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Figure 1. High-quality video (1920 × 960) reconstruction comparisons between the proposed Pyramidal NeRV and other models, PSNR
in yellow. PNeRV outperforms other models on perceptual quality with less noise and artifacts, maintaining spatial consistency.

Abstract

The primary focus of Neural Representation for Videos
(NeRV) is to effectively model its spatiotemporal consis-
tency. However, current NeRV systems often face a signif-
icant issue of spatial inconsistency, leading to decreased
perceptual quality. To address this issue, we introduce
the Pyramidal Neural Representation for Videos (PNeRV),
which is built on a multi-scale information connection
and comprises a lightweight rescaling operator, Kronecker
Fully-connected layer (KFc), and a Benign Selective Mem-
ory (BSM) mechanism. The KFc, inspired by the tensor de-
composition of the vanilla Fully-connected layer, facilitates
low-cost rescaling and global correlation modeling. BSM
merges high-level features with granular ones adaptively.
Furthermore, we provide an analysis based on the Univer-
sal Approximation Theory of the NeRV system and vali-
date the effectiveness of the proposed PNeRV. We conducted
comprehensive experiments to demonstrate that PNeRV sur-
passes the performance of contemporary NeRV models,
achieving the best results in video regression on UVG and

1Corresponding author: Zhan Ma (mazhan@nju.edu.cn)

DAVIS under various metrics (PSNR, SSIM, LPIPS, and
FVD). Compared to vanilla NeRV, PNeRV achieves a +4.49
dB gain in PSNR and a 231% increase in FVD on UVG,
along with a +3.28 dB PSNR and 634% FVD increase on
DAVIS.

1. Introduction
In recent years, Implicit Neural Representation (INR) has
emerged as a pivotal area of research across various vision
tasks, including neural radiance fields modeling [35, 51],
3D vision [6, 40, 45] and multimedia neural coding [7, 42].
INR operates on the philosophy that target implicit mapping
will be encoded into a learnable neural network through
end-to-end training. By leveraging the modeling capabili-
ties of neural nets, INR can approximate a wide range of
complex nonlinear or high-dimensional mappings.

However, when considering the video coding task, ex-
tant NeRV systems exhibit a notable deficiency in percep-
tual quality. The reconstructions of foreground subjects,
which are obscured by high-frequency irrelevant details or
blurring, prove challenging for current NeRV models. This
issue of spatial inconsistency is primarily attributed to se-
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mantic uncertainty, causing the model to struggle with dis-
cerning whether two long-range pixels pertain to the same
objects or constitute part of a noisy background. We postu-
late that this predicament stems from the absence of global
receptive field and multi-scale information communica-
tion. Inspired by existing empirical evidence from other
vision research, we speculate that if the dense prediction
could leverage the high-level information learned from raw
input, it would substantially alleviate both the semantic un-
certainty and spatial inconsistency (as illustrated in Fig. 1).

In practice, introducing multi-scale structures into NeRV
poses a significant and non-trivial challenge. Existing
NeRV models typically resort to cascaded upsampling lay-
ers (the so-called “mainstream”) for decoding fine video,
striking a compromise between performance and efficiency.
However, layers that use subpixel-based operators [41, 53]
can hardly maintain a balance between the increasing re-
ceptive field, parameter demand, and performance (more
discussions in Sec. ?? and visualization in Fig. 2). Addi-
tionally, these decoding layers are solely receptive to fea-
tures from the previous layer, ignoring information from
other preceding layers. Moreover, the design of multi-scale
structures in NeRV remains unguided by either practical or
theoretical principles due to constraints on parameter quan-
tities compared with methods for other vision tasks.

To address this issue, we propose the Pyramidal Neural
Representation for Videos (PNeRV) based on hierarchi-
cal information interaction via a low-cost upscaling oper-
ator, Kronecker Fully-connected (KFC) layer, and a gated
mechanism, Benign Selective Memory (BSM), which aims
at adaptive feature merging. Utilizing these modules, PN-
eRV can fuse the high-level features directly into each un-
derlying fine-grained layer via shortcuts, thereby creating a
pyramidal structure. Further, we introduce Universal Ap-
proximation Theory (UAT) into the NeRV system for the
first time and provide an analysis of existing NeRV models,
revealing the superiority of our proposed pyramid structure.
Our main contributions are summarized as follows.

• Towards the poor perceptual quality of NeRV systems, we
propose PNeRV to enhance spatial consistency via multi-
scale feature learning.

• In pursuit of model efficiency pursuit, we propose the
KFC, which realizes low-cost upsampling with a global
receptive field and BSM for adaptive feature fusion, thus
forming an efficient multi-level pyramidal structure.

• We introduce the first UAT analysis in NeRV research.
Using UAT, we describe NeRV-based video neural cod-
ing as the Implicit Video Neural Coding problem, clarify-
ing and defining some fundamental concepts within this
framework.

• We confirm the superiority of PNeRV against other mod-
els on two datasets (UVG and DAVIS) using four video
quality metrics (PSNR, SSIM, LPIPS, and FVD).

2. Related Work
Implicit Neural Representation for Videos. In recent
years, INR has gained increasing attention in various vi-
sion areas, such as neural radiance fields modeling [9, 13,
35, 36], novel view synthesis [22, 34], and multimedia neu-
ral coding [7, 8, 11, 24, 55]. For INR-based neural video
coding, NeRV [7] first uses index embeddings as input and
then decodes back to high-resolution videos via cascaded
PixelShuffle [41] blocks. ENeRV [24] aims to reallocate
the parameter quantity between different modules for better
performance. Unlike the above index-based methods, HN-
eRV [8] employs ConvNeXT [30] blocks as an encoder and
provides content-aware embeddings, improving the perfor-
mance. Furthermore, apart from content embedding, DiffN-
eRV [55] inputs the difference between adjacent frames
as temporal embeddings, enhancing temporal consistency.
The major distinction between PNeRV and DiffNeRV is
that the latter does not refer to multi-scale spatial informa-
tion, resulting in spatial discontinuity.
Multi-scale Hierarchy Structure for Dense Prediction.
In previous CV research, there have emerged numerous
studies on multi-scale vision [5, 18, 27–29, 31, 39, 48, 56].
UNet [39] aimed to improve accuracy by combining con-
textual information from features at different resolutions.
FPN [27] developed a top-down architecture with high-
level semantic feature maps at all scales, showing signifi-
cant improvements in dense prediction tasks. PANet [28]
followed the idea of multi-level information fusion and pro-
posed adaptive feature pooling to leverage useful informa-
tion from each level. PVT [48] introduced the pyramidal ar-
chitecture into vision transformers. The success of pyrami-
dal structure lies in multi-level feature fusion, and detailed
predictions should be guided by high-level context features.
Video Coding Pipelines and Theories. Video coding
has been studied for several decades based on handcrafted
design and domain transformation [2, 14, 44, 50]. Fur-
thermore, neural video coding [21, 23, 26, 32] aims to
replace some components in the traditional pipeline, but
they suffer from high computational complexity and slow
decoding speeds. Beyond Rate-Distortion Optimization
(RDO) [43], [3] reveals the importance of perceptual qual-
ity and proposes the Perception-Distortion Optimization
(PDO). [4] defines the Rate-Distortion-Perception Opti-
mization (RDPO). Different from those pipelines, we rein-
terpret the INR-based video coding [7, 8, 55] with UAT
framework, and more details are in Sec. 4.2 and Sec. A.1.
Universal Approximation Theory (UAT). One of the pur-
suits of UAT analysis on the deep neural net is to estimate
the minimal width of a model to approximate continuous
functions under certain errors and fixed lengths. [16] pro-
vides the estimation of minimal width w∗ of a RELU net as
din+1 ≤ w∗ ≤ din+dout in Theorem 1. [37] provides the
first definitive result for deep ReLU nets, and the minimum
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Figure 2. Visualized comparison between PixelShuffle and KFc,
where × denotes matrix multiplication and black box is the sub-
pixel area. PixelShuffle fills the subpixels using a local receptive
field, lacking long-range relationship modeling ability, while KFC

calculates the correlation between every position.

width required for the universal approximation of the Lp

functions is exactly max{din +1, dout}. [25] demonstrates
that a deep ReLU ResNet with one neuron per hidden layer
can uniformly approximate any Lebesgue integrable func-
tion. More discussions are given in Sec. 4 and Sec. A.1.

3. Pyramidal Neural Representation for Videos
As analyzed before, pursuing spatial consistency leads to
the communication of multi-scale information via a global
receptive field. Fine-grained reconstruction requires high-
level information as guidance and a low-cost upsampling
operator is crucial for creating multi-level shortcuts.

Therefore, we propose Pyramidal NeRV (PNeRV) con-
sisting of a learnable encoder and a novel pyramidal de-
coder. The main innovation in the decoder is a low-cost
global-wise upscaling operator, Kronecker Fully-connected
(KFC) layer, and a gated memory unit, Benign Selective
Memory (BSM) for disentangled feature fusion. The over-
all structure of PNeRV is shown in Fig. 3.

3.1. Kronecker Fully-connected Layer
NeRV aims to decode high-resolution videos from tiny
embeddings. Therefore, Conv-based upsampling opera-
tors [41, 53] are not efficient enough due to the huge up-
scaling ratio, which differs from previous visual tasks. The
parameter quantity will grow sharply due to increased chan-
nels or kernel size. However, NeRV aims to encode videos
with as few parameters as possible, namely model efficiency
pursuit.

In contrast to this goal, subpixel-based upscaling opera-
tors fail to form shortcuts and a pyramidal structure. Once
upscaling from given embeddings F0 (16 × 2 × 4) to fine-
grained features Fn (16×320×640), there is an intolerable
increase in parameters (25600×) to fill in the target sub-
pixels. Even when the kernel size is only 1 × 1, a single
PixelShuffle [41] layer requires 6.96M parameters from F0

to Fn, regardless of the size of videos or model structure.
Towards this dilemma, we propose the Kronecker Fully-

connected layer (KFC), given as

Z = CONCAT
i

(
K

(i)
1 X(i)K

(i)
2

)
+ bc ⊗ bh ⊗ bw, (1)

where X(i) ∈ RHin×Win are input features, Z(i) ∈
RHout×Wout are output features, K1,2 are two kernels
which K

(i)
1 ∈ RHout×Hin and K

(i)
2 ∈ RWin×Wout in chan-

nel i. Each feature map is calculated channel-wise and will
be concatenated in the channel. bc,h,w are three vectors
and they output the BIAS via kronecker product ⊗ where
bc ∈ RC×1, bh ∈ RHout×1 and bw ∈ RWout×1.
Motivation. KFC is motivated by the fact that, the sub-
pixels of one position are related to every other position
in current feature maps. The dilemma between local and
global feature learning is an enduring issue in deep learn-
ing [31, 47, 49, 52]. Unlike the local prior in the CONV
layer, FC is more effective, especially for the top embed-
dings containing semantic features with little local spa-
tial structure. The calculation between K1, X and K2

is actually the product between vectorized input features
vec(X) ∈ RHinWin×1 and hybrid weight matrix K⊗ ∈
RHoutWout×HinWin , where K⊗ = K1 ⊗ K⊤

2 . Compared
with the vanilla FC layer, two low-rank matrices K1 and
K2 come from the Kronecker decomposition, while the bias
term bc,h,w is the CP decomposition of the original ones.

Besides, KFC is also inspired by LoRA [20], which uses
adaptive weights in low “intrinsic dimension” [1] for PEFT.
Visualization is shown in Fig. 2. For the same F0 and Fn

mentioned above, parameters needed by KFC is 0.05M,
only 0.7% of that required by PixelShuffle. Detailed com-
parisons of parameters and FLOPs are given in Fig. 3.

3.2. Benign Selective Memory
Using KFC as the basic operator for shortcuts, PNeRV re-
alizes efficient multi-scale feature learning. Also, adaptive
feature fusion between different levels is quite important.

Therefore, we propose the Benign Selective Memory
(BSM). BSM is inspired by the gated mechanism in RNN
research [10, 19], treating features in different streams as
input and cell states. We follow the convention in RNN,
where lowercase represents hidden states. For the high-level
feature z on the top and the fine-grained feature hl−1 in the
l-th layer, BSM is given as follows:

nl =Wn ∗ z, KOWNLEDGE

ml =Wm ∗ hl−1 MEMORY

sl = σ(Ws ∗ RELU(nl +ml)), DECISION

hl = hl−1 ⊙ (1− sl) + nl ⊙ sl, BEHAVIOUR

where ∗ is convolution with weights Wn,m,s ,⊙ is hadamard
product and σ is the sigmoid activation.

BSM is an imitation of the human learning and decision-
making process. The high-level z is regarded as exter-
nal Knowledge, while hl−1 from the previous block in the
mainstream is the inheriting Memory. The model should
learn from Knowledge and integrate it with Memory to
guide the Behaviors (reconstruction). That is the so-called
Benign Selective Memory.
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Figure 3. The overall architecture of PNeRV, consists of KFC and BSM. The right part shows the comparison of parameters and FLOPs
between PixelShuffle (PS) and KFC, where input feature maps are in c× h× w, the upscaling rate is r and kernel size in PS is k × k.

Motivation. The primary distinction between previous
gated mechanisms and BSM is that BSM learns features
(referred to as “Knowledge” and “Memory”) separately be-
fore merging them. This disentangled fashion aids PNeRV
in adaptively merging features from different levels. The
ablation studies in Tab. 7 show the superiority of BSM.

3.3. Overall Structure

Therefore, the proposed PNeRV consists of three parts, as
follows (where X is the input embedding, Ĥl are featured
in the mainstream lth layer, Zl are features upsampled by
shortcuts, and Hl are the features after fusion):
1. A mainstream comprises cascaded upsampling lay-

ers (containing CONV, PixelShuffle, and GELU)
to provide high-resolution reconstruction, Ĥl =
Block(Hl−1), 1 ≤ l ≤ L,L = 6, H0 = X .

2. Various shortcuts upsample the high-level embeddings
X into Zl before merging into the mainstream, form-
ing a multi-level hierarchical architecture, Zl =
Shortcut(X), 2 ≤ l ≤ L0, L0 = 5.

3. A feature fusion mechanism is employed to merge
Zl with Ĥl adaptively for the final output, Hl =
Fusion(Zl, Ĥl).
In implementation, we conducted two versions, namely

PNeRV-M and PNeRV-L. PNeRV-M has only a single
stream which takes content embeddings [8] XC in 16×2×4
as input. For PNeRV-L, temporal embeddings [55] XT in
2× 40× 80 are involved. XC is delivered to the main-
stream and XT is upscaled in shortcuts via KFC and merged
into each mainstream layers through BSM. We choose
PNeRV-L as the final version. All kernels are 3 × 3 except
for the first and final output layer. For the input video V and
reconstructions Ṽ, the key equations of the entire model in
the l-th layer (1 < l ≤ L) are presented as follows:

Encoder : XC ,XT = E(V),

Decoder : Ĥl = BLOCKl(Hl−1)

= BLOCKl ◦ · · · ◦ BLOCK1(X
C),

Zl = SHORTCUTl(X
T ),

Hl = BSMl(Ĥl,Zl),

where H0 = XC . The final output will be passed through
an output layer, Ṽ = CONV1×1(Hl=L).

4. Universal Approximation Theory on NeRV
First, we will clarify some concepts in NeRV within the
UAT framework. A NeRV-based neural video coding
pipeline is defined in Sec. 4.2. We describe the limitations
of existing NeRV models in Sec. 4.3, discuss the signifi-
cance of shortcuts and the multi-scale structure in the pro-
posed PNeRV in Sec. 4.4.

4.1. Basic Definitions and Notations
One of the main issues for the UAT analysis of a finite
length L feed-forward network is to find out the minimal
width w∗ := minmax di, 1 ≤ i ≤ L where di is the width
of the i-th layer so that neural nets with width w∗ and length
L can approximate any scalar continuous function arbitrar-
ily well [15, 16, 37]. Following the statement in [16], a deep
affine net is defined as follows.

Definition 1. (Deep Affine Net). A deep affine net of L
layers is given as follows:

N := AL ◦ σ ◦AL−1 ◦ · · · ◦ σ ◦A1. (2)

where the ith layer is an affine transformations Ai :=
Rdi → Rdi+1 , d1 = din, dL = dout with σ as activation.

In existing NeRV research, NeRV [7] and HNeRV [8]
meet this definition.

4.2. Implicit Neural Video Coding

Recently, INR-based video coding has received increasing
attention, and it uses a lightweight model to fit a video clip.
We formulate this coding pipeline as Implicit Neural Video
Coding (INVC), and the decoder with its embeddings to-
gether is known as the NeRV system [7, 8, 17, 24, 55].

Definition 2. (NeRV System). Each frame Vt in an RGB
video clip V = {Vt}Tt=1 ∈ RT×3×H×W is represented by
an implicit unknown continuous function F : [0, 1]din →
Rdout with the embedding E(t) obtained by encoder E :
N → [0, 1]din on the t time stamp,

Vt = F ◦ E (t) ,
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where F can be approximated by a learnable neural network
D of finite length LD, width wD and activation σ. The re-
construction Ṽt via D and E is given as follows:

Ṽt = D ◦ E (t) ,

where the decoder D and embedding E(t) together are
known as NeRV system, {D, E(t)}Tt=1.

For the index-based models [7] and [24], the encoder E is
Positional Encoding [42]. In content-based models [8, 55],
E is learnable and provides content embeddings. When D is
a deep affine net, it is named as a serial cascaded NeRV sys-
tem, such as NeRV [7] and HNeRV [8], and D is formulated
as follows, where Bl is the l-th upsampling layer.

D := BL ◦ σ ◦BL−1 ◦ · · · ◦ σ ◦B1. (3)

We present the proposed Implicit Neural Video Coding
Problem (INVCP) as follows. More discussions between
INVCP and existing pipelines are given in Sec. A.
Problem 1. (INVCP). The goal of INVC is to obtain the
minimal parameter quantity under a certain approximation
error ϵ between input V and reconstruction Ṽ ,

argmin
D,E

Param (D) +

T∑
t=1

dtin,

s.t. LD, wD ∈ [1,∞) , sup
∑

∥Ṽt − Vt∥ ≤ ϵ, t ∈ [1, T ].

where dtin is the dimension of embedding E(t) w.r.t. the t-th
frame, LD and wD are the length and width.

4.3. UAT Analysis of Cascaded NeRV Model
For video INRs, the model strives to capture the implicit
function that efficiently encodes a video. Within the UAT
framework, a keen focus is on the smoothness properties
of this implicit function, as it also encapsulates the video’s
inherent dynamics.

We name these properties as rate of dynamics, refer-
ring to the differences and transitions between consecutive
frames within the video. We introduce ω−1

V to informally
represent the rate of dynamics for video V , inspired by the
mathematical techniques used in UAT analysis [16].
Definition 3. The dual modulus of continuity ω−1

f w.r.t. a
continuous f defined on Ω is set as

ω−1
f (ϵ) := sup{δ : ωf (δ) ≤ ϵ},

where ωf represents the modulus of continuity of f

ωf (δ) := sup
x,y∈Ω

{∥f(x)− f(y)∥ : d(x, y) ≤ δ}.

Remark 1. Using a function F : N → RdV to roughly
represent a video V , when the variation of frames (video
dynamics) ∥F(ti) − F(tj)∥ is at a certain level ϵ for two
time stamps ti and tj , then the longer the duration sustains,
the larger ω−1

F gets. Smoother video has larger ω−1
F .

Notably, the explicit calculation of ω−1
f is hard to obtain,

and it is more like an empirical judgment, such as camera
movement, subject speed, noise, and others. We present
the estimation of the upper bound of the minimal parameter
quantity of the cascaded NeRV model as Theorem 1. The
proof of Theorem 1 can be found in Sec. A.3.
Theorem 1. For a cascaded NeRV system to ϵ-approximate
a video V which is implicitly characterized by a certain un-
known L-Lipschitz continuous function F : K → Rdout

where K ⊆ Rdin is a compact set, then the upper bound of
the minimal parameter quantity Param(D) is given as

Parammin(D) ≤ d2out

(
O (diam (K))

ω−1
F (ϵ)

)din+1

.

From Theorem 1, it can be seen that for a video, the fit-
ting performance of the cascaded NeRV model depends on
the rate of dynamics ω−1

F and the dimension of the video,
dout. The smoother and lower the dimension of the video to
be modeled, the less difficult it is to approximate.
Remark 2. The rate of dynamics for a given video will de-
termine the performance of the NeRV system.

4.4. UAT Analysis of PNeRV
According to Theorem 1, the upper bound of parameters
of cascaded NeRV required for model fitting only depends
on the properties of the target video. It demonstrates that,
although different models can exhibit diverse architectures,
their fitting behavior on the same video tends to be sim-
ilar, indicating a limitation in the model’s ability. How-
ever, according to observations in UAT research [12, 25],
the model with shortcuts will reduce the maximum width
to 1, indicating that the model size can be greatly reduced
while maintaining the performance. Therefore, the involve-
ment of shortcuts is the key to enhancing model capability.

Besides, we believe the implicit function representing a
video can be decomposed into diverse sub-functions from a
pattern-disentangled perspective. If we treat each stream in
D as a sub net, the whole D is an ensemble,

D :=
∑

A
(i)
L ◦ ρ(i)L−1 ◦A

(i)
L−1 ◦ · · · ◦ ρ

(i)
1 ◦A(i)

1 . (4)

Different shortcut pathways can fit various patterns, as a
single shortcut has the universal approximation ability. For
example, in Fig. 3, ① may capture the low-frequency mo-
tions. Whereas ②, directed towards fine-grained layers, sig-
nifies spatial details. This hypothesis aligns with the empir-
ical evidence observed in other vision areas, which shows
that the pyramid structure, a widely adopted hierarchical
topology, can improve dense prediction tasks. That is why
PNeRV outperforms others and achieves less semantic un-
certainty and better perceptual quality.
Remark 3. As the ensemble of sub-nets, the Pyramidal
structure will enhance the perceptual quality of NeRV sys-
tems.
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5. Experiment
Settings. We perform video regression on 2 datasets, and
all videos are center cropped to a 1× 2 ratio. UVG [33] has
7 videos with a size of 960 × 1920 in 300 or 600 frames at
120 FPS. DAVIS [38] is a large dataset of 47 videos in 960×
1920, containing large motions and complex spatial details.
We choose 9 videos1 from DAVIS as a subset, containing
different types of spatiotemporal features.
Metrics. We use PSNR and MS-SSIM to evaluate pixel-
wise errors. For spatial consistency, we choose the Learned
Perceptual Image Patch Similarity (LPIPS) [54] and Frechet
Video Distance (FVD) [46] as perceptual metrics, where
LPIPS is based on AlexNet and FVD is based on the I3D
model. The difference between PNeRV (P) and the baseline
(B) is calculated as (B − P )/B to show the improvement.
Training. We adopt Adam as the optimizer, where beta is
(0.9, 0.999) and weight decay is 0. The learning rate is 5e-
4 with a cosine annealing schedule. The loss function is
L2, and the batch size is 1. All experiments are conducted
using PyTorch 1.8.1 on NVIDIA GPU RTX2080ti, train-
ing for 300 epochs. We choose NeRV [7], E-NeRV [24],
HNeRV [8], DivNeRV [17] and DiffNeRV [55] as base-
line models. All models are trained with a similar 3M size,
and we follow the setting of embedding size as the baseline
method.

5.1. Video Regression on UVG
Pixel-wise error. PSNR comparison on UVG is reported in
Tab. 1, where bold font is the best result and underline is the
second best. PNeRV-L surpasses other models (+0.42 dB
against DiffNeRV and +4.25 dB against NeRV). PNeRV-M
achieves the best result against other single-stream models
(+1.96 dB against HNeRV and +3.02 dB against NeRV).
The proposed pyramidal architecture shows its effectiveness
when combined with various encoders.
Perceptual quality. The perceptual results are given in
Tab. 3 (LPIPS) and Tab. 4 (FVD), and the results of PNeRV
show a significant improvement, especially for “Bospho”
and “ShakeN”. The FVD results in Tab. 4 indicate that PN-
eRV provides better spatiotemporal consistency compared
to other baseline models (+231% against NeRV [7] and
+64.5% against DiffNeRV [55]).
Case study. The visualized comparison on UVG is exhib-
ited in the bottom three rows of Fig. 4. For dynamic ob-
jects with indistinct boundaries or noisy backgrounds, such
as the horse in “ReadyS” and the tail in “ShakeN,” PNeRV
demonstrates superior visual quality without requiring ad-
ditional semantic information.
Compared with the SOTA. As shown in Tab. 1, PNeRV
obtained competitive PSNR results on dynamic and smooth
videos. [17] is less effective for videos with fewer motions

1Bmx-bumps, Camel, Dance-jump, Dog, Drift-chicane, Elephant,
Parkour, Scooter-gray, Soapbox.

but complicated contextual spatial correlation. Also, [55]
makes it hard to reconstruct the videos filled with high-
frequency details. By comparison, PNeRV achieves com-
parable performance on all videos.

5.2. Video Regression on DAVIS
Pixel-wise error. In Tab. 2, we present the PSNR and SSIM
comparison on the DAVIS dataset. PNeRV gains a +0.88
dB PSNR increase compared to DiffNeRV and +3.28 dB
compared to vanilla NeRV. Despite the challenges posed by
complex spatiotemporal features, PNeRV exhibits signifi-
cant improvements (refer to “Parkour”, which is the most
difficult one, or “Drift-chicane”, where the racing car un-
dergoes intense motion amidst smoke-induced noise).
Perceptual quality. The LPIPS results on DAVIS are
reported in Tab. 3, where PNeRV achieved a 32.0% in-
crease compared to NeRV and 12.6% against the second-
best DiffNeRV. In Tab. 5, PNeRV gains a 634% FVD in-
crease over NeRV and 128% against DiffNeRV. For the
worst case, “Dog”, although PNeRV obtained a poor FVD
result owing to the severe global blurring caused by camera
motion, the PSNR is only slightly lower than the best (-0.24
db).
Case study. Visualizations are shown in Fig. 4. PN-
eRV reduced spatial inconsistency, particularly in “Dance
Jump” and “Elephant,” which are filled with irrelevant high-
frequency details obscuring semantic clarity.

5.3. Ablation Studies
The ablation of the effectiveness of the proposed pyramidal
architecture is in Tab. 6, and the contributions of two pro-
posed modules are validated in Tab. 7, where the parameters
of different models remain the same for a fair comparison.
Overall structure. We validate the design of the multi-
level structure on the most dynamic and smooth videos
(“Parkour” and “HoneyB”). In Tab. 6, the “serial” in the
first row represents HNeRV [8]. “Pyram.+Concat.” incor-
porates solely shortcuts without fusion modules. The main
difference between DiffNeRV and PNeRV-L is the quantity
of shortcuts (2 vs 5), and PNeRV-L performs better.
Modules contribution. We compare KFC with two upscal-
ing layers, Deconv [53] and Bilinear (the combination of bi-
linear upsampling and Conv2D). KFC performs better due
to the global receptive field, as shown in Tab. 7.

Also, we compare BSM with Concat, GRU [10] and
LSTM [19]. The results suggest that, disentangled feature
fusion significantly enhances performance. Detailed results
for each video are listed in Tab. C.6 in the appendix.

5.4. Validation of Theoretical Analysis
The results in Tab. 1 and Tab. 6 validate the Remark 2. For
those smooth videos with larger ω−1

f and a smaller upper
bound, models may obtain better performance; vice versa.
The results of PNeRV in Fig. 4, which exhibit less noise and
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PSNR ↑ D.P. E.S. Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg. M.

Avg. V. N/A N/A 36.06 35.32 39.48 33.27 27.53 35.27 30.03 N/A

NeRV [7] 3M 160 33.25 33.22 37.26 31.74 24.84 33.08 28.03 31.63
NeRV∗ [7] 3.2M 160 32.71 33.36 36.74 32.16 26.93 32.69 28.48 31.87
E-NeRV [24] 3M 160 33.17 33.69 37.63 31.63 25.24 34.39 28.42 32.02
HNeRV [8] 3M 128 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69
DiffNeRV [55] 3.4M 6528 40.00 36.67 41.92 35.75 28.67 36.53 31.10 35.80
DivNeRV∗ [17] 3.2M N/A 33.77 38.66 37.97 35.51 33.93 35.04 33.73 35.52

PNeRV-M 1.5M 128 37.51 33.80 41.76 29.96 24.15 36.18 28.92 33.18
3M 128 39.08 35.56 42.59 31.51 25.94 37.61 30.27 34.65

PNeRV-L 1.5M 6528 37.98 35.18 41.78 34.43 27.28 36.65 28.29 34.51
3.3M 6528 39.46 36.68 42.73 35.81 28.97 38.25 30.92 36.12

Table 1. PSNR comparison on UVG: the larger, the better. ∗ indicates methods that fit videos in a shared model while others fit each video
in a single model. D.P. is the parameter quantity of the decoder, and E.S. is the corresponding embedding size per frame. Avg. V is the
average PSNR across all models for the same video. Avg. M is the average PSNR for a single model on the entire dataset.

PSNR / SSIM ↑ Bmx-B Camel Dance-J Dog Drift-C Elephant Parkour Scoo-gray Soapbox Avg.

NeRV [7] 29.42/0.864 24.81/0.781 27.33/0.794 28.17/0.795 36.12/0.969 26.51/0.826 25.15/0.794 28.16/0.892 27.68/0.848 27.99/0.840
E-NeRV [24] 28.90/0.851 25.85/0.844 29.52/0.855 30.40/0.882 39.26/0.983 28.11/0.871 25.31/0.845 29.49/0.907 28.98/0.867 29.62/0.878
HNeRV [8] 29.98/0.872 25.94/0.851 29.60/0.850 30.96/0.898 39.27/0.985 28.25/0.876 26.56/0.851 31.64/0.939 29.81/0.881 30.22/0.889
DiffNeRV [55] 30.58/0.890 27.38/0.887 29.09/0.837 31.32/0.905 40.29/0.987 27.30/0.848 25.75/0.827 30.35/0.923 31.47/0.912 30.39/0.890

PNeRV-L (ours) 31.05/0.896 27.89/0.892 30.45/0.873 31.08/0.898 40.23/0.987 29.72/0.903 27.53/0.878 32.68/0.950 30.85/0.902 31.27/0.908

Table 2. PSNR and MS-SSIM comparison on DAVIS.

LPIPS ↓ Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg.

NeRV [7] 0.229 0.203 0.043 0.251 0.326 0.189 0.276 0.216
ENeRV [24] 0.224 0.179 0.039 0.279 0.318 0.168 0.363 0.224
HNeRV [8] 0.218 0.172 0.042 0.270 0.348 0.191 0.253 0.213
DiffNeRV [55] 0.205 0.164 0.042 0.196 0.206 0.181 0.241 0.176

PNeRV (ours) 0.210 0.132 0.037 0.177 0.211 0.146 0.230 0.163

LPIPS ↓ Bmx-B Camel Dance Dog Drift Eleph Parko Scoo-g Soapb Avg.

NeRV [7] 0.374 0.476 0.517 0.573 0.136 0.490 0.481 0.308 0.424 0.419
ENeRV [24] 0.386 0.357 0.426 0.404 0.061 0.419 0.429 0.282 0.380 0.349
HNeRV [8] 0.315 0.331 0.392 0.405 0.058 0.387 0.414 0.226 0.357 0.321
DiffNeRV [55] 0.320 0.278 0.423 0.394 0.053 0.431 0.478 0.268 0.297 0.326

PNeRV (ours) 0.308 0.284 0.363 0.387 0.054 0.343 0.314 0.188 0.324 0.285

Table 3. LPIPS comparison on UVG (left) and DAVIS (right) dataset.

FVD↓ Gap↑ Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg. ↑

NeRV [7] 3.76e-5 281% 1.00e-4 253% 1.45e-5 193% 5.81e-4 499% 1.98e-3 122% 3.27e-5 178% 4.07e-4 92.8% 231%
ENeRV [24] 2.66e-5 169% 7.86e-5 176% 5.88e-6 186% 1.00e-3 936% 1.46e-3 64.2% 2.12e-5 80.7% 1.00e-3 376% 284%
HNeRV [8] 3.29e-5 233% 6.74e-5 137% 1.50e-5 203% 9.46e-4 874% 2.07e-3 132% 5.06e-5 331% 3.56e-4 68.8% 282%
DiffNeRV [55] 1.29e-5 30.7% 4.28e-5 50.3% 6.50e-6 31.1% 1.55e-4 60.1% 6.58e-4 -26.3% 4.69e-5 300% 2.23e-4 5.9% 64.5%

PNeRV (ours) 9.88e-6 - 2.85e-5 - 4.96e-6 - 9.70e-5 - 8.94e-4 - 1.17e-5 - 2.11e-4 - -

Table 4. FVD comparison on UVG.

FVD↓ Gap↑ Bmx-B Camel Dance-Jump Dog Drift-C Elephant Parkour Scoo-gray Soapbox Avg. ↑

NeRV [7] 8.99e-5 146% 2.70e-4 404% 6.66e-5 1273% 3.02e-5 336% 3.85e-6 2830% 2.470e-5 95.8% 1.35e-4 309% 3.815e-5 197% 9.39e-5 115% 634%
ENeRV [24] 1.20e-4 229% 1.08e-4 102% 6.05e-6 24.8% 4.04e-6 -41.5% 5.41e-7 311% 2.647e-5 110% 7.09e-5 114% 3.961e-5 208% 7.01e-5 61.1% 124%
HNeRV [8] 4.97e-5 36.2% 1.04e-4 94.1% 9.58e-6 97.5% 4.51e-6 -34.6% 1.21e-6 821% 4.439e-5 252% 7.81e-5 135% 2.256e-5 75.8% 7.36e-5 69.3% 171%
DiffNeRV [55] 3.11e-5 -14.8% 3.85e-5 -28.1% 1.19e-5 146% 3.61e-6 -47.6% 6.48e-7 392% 6.408e-5 408% 1.45e-4 339% 1.614e-5 25.7% 1.64e-5 -62.2% 128%

PNeRV (ours) 3.65e-5 - 5.36e-5 - 4.85e-6 - 6.91e-6 - 1.31e-7 - 1.261e-5 - 3.31e-5 - 1.283e-5 - 4.35e-5 - -

Table 5. FVD comparison on DAVIS.

blurring, validate Remark. 3. Hierarchy structure reduces
ambiguity and artifacts caused by semantic uncertainty.

5.5. Additional Experiment Results
Additional results are provided in the appendix. Video in-
terpolation on UVG is discussed in Sec. C.1 where PNeRV
achieves the second-best PSNR (31.18 dB), exceeding the
vanilla NeRV (26.54 dB). Video compression is shown in
Sec. C.2, where competitive results are achieved over differ-
ent coding pipelines. Video inpainting on the DAVIS subset
is provided in Sec. C.3, where an average PSNR of 25.54 dB
is achieved, outperforming NeRV (22.71 dB) and DNeRV
(25.20 dB). More visual examples are shown in Sec. C.4,

and visualization of feature maps in Sec. D.1. More detailed
ablations are presented in Sec. D.2. More video examples
with the link are listed in Sec. C.6.

6. Conclusion
To resolve the spatiotemporal inconsistency issue, we pro-
pose Pyramidal NeRV realizing multi-level information in-
teraction by a low-cost KFC and a fusion module BSM. Fur-
ther, we use UAT to provide some explanations and insights
for NeRV. Competitive results on various tasks and metrics
validate the superiority of PNeRV.
Limitation and future work. Hierarchical structure brings
higher computational complexity. We will optimize redun-
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Figure 4. Visual comparison on various videos. “Bmx” has larger motion, “Elephant” has massive droplets blurring, “Parkour” involves
both camera rotation and extreme dynamics, “Dance” contains large motion under high-frequency reed leaves. “Jockey”, “ReadyS”, and
“ShakeN” are videos with complex spatiotemporal correlation in UVG. Zoom in for a detailed comparison.

Parkour (Dynamic) HoneyB (Smooth)
Models Size 1.5M 3M 5M Avg. 0.75M 1.5M 3M Avg.

Serial (HNeRV [8]) 25.07 26.56 24.34 25.32 36.65 36.72 38.96 37.44
Pyram. + Concat. 24.20 25.45 25.83 25.16 40.07 41.58 42.34 41.33
Pyram. + BSM. (PNeRV-M) 24.81 26.02 27.13 25.99 40.34 41.36 42.59 41.43

Serial + Diff. (DiffNeRV [55]) 25.49 25.75 25.71 25.65 40.52 41.52 41.92 41.32
Pyram. + Diff. + BSM. (PNeRV-L) 25.62 27.08 27.21 26.67 39.81 41.85 42.73 41.46

Table 6. Ablation studies for model size and overall architecture on “HoneyB” and “Parkour”.

PSNR↑ SSIM↑ (A.P.G.)↑ Concat GRU LSTM BSM

Bilinear 27.16/0.816(-4.14) 28.39/0.847(-2.91) 28.07/0.834(-3.23) 29.08/0.862(-2.22)
Deconv 27.37/0.803(-3.93) 29.00/0.845(-2.30) 28.91/0.850(-2.39) 29.96/0.881(-1.34)
KFc 28.68/0.848(-2.62) 29.31/0.868(-1.99) 29.04/0.866(-2.26) 31.30/0.904(+0)

Table 7. Contribution ablations for KFC and BSM, reported as average results on 7 DAVIS videos. A.P.G. indicates the average PNSR gap
compared with the final version of PNeRV (KFC + BSM); the larger the better. Detailed results for each video are given in Sec. D.2.

dant modules of the model for acceleration in the future.
Acknowledgements. The work was supported in part by
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