
dation set. nuScenes [3] is known as a large-scale au-
tonomous driving dataset, captured in Boston and Singa-
pore. In our evaluation, we leverage the dense annotations

from SurroundOcc. The occupancy prediction range for our
method spans [−50m, 50m] along the X and Y axes, and
[−5m, 3m] along the Z axis. The ground-truth semantic oc-
cupancy is expressed through 200 × 200 × 16 voxel grids,
each voxel measuring 0.5m in size. The input image res-
olution is 1600x900. To ensure consistency, we adopt the
ground truth provided by SurroundOcc [41] and adhere to
the official data split.

Implementation details. We employ EfficientNetB7 [4]
for SemanticKITTI and ResNet101-DCN [11, 53], initial-
ized with weights from FCOS3D [36], as the backbone to
extract image features. The overall network architecture
incorporates L = 4 levels to capture multi-scale image
features. Each level comprises R = 4 VH decomposi-
tion blocks to generate low-rank components. Notably, the
vector and matrix components share the same spatial (ex-
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Table 3. 3D semantic occupancy prediction results on the nuScenes validation set. * represents these methods are adapted for the outdoor
multi-camera settings, which are implemented and reported in SurroundOcc [41]. Our method outperforms all published multi-camera
methods for semantic scene completion in both the SC IoU and the SSC mIoU.
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MonoScene* [4] 23.96 7.31 4.03 0.35 8.00 8.04 2.90 0.28 1.16 0.67 4.01 4.35 27.72 5.20 15.13 11.29 9.03 14.86
Atlas* [25] 28.66 15.00 10.64 5.68 19.66 24.94 8.90 8.84 6.47 3.28 10.42 16.21 34.86 15.46 21.89 20.95 11.21 20.54
BEVFormer [22] 30.50 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer [14] 30.86 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
OccFormer [48] 31.39 19.03 18.65 10.41 23.92 30.29 10.31 14.19 13.59 10.13 12.49 20.77 38.78 19.79 24.19 22.21 13.48 21.35
SurroundOcc [41] 31.49 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86

LowRankOcc (ours) 32.78 21.51 22.49 12.45 30.32 33.63 10.35 14.31 13.67 12.40 15.09 25.99 39.52 23.21 26.67 25.19 16.23 22.66

Figure 6. Qualitative results on nuScenes validation set. For the convenience of comparing results from different methods, we have
highlighted areas with significant differences using red boxes and provided enlarged views.

cluding the compressed dimension) and channel dimensions
with the decomposed voxel features. For matrix compo-
nents, we apply multi-scale deformable self-attention with
6 layers. Voxel-pooling is applied to generate the initial 3D
feature volume, with dimensions X

2 × Y
2 × Z

2 . The occu-
pancy head aligns closely with the OccFormer implemen-
tation [48], featuring 384 channels. Model training spans
30 epochs for SemanticKITTI and 25 epochs for nuScenes.
We utilize the AdamW [23] optimizer with an initial learn-
ing rate of 1e-4 and weight decay of 0.01, employing a
multi-step scheduler for learning rate decay. All models are
trained with a batch size of 8. We borrow the data augmen-
tation settings of OccFormer, including random resize, rota-
tion, and flip for the image space, along with 3D flipping for
the volume space. It’s worth noting the exclusion of random
flip augmentation along the z-axis for stationary training.
Our evaluation metric is consistent with MonoScene [4].

4.2. Main Results

SemanticKITTI. As shown in Table 2, we present a com-
prehensive quantitative comparison of various monocular
methods tackling the semantic scene completion task on the
SemanticKITTI test set. Notably, LowRankOcc emerges
as the frontrunner, surpassing all existing competitors, par-
ticularly excelling in the more challenging aspect of se-
mantic scene completion. A notable performance improve-
ment is observed compared to recent approaches such as
TPVFormer [14], OccFormer [48], and SurroundOcc [41].

These observations also prove the valuable application of
low-rank representation in 3D occupancy prediction. This is
because low-rank representation effectively mitigates over-
fitting issues arising from spatial redundancy, thereby en-
hancing the model’s generalization capability. In Fig-
ure 5, we present qualitative comparisons with state-of-the-
art methods. In contrast to TPVFormer and OccFormer,
our LowRankOcc not only captures finer details of object
shapes (e.g., in the 2nd row) but also generates a more real-
istic and holistic perception of the scene. Notably, in distant
regions (e.g., the 3rd and 4th rows), and even in regions not
visible in the input image (1st row), our method accurately
predicts intricate structures such as crossroads. This capa-
bility can be attributed to our low-rank recovery framework,
which can efficiently increase the receptive field to capture
long-range scene priors. This is especially advantageous for
methods based on dense voxel representations, given their
cubic complexity in computations.

nuScenes. Thanks to recent works [35, 37, 41] that pro-
vide densely annotated labels, we are empowered to di-
rectly compare occupancy prediction against other meth-
ods. Table 3 shows the quantitative comparison of various
multi-camera methods tackling the 3D semantic occupancy
prediction task on the nuScenes validation set. Notably,
our LowRankOcc outperforms state-of-the-art methods by a
significant margin, achieving at least a 1% improvement in
both SC IoU and SSC mIoU. The quantitative results prove
that the ”decomposition-encoding-recovery” framework is
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Table 4. Ablation on the VH decomposition-based 3D encoding.

Vector encoding Matrix encoding Params Memory IoU↑ mIoU↑

✓ 16.4M 5.2G 30.01 7.14
✓ 80.0M 7.8G 36.18 12.39

✓ ✓ 89.5M 8.4G 37.85 14.21

3D UNet [41] 138.2M 11.9G 37.52 13.42
3D TPV + point query [14] 88.9M 6.7G 35.11 11.53

CP Decompositon [5] 16.2M 5.2G 31.10 7.32
VM Decompositon [6] 113.4M 9.4G 37.69 13.25

Table 5. Ablation on the VH rank and VH decomposition strategy.

VH rank R Decomposition Strategy Memory IoU↑ mIoU↑

1 direct 5.7G 34.4 9.9
2 recursive 6.9G 36.41 12.76
3 recursive 7.6G 36.97 13.24
4 recursive 8.4G 37.85 14.21
4 concurrent 8.4G 36.15 12.46
5 recursive 9.3G 36.77 13.77

a general contribution applicable to both monocular and
multi-camera settings. In Figure 6, we present qualitative
comparisons with the pure 3D convolution-based method
SurroundOcc [41]. Specifically, we present two types of
samples: one displaying a clear view in a smoothly flowing
traffic scene (1st row), and the other illustrating crowded
scenes with multiple vehicles (2nd row). In the first sam-
ple, low-frequency information includes structurally sim-
ple scene layouts and coarse-grained object shapes. Our
Recursive Residual Decomposition strategy effectively cap-
tures this low-frequency context, contributing to obtaining
more precise drivable areas. In the second sample, high-
frequency information involves higher-level semantic rela-
tionships and fine-grained details of object shapes.

4.3. Ablation Studies

VH decomposition-based 3D encoding. In Table 4, we
ablate the VH decomposition-based 3D encoding and com-
pare it with other baseline methods. The last two rows
of Table 4 are obtained by altering the VH block to CP
and VM blocks. For CP and VM, we computed three or-
thonormal vector factors and three-way vector-matrix pairs,
respectively. Firstly, the utilization of 1D vertical vec-
tors and 2D horizontal matrices in encoding proves to of-
fer distinct contextual information. Combining these el-
ements into a unified 3D encoding yields a further per-
formance boost. Secondly, compared with dense 3D con-
volutions and TPV-based point querying, we demonstrate
that the VH decomposition-based 3D encoding strikes a
favorable balance between model complexity and perfor-
mance. Thirdly, compared with CP and VM decomposi-
tion, vertical-horizontal representation proved to be a more
efficient decomposition strategy.

VH rank R and VH decomposition strategy. Table 5
shows an ablation study focusing on VH rank and VH de-

R = 1 R = 2 R = 3 R = 4 GT
Figure 7. Ablation study on the value of VH rank R.

Table 6. Ablation on parallel multi-scale (MS) feature interaction.

Method Tem. mini-batch Latency Memory IoU↑ mIoU↑

w/o MS inter. ✗ 0.45s 8.0G 37.21 13.87
w/o MS inter. ✓ 0.28s 8.0G 37.21 13.87
w. MS inter. ✗ 0.48s 8.4G 37.85 14.21
w. MS inter. ✓ 0.32s 8.4G 37.85 14.21

composition strategy. The IoU scores demonstrate that a
higher VH rank contributes to enhanced scene understand-
ing, but the performance gains diminish beyond a certain
rank (i.e., R > 4). Additionally, the chosen decomposi-
tion strategy plays a crucial role in influencing the ability of
low-rank tensors to capture 3D contexts. We provide a vi-
sual comparison between different values of R in Figure 7.
With the increase in R, our method shows a progression
from weak to strong representational capacity. This reveals
the substantial spatial redundancy in voxel representations,
successfully addressed by our low-rank decomposition.

Parallel multi-scale feature interaction. Table 6 shows
that employing multi-scale feature interaction is beneficial
for improving low-level and high-level feature fusion, with
a reasonable increase in computational cost. Temporary
mini-batches significantly accelerated this process, which
is also an advantage brought by our VH decomposition.

5. Conclusion
We propose LowRankOcc to address spatial redundancy in
3D semantic occupancy prediction, leveraging the inher-
ent low-rank property of occupancy data. VH decomposi-
tion, complemented by a residual learning strategy, enables
compact yet informative 3D context encoding with minimal
computational overhead. Experimental results demonstrate
that LowRankOcc achieves state-of-the-art performances in
semantic scene completion on the SemanticKITTI dataset
and 3D occupancy prediction on the nuScenes dataset.
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