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Abstract

Open Vocabulary Object Detection (OVD) aims to detect
objects from novel classes described by text inputs based
on the generalization ability of trained classes. Existing
methods mainly focus on transferring knowledge from large
Vision and Language models (VLM) to detectors through
knowledge distillation. However, these approaches show
weak ability in adapting to diverse classes and aligning be-
tween the image-level pre-training and region-level detec-
tion, thereby impeding effective knowledge transfer. Moti-
vated by the prompt tuning, we propose scene-adaptive and
region-aware multi-modal prompts to address these issues
by effectively adapting class-aware knowledge from VLM to
the detector at the region level. Specifically, to enhance the
adaptability to diverse classes, we design a scene-adaptive
prompt generator from a scene perspective to consider both
the commonality and diversity of the class distributions, and
formulate a novel selection mechanism to facilitate the ac-
quisition of common knowledge across all classes and spe-
cific insights relevant to each scene. Meanwhile, to bridge
the gap between the pre-trained model and the detector,
we present a region-aware multi-modal alignment module,
which employs the region prompt to incorporate the po-
sitional information for feature distillation and integrates
textual prompts to align visual and linguistic representa-
tions. Extensive experimental results demonstrate that the
proposed method significantly outperforms the state-of-the-
art models on the OV-COCO and OV-LVIS datasets, sur-
passing the current method by 3.0% mAP and 4.6% APr.

1. Introduction
Recognizing and localizing visual objects in images [20, 26,
28] is a fundamental problem in computer vision, as it is
a prerequisite for many downstream applications, such as
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Figure 1. (a) Image-level pre-training and region-level detection.
(b) The relative mAP improvement for different superclasses com-
pared to the prompt templates on the COCO dataset. Each row
corresponds to a superclass in COCO, representing distinct scenic.
The bar charts on the left and right represent performance degrada-
tion and improvement, respectively. (c) Existing distillation-based
OVD detectors adopt the templates or learn common prompts to
adapt the knowledge of VLM. Instead, our method adopts scene-
aware prompts for both visual and textual input, and incorporates
the region prompts.

scene understanding [24, 27], autonomous driving [2, 17],
and intelligent robotics [11]. With sufficient training anno-
tations, prior research [3, 21, 36] has demonstrated favor-
able performance via deep neural networks. However, the
remarkable success mostly relies on the closed-world as-
sumption that the test data share the same underlying class
label space as the trained data. Unfortunately, in many re-
alistic scenarios, this assumption does not hold true due to
the dynamic nature of real-world tasks where novel classes
may emerge. Additionally, obtaining large annotated train-
ing data in open-label spaces is costly and time-consuming.
To address this challenge, Open Vocabulary Object Detec-
tion (OVD) [30, 34, 35] is introduced to relax the closed-
world assumption, which assumes that the novel classes ex-
tend the detection vocabulary beyond the training classes.

In recent years, a great number of efforts [1, 5, 8] have
been made to improve OVD tasks. A prevalent approach in
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this line of research [5, 8, 30, 34] transfers the knowledge
of the large-scale pre-trained visual and language models
(VLM), like CLIP [25], to the detector through the distil-
lation of feature embeddings and prompt learning. Specifi-
cally, these methods employ embeddings of image crops [5]
to distill the visual feature, and replace the classifier weights
with text embeddings. These text embeddings are generated
by feeding prompt templates, such as “a photo of [class]”,
filled with base class names into the text encoder of CLIP.
Nevertheless, these templates need to be constructed specif-
ically for different tasks, and have inadequate generalization
capabilities. Later, motivated by great progress in prompt
tuning [38] in the NLP domain, Detpro [5] used a learn-
able prompt to enhance the transferred knowledge, which is
concatenated with class vectors as the final prompt through
learnable random vectors shared among all classes.

Despite significant development, existing distillation-
based methods still show several limitations when transfer-
ring the knowledge to the detector: (i) Weak adaptability
for diverse classes. Existing works fail to consider both the
commonality and diversity of the class distributions when
utilizing the prompt templates or sharing learnable prompts
within a single modality. Figure 1 (b) illustrates the perfor-
mance improvement of the learnable prompt shared by all
classes on the COCO dataset compared to the prompt tem-
plates. The results reveal that some classes exhibit poor per-
formance when learning a common prompt for all classes.
(ii) Misalignment between region and image level cues. As
shown in Figure 1 (a), object detection performs recogni-
tion on image regions, while the CLIP model is trained on
the whole image, leading to a distribution gap that impedes
detection performance. These problems result in a less effi-
cient transfer of pre-trained visual and linguistic knowledge
to the detection network.

To address the problems mentioned above, this paper in-
troduces the Scene-adaptive and Region-aware Multi-modal
Prompt (SAMP) for open vocabulary object detection, aim-
ing to effectively integrate class-aware and region-level
knowledge of VLM within the object detection framework
(Figure 1 (c)). To enhance adaptability to diverse classes,
we design a scene-adaptive prompt generator to construct
a set of scene-specific multi-modal prompts by combining
a common prompt shared across all classes with a collec-
tion of individualized prompts tailored to each scene, where
the scene-specific uses insights from low-rank decomposi-
tion [16]. We then adaptively learn these scene prompts by
dynamically selecting the corresponding scene prompts ac-
cording to the input instance. Based on the scene-specific
prompts, the more distinctive attributes associated with each
class can be transferred from the pre-trained model. Fur-
thermore, to bridge the gap between region-level object de-
tection and image-level pre-training, we introduce a region-
aware multi-modal alignment module. This module utilizes

a region prompt to extract positional information from the
global feature, which is then transferred to the region fea-
ture using the self-attention mechanism. Simultaneously,
the textual prompt is integrated into the visual features
through network mapping, enhancing the alignment of vi-
sual and language knowledge at the regional level.

In summary, this paper makes the following contribu-
tions:
• We propose scene-adaptive and region-aware multi-

modal prompts for the OVD task, which is a novel
paradigm to effectively adapt class-aware multi-modal
knowledge from VLM to the detection network.

• The scene-adaptive prompt generator formulates a novel
prompt generation and selection mechanism for both vi-
sual and text encoders, which can adaptively learn com-
mon knowledge for all classes and scene-specific knowl-
edge to acquire better class-aware classifier weights.

• The region-aware multi-modal alignment module aligns
the vision and language representation at the region level
by incorporating region prompts and text prompts.

• We conduct extensive experiments on two commonly
used and challenging benchmarks, OV-COCO and OV-
LVIS. The proposed method consistently outperforms ex-
isting state-of-the-art methods in various settings. Com-
bined with Faster R-CNN, our SAMP achieves 34.8%
mAP50 of novel classes on OV-COCO and 27.8% mAP
of novel classes on OV-LVIS.

2. Related Work
2.1. Open Vocabulary Object Detection

Traditional object detectors are constrained by pre-defined
object classes, limiting their applicability in real-world sce-
narios, so recent attempts further explore Open Vocabu-
lary Object Detection (OVD) [4, 5, 35] which can be ex-
tended to novel classes. Depending on the type of su-
pervisory information used, OVD methods can be classi-
fied into four types: Region-aware training [1, 4, 18] is
based on the cheap and abundant image-caption pairs be-
sides the ground-truth datasets, such as OVR-CNN [35].
The Pseudo-labelling methods [37, 39] also leverage image-
text pairs besides ground truths but they explicitly con-
struct pseudo-region-text pairs to learn the correspondence
in a teacher-student framework. Distillation-based methods
[5, 30] distill the region embeddings from the VLM into
the student model to make them compatible with text em-
beddings of VLM using detection. Transfer learning-based
methods [15] leverage the VLM image encoder as a feature
extractor, which adds negligible extra computation.

2.2. Prompt Learning

Prompt tuning [38] is a technique used in natural language
processing to adapt the pre-trained VLM to the downstream
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Figure 2. The framework of the SAMP model. We adopt the distillation-based framework, and insert the scene-adaptive prompt generator
and region-aware multi-modal alignment module to adapt the knowledge in the pre-trained VLM to the detector.

tasks, which applies task-related textual tokens to infer task-
specific knowledge. For example, the hand-crafted tem-
plate “a photo of [CLASS]” in CLIP [25] is used to model
the textual embedding for zero-shot prediction. However,
these hand-crafted prompts have less ability to describe the
downstream task because they do not consider the specific
knowledge of the current task. To address the above prob-
lem, Context Optimization(CoOp) [38] replaces the hand-
crafted prompts with the learnable soft prompts inferred
from the labeled few-shot samples. Visual prompt learning
(VPT) [12] tunes embedded visual prompts with a frozen
pre-trained ViT backbone supervised by downstream objec-
tives, which achieves better transfer. MaPLe [13] proposed
multi-modal prompt learning to improve alignment between
the vision and language representations.

3. Preliminaries
3.1. Problem Definition

Open Vocabulary Object Detection (OVD) aims to detect
objects from novel classes beyond the base classes on which
the detector is trained. In the training stage, we have base
classes CB and datasets Dtr = {Ii,Oi}|D

tr|
i=1 , where Ii is

the i-th image and Oi = {oij}|Oi|
j=1 are the labeled instances

in the image, and each object oij consists of the class label
y ∈ CB and bounding box. In the testing stage, there are
novel classes CN that need to be detected and CB∩CN = ∅.

3.2. Distillation-based OVD Method

As illustrated in Figure 2, the knowledge distillation-based
OVD paradigm as [8, 30] employs a teacher-student frame-
work to transfer the knowledge pre-trained on large-scale
data to the detector.

The teacher network adopts the pre-trained CLIP model,
with visual and textual encoders denoted as V and T , re-

spectively. For the student network, we employ the two-
stage Faster-RCNN network [26]. The backbone processes
an input image Ii ∈ RH×W×3 to generate feature maps
F, and RPN generates a set of proposals P ∈ R4. Sub-
sequently, the R-CNN head performs RoI Align on F to
extract proposal embeddings Eo = {ep}p∈P ∈ Rd for
distillation and detection. To enable the detection of both
trained base classes and emerging novel classes, a common
operation is to replace the fixed classifiers with text embed-
ding representations of each class tc ∈ Rd generated by
T . These text embeddings tc, obtained by processing the
prompts corresponding to each class with a template of “a
photo of [class]”, can be directly extended to deal with the
emerging classes at test time. The classification probability
for each proposal is expressed as:

PC(p, c) =
exp( ep·tc

||ep||·||tc|| )∑
c′∈CB∪CN∪{bg} exp( ep·tc′

||ep||·||tc′ ||
)
, (1)

where · is the dot product, {bg} is the background class,
which is a trainable embedding tbg ∈ Rd.

Also, the proposal embeddings Ēo = {ēp}p∈P ∈ Rd in
the teacher network are obtained by the visual coder V for
aligning region embeddings with the student embeddings.

3.3. Prompt Tuning

In addition to the prompt templates, prior research [38] has
utilized prompt tuning to incorporate learnable prompts into
the textual encoder to transfer pre-trained model knowl-
edge effectively. Specifically, for a given class c, the con-
catenated tokens of learnable prompts Pt and the class
name are fed into the text encoder T to obtain the classi-
fier weights tc = T ([Pt;w1, ...,wL1 ; cls]) for the detector.
{w1, ...,wL1} are the tokens of the name of class c, and
L1 is the total sequence length, [cls] is the class token, [; ]
represents concatenation along the token length dimension.
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For visual prompts, the common practice is also
prepending the prompts Pv with the input image into the
layers of the visual encoder. The input embedding layer
transforms the input image into a sequence of patch embed-
dings, and the concatenated tokens are [Pv;v1, ...,vL2

; cls].
where {v1, ...,vL2} is the set of image tokens and [cls] is
the class token, L2 is the length of the patch tokens.

4. Method
Despite greater advances in distillation-based methods,
there remain two challenges when transferring the knowl-
edge from the VLM to the detector: (1) existing meth-
ods only learn a common prompt for all classes, which
shows weak adaptability for diverse classes. (2) object de-
tection performs recognition on image regions, while the
CLIP model is trained on the whole image, leading to a
distribution gap that hampers classification performance.
To address the aforementioned challenges, we propose
an OVD framework including a Scene Adaptive Prompt
generator(SAP) and Region-aware Multi-modal Alignment
(RMA) module, as shown in Figure 2. The SAP can
generate class-aware prompts for both text and visual in-
put, which can adaptively learn common knowledge for
all classes and acquire better class-aware knowledge. The
RMA module incorporates the region and semantic prompt
to modulate the region features for better generalizable re-
gion embeddings and to narrow the distribution gap.

4.1. Scene-adaptive Prompt Generator

Transferring pre-trained VLM knowledge to the detection
network requires accurate prompts for higher performance.
However, prompt learning approaches that employ the same
generation method for all classes or pre-defined prompt
templates would lead to a strong inductive bias. Therefore,
we deploy a scene-adaptive prompt generator to transfer the
class-specific pre-trained VLM knowledge. The generator
classifies classes into different scenes and applies different
prompts to each scene, then these scene prompts are adap-
tively learned through the selection mechanism.

Constructing scene-adaptive prompts. Instead of
manually dividing each class into different scenes, our
scene-adaptive prompt generator employs an innovative
mechanism to generate scene-adaptive prompts suitable for
both visual and textual inputs. This mechanism comprises
two primary components: a common prompt designed to
acquire knowledge shared among all classes, and a set of
scene prompts constructed by low-rank decomposition to
acquire scene-specific knowledge.

Specifically, taking the textual branch as an example,
we define Pa ∈ RL×d as the common prompt to learn
the knowledge for all classes, where L denotes the prompt
length and d corresponds to the feature embedding size.
Additionally, we construct a series of prompts tailored to

specific scenes, denoted as {P̃s
i}mi=1, where each prompt

P̃s
i ∈ RL×d is dedicated to learning scene-specific knowl-

edge. Then the scene prompt Ps
i ∈ RL×d can be obtained

as follows:
Ps

i = Pa ⊗ P̃s
i , (2)

where ⊗ is the Hadamard product.
To facilitate more efficient and effective computations,

inspired by the effective low-rank methods discussed in
[16], which have demonstrated robust performance in op-
timizing tasks within a low-rank subspace, we propose to
parameterize P̃s

i as a low-rank matrix. This matrix is rep-
resented as the product of two low-rank vectors: us

i ∈ RL

and vs
i ∈ Rd:

Ps
i = Pa ⊗ (us

i · (vs
i )

⊤). (3)

Decomposing scene prompts into rank-one subspaces
serves to enhance the effective encoding of scene-specific
information within the model. By utilizing the Hadamard
product, this approach empowers the model to efficiently
leverage both common and scene-aware knowledge for ac-
curate predictions.

Selecting mechanism. To adaptively learn the scene
prompts, we develop a selection mechanism to dynamically
choose corresponding scene prompts to input instances. In
detail, each prompt is associated as a value to a learnable
key: {(k1,Ps

1), (k2,P
s
2), ..., (kM ,Ps

m)}, where ki ∈ Rd

is obtained through a mapping function ki = g(Ps
i ). The

function g can be implemented as a Multi-Layer Perceptron
(MLP) layer. Given a proposal p belongs to the class c, we
compute the similarity between the feature embedding ēp
and the keys:

αi = γ(ēp, ki), (4)

where γ represents the cosine similarity function, and α is
a weighting vector that determines the contribution of each
prompt. Subsequently, we select the set of the top-n most
similar keys Kp based on alpha α and combine the prompts
to represent the final selected prompts:

P̄t
c =

∑
ki∈Kp

αiP
s
i . (5)

According to select prompts in an instance-wise fashion, we
can adaptively aggregate classes with similar features to up-
date the scene-aware prompt, thus being able to consider
both the commonality and specificity of the classes.

Generating multi-modal prompts. In the textual
branch, leveraging the scene-adaptive generator and the se-
lection mechanism, we can obtain scene-specific prompts
P̄t

c for class c to adaptively transfer the knowledge from the
pre-trained model. The input embedding is formulated as:

t′c = T ([P̄t
c;w1, ...,wL1 ; cls]). (6)

16744



As the classification loss is updated, the network gradu-
ally learns shared and scene-specific knowledge by updat-
ing Pa, us

i , and vs
i .

Also, for the visual prompts, we can obtain:

ē′p = V([P̄v
p;v1, ...,vL2

; cls]), (7)

where P̄v
p is selected scene prompt for the ēp. The region

features ē′p are used for distillation with the detector in the
training stage.

4.2. Region-aware Multi-modal Alignment

While the scene-adaptive prompts can improve the knowl-
edge transfer of the pre-trained model, the gap between
image-level pre-training and region-level detection remains
unresolved and there is no clear alignment between visual
and textual space. To tackle this issue, we propose a region-
aware multi-modal alignment module that incorporates po-
sitional information from global features into region fea-
tures by region prompts, and incorporates textual insights
into visual features, which helps to align visual and textual
knowledge at the region level.

Constructing region-aware prompt. As the global fea-
ture context inherently includes positional information, we
introduce a learnable region prompt coupled with the re-
gion mask of each image to interact with the tokens across
the entire image, which extracts positional information and
subsequently transfers it to the region features.

Specifically, we first introduce a learnable region prompt
Pr ∈ RH×W×3 consistent with the dimensions of the input
image. Then, we construct a position mask M ∈ RH×W×3

for each image, in which the pixels within the ground truth
boxes are assigned a value 1, while the remaining regions
are set to 0. The region prompt is conducted as Pvr =
Pr ⊕M, where ⊕ is the pixel-wise addition operator.

Then we combine the region prompt with patch tokens
of the whole image Xg to extract the position representation
from the CLIP:

er = V([Xg;P
vr;x[r]]), (8)

where x[r] plays the same role as the [cls] token, capturing
positional information based on the interaction between the
region prompt and other tokens, and [; ] is the concatenation
operation.

To incorporate the position information, we integrate the
embedding of the region prompt with the object feature ēp.
This fusion is achieved through the use of multi-head self-
attention modules (MSA) to enable effective interaction be-
tween the region embedding and object features. MSA first
maps each feature into three vectors, q,k,v ∈ Rdh , with
linear projection parameterized by Wq and Wkv , i.e.:

[k,v] = ē′pWkv q = erWq, (9)

A = softmax(qk⊤/dh
1/2). (10)

The attention weights A are used to choose and aggregate
information from region prompts. The final output is ob-
tained by concatenating the object feature with the attention
value:

ẽp = (Av⊤)Wo + ēp, (11)

where Wo denotes the parameterized linear projection.
Aligning multiple modalities. After incorporating posi-

tion information, we further integrate text prompts into the
visual features at the output end. This integration aims to
enhance the transfer of information across multiple modali-
ties, facilitating the accurate computation of the classifier’s
visual features and the similarity with text embeddings.

For a region proposal p belongs to an image Ij , if Ij con-
tains ground truth information of Cj multiple classes, we
compute the mean value of the textual embeddings corre-
sponding to each class t̂′j . Then an interaction mechanism
that allows modulating and augmenting semantic prompts
to the visual features is proposed:

t̂′j =
1

|Cj |
∑
cj∈Cj

t′cj , (12)

ẽ′p = f([ẽp, t̂
′
j), (13)

where f is a 2-layer MLP module with the sigmoid activa-
tion function.

By incorporating the positional and textual information
in an ensemble approach, the visual prompts and the region
prompt can be dynamically learned, and the region feature
ẽ′p can enjoy stronger transferability for better distillation.

4.3. Overall Training and Inference Process

In the training stage, we generate text embeddings t′c as
the classifier weight for class c, and calculate the similar-
ity PC(p, yp) with the visual embedddings Eo = {ep}p∈P
of the student network. The classification loss is:

Lcls = −
∑
p∈P

logPC(p, yp). (14)

In the process of feature distillation, as in previous meth-
ods [8, 30], we obtain the final proposal embeddings
Ẽ ′ = {ẽ′p}p∈P through the teacher network for aligning
region embeddings with the student embeddings: LO =
L1(Ẽ ′, Eo). L1 is the Mean Absolute Error. We also dis-
till the features of the whole image, and the distillation loss
denotes as LG, so Ldistill consists of LO and LG. The total
training loss is:

L = Ldistill + Lcls + Lrpn + Lreg, (15)

where Lrpn denotes the classification and regression losses
of the RPN, and Lreg is the regression loss of the detector.
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Method Supervision Backbone Detector Prompt mAPN
50 mAPB

50 mAP50

Region-Aware Pretraining
OV-RCNN [35] Caption R50-C4 FRCNN - 22.8 46.0 39.9

LocOv [1] Caption R50-C4 FRCNN - 28.6 51.3 45.7
MEDet [4] Caption R50-C4 FRCNN T(cat) 32.6 53.5 48.0
VLDet [18] Caption R50-C4 FRCNN T(cat) 32.0 50.6 45.8
RO-ViT [14] ALIGN ViT-B/16 MRCNN T(cat) 30.2 - 41.5

Pseudo-Labelling
RegionCLIP [37] Caption R50-C4 FRCNN T (cat) 26.8 54.8 47.5

Detic [39] Caption R50-C4 FRCNN T (cat) 27.8 47.1 45.0
PromptDet [6] LAION-novel R50-FPN MRCNN L (cat+desc) 26.6 - 50.6
PB-OVD[7] Caption R50-C4 FRCNN T (cat) 29.1 44.4 40.4
XPM [10] Caption R50-C4 FRCNN - 27.0 46.3 41.2
GOAT [29] Caption R50 FRCNN T (cat) 31.7 51.3 46.1

Transfer Learning-based
F-VLM [15] - R50-FPN MRCNN T (cat) 28.0 - 39.6

Knowledge Distillation-based
ViLD [5] CLIP R50-FPN FRCNN T (cat) 27.6 59.5 51.2

ZSD-YOLO [33] - CSP-DN53 YOLOv5x T (cat+desc) 13.6 31.7 19.0
HierKD [22] Caption R50-FPN ATSS T (cat/desc) 20.3 51.3 43.2
OADP [30] - R50-FPN (SoCo) FRCNN T (cat) 30.0 53.3 47.2

BARON [32] CLIP R50-FPN (SoCo) FRCNN T (cat) 34.0 60.4 53.5
Ours CLIP R50-FPN (SoCo) FRCNN SAP 34.8 61.4 54.2

Table 1. The comparision results with other methods on the OV-COCO dataset.

In the testing phase, we only utilize the trained student
network to extract features. The classifiers can be extended
to novel classes by incorporating the names of newly intro-
duced classes and selecting the trained scene prompts dy-
namically.

5. Experiments

In this section, we comprehensively evaluate our SAMP on
the OVD task. More results are provided in the Appendix.

5.1. Datasets and Metrics

Datasets. We evaluate our method on two commonly-used
datasets OV-COCO and OV-LVIS. Following the bench-
mark proposed in [35], the classes in the COCO dataset [19]
are divided into 48 base classes and 17 novel classes. The
model is trained on the 48 base classes, and then evaluated
on the validation set containing both the base and the novel
classes. We also conduct experiments on the LVIS v1.0 [9]
dataset. On the LVIS dataset, the model is trained on 461
common classes and 405 frequent classes, and subsequently
evaluated using the LVIS validation set.

Metrics. We evaluate the performance under the “gener-
alized” setting, where the model needs to predict both base
and novel classes for completeness. Consistent with prior
works [35], for OV-COCO, we report the mAP50 for base,
novel, and all classes, denoted as mAPB

50,mAPN
50,mAP50.

For OV-LVIS, we report APr, APc, APf , and AP for rare

(novel), common, frequent, and all categories.

5.2. Experimental Details

Following previous works [5, 30], our model utilizes the
Faster-RCNN with a ResNet-50 backbone, and initializes
the student backbone using SoCo [12]. We set the batch
size as 16 and run the SGD optimizer with an initial learn-
ing rate of 0.02 and a weight decay of 2.5 × 10−5. For the
teacher network, we adopt the ViT-B/32 CLIP. Under the
OV-COCO setting, we train the detector for 40, 000 iter-
ations. For OV-LVIS, we use a 2x training schedule. We
set 15 scene prompts on the OV-COCO dataset and 100 on
OV-LVIS, and select 5 most prompts for each instance.

5.3. Benchmark Results

Results on OV-COCO. To evaluate the effectiveness of our
approach, we compare the results with previous state-of-
the-art methods on the COCO dataset in Table 1, and we
mainly compare with the RCNN-based detectors. As in
[40], we classify the OVD methods into four types based on
the availability of supervisory information, such as image-
caption pairs, pseudo pairs, or pre-trained models. T(cat)
denotes they adopt the prompt templates for text input, and
L(cat) means they adopt the learnable prompts, “desc” is
class descriptions obtained from WordNet [23].

Compared to previous knowledge distillation-based
models, our method has demonstrated a 7.2% improvement
over the ViLD method, which utilizes hand-crafted tem-
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Method Backbone Detector Teacher Prompts APr APc APf AP
Detic [39] R50-FPN MRCNN - T(cat) 17.8 26.3 31.6 26.8

PromptDet [6] R50-FPN MRCNN - L(cat+desc) 21.4 23.3 29.3 25.3
CondHead [31] R50-C4 MRCNN - T(cat) 19.9 28.6 35.2 29.7
ViLD-ens [5] R50-FPN MRCNN CLIP T(cat) 16.7 26.5 34.2 27.8

DetPro [5] R50-FPN (SoCo) MRCNN CLIP L(cat) 20.8 27.8 32.4 28.4
F-VLM [15] R50-FPN MRCNN - T(cat) 18.6 - - 24.2
OADP [30] R50-FPN (SoCo) FRCNN CLIP T(cat) 21.9 28.4 32.0 28.7

BARON [32] R50-FPN (SoCo) FRCNN CLIP L(cat) 23.2 29.3 32.5 29.5
Ours R50-FPN (SoCo) FRCNN CLIP SAP 27.8 30.4 36.8 34.3

Table 2. The comparision results on LVIS dataset.

method backbone detector VOC COCO
mAP50 mAP mAP50

ViLD R50-FPN MRCNN 72.2 36.6 55.6
OV-DETR R50-C4 Def-DETR 76.1 38.1 58.4

DetPro R50-FPN (SoCo) MRCNN 74.6 34.9 53.8
F-VLM R50-FPN MRCNN - 32.5 53.1

GridCLIP CLIP (R50) FCOS 70.9 34.7 52.2
Ours R50-FPN(SoCo) MRCNN 76.8 38.6 58.9

Table 3. OVD performance under the CDTE protocol on the test
set of Pascal VOC and validation set of COCO.

Method mAPB
50 mAPN

50 mAP50

Baseline 56.5 27.6 48.2
Baseline+SAP 59.6 32.8 53.1
Baseline+RMA 59.3 32.3 52.7

Ours 61.4 34.8 54.2

Table 4. The effectiveness of each component.

shared scene mAPB
50 mAPN

50 mAP50

textual
√

57.1 29.3 48.9√
58.8 31.6 50.8

visual
√

57.3 28.8 49.3√
58.5 30.7 50.8

multi-modal
√

57.8 29.1 49.8√
59.6 32.8 53.1

Table 5. The effectiveness of of different prompts in generator.

plates. BARON performs well on mAPN
50, but is lower

on 6.6% on mAPB
50 and 5.1% on mAP50. Therefore our

method reduces the performance gap in known classes and
improves over the novel classes as compared to all previous
works. We can see that region-aware pre-training methods
generally achieve better results because they can utilize in-
formation from a large number of image-text pairs to pre-
train for the detection task, while our method just adapts the
CLIP to detectors.

Results on OV-LVIS. We also conduct experiments on
the OV-LVIS dataset as shown in Table 2. We mainly com-
pare with the RCNN-based methods, and other results can

Method mAPB
50 mAPN

50 mAP50

Baseline 56.5 27.6 48.2
+random 57.1 28.4 49.7

+decomposition 58.8 31.6 50.8
+region prompt 58.7 30.4 49.7

+text prompt 57.9 29.6 50.2
+all 59.3 32.3 52.7

Table 6. The effectiveness of low-rank decomposition and fusing
different prompts.

be seen in the Appendix. Our best model achieves 27.8%
APr, which significantly outperforms the best existing ap-
proach by 4.6 points. The PromptDet and DetPro adopt the
learnable prompts for text embedding, and our method can
outperform them by 6.4% and 7.0% respectively.

Cross-dataset Transfer Evaluation (CDTE). To eval-
uate the generalization ability of SAMP, we also perform
cross-dataset transfer evaluation, in which the model is
trained on the LVIS base classes and evaluated on the OV-
COCO and Pascal-VOC datasets. We replace the LVIS with
other datasets’ vocabulary embeddings to perform the trans-
fer detection without finetuning. The results can be seen
in Table 3. It can be seen that the model trained on LVIS
has better migration and generalization capabilities. After
analysis, it is found that the categories in LVIS are rela-
tively fine-grained categories, and there are many similar
categories on COCO and VOC datasets.

5.4. Analytical Experiment

Ablation of different component. Table 4 shows the
effectiveness of each module in our SAMP framework.
The baseline method is the re-implemented ViLD-ensemble
as in [30], where the classifier weights are hand-crafted
prompts. The second and third rows in the table show
that the proposed scene-adaptive prompt generator and the
location-guided multi-modal fusion all benefit the adapta-
tion performance. Applying the scene adaptive prompt gen-
erator module brings a 5.2% mAPN

50 gain, suggesting that
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(a)

(b)

(c)

Figure 3. (a) The similarity between the learned prompts and the
classes. (b),(c) The results of different prompt lengths and differ-
ent prompt sizes on OV-COCO dataset.

it can better adapt the pre-trained knowledge to the detec-
tor, while the region level multi-modal fusion brings 4.7%
mAPN

50 gain, meaning that align the visual and language is
better for adaptation. The combination of generator and fu-
sion can further improve the performance.

Ablation in each component. In Table 5, we show
the results with only shared prompts and adaptive prompts
for the text branch, visual branch, and the whole method.
The shared prompt means that all classes learn a common
prompt. It can be observed that all learnable prompts en-
hance the performance of the base classes. Furthermore, it
is evident that both class-aware visual and text prompts con-
tribute to boosting performance in novel classes by 1.9%
and 2.3% respectively. Moreover, we compared the effect
of the low-rank decomposition in the upper part of Table 6,
and we can see that there is a better improvement on both
the base and novel classes when constructing different scene
prompts using the low-rank decomposition.

Table 6 also shows the results of incorporating different
prompts in the RMA module. We can observe that both
region and semantic prompts significantly enhance perfor-
mance, leading to accuracy improvements across all classes
by 1.5% and 2.0%, respectively. Region prompts improved
by 2.2% on base classes, while only text prompt is slightly
lower, perhaps because it can better fit base classes with re-
gion prompts to distill the region information. Furthermore,
the accuracy of all classes is further improved by combining
them. These results indicate that the proposed semantic and
region fusion is an effective approach for detection.

Analysis of the scene prompt. Figure 3 (a) shows the
similarity between the learned textual prompts and some
classes, p1-p4 represents the learned prompts. We can see
that prompt 1 is more similar to the animal classes while
prompt 2 is more similar to classes of fruit. Figure 3 (b)

Figure 4. Visualization of the detection results.

shows the results for different prompt lengths on the COCO
dataset. To evaluate the effect of the prompt length, we
study 4, 8, 12, and 16 prompt tokens. It can be observed that
the differences are fairly small whereas the context length 8
can achieve a better performance. Figure 3 (c) summarizes
the results for different sizes of scene prompts. We can ob-
serve that the best size for the OV-COCO dataset is 15.

5.5. Visualization

In Figure 4, we visualize the detection results of our
method. The top row displays the ground truth labels of
the objects, while the bottom row shows the predictions of
our SAMP model. This visualization effectively demon-
strates the capabilities of our SAMP model. In particular,
our model excels at detecting objects from both novel and
base classes. For instance, in the first column, our model
accurately distinguishes between a couch and a chair.

6. Conclusion

In this work, we propose scene-adaptive and region-aware
multi-modal prompts for the OVD task, which enables
adaptive migration of class-aware knowledge and helps to
narrow the distribution gap between detection and pre-
training. Unlike previous works that rely on prompt tem-
plates or learn a common prompt for all classes, we formu-
late a novel prompt generation mechanism to construct a set
of scene prompts, and design an instance-based selection
mechanism to adaptively learn the prompts that are suit-
able for visual and textual inputs. Furthermore, we incorpo-
rate the region prompt and the semantic prompt into region
features to align visual and linguistic representations at the
region level. Experiments show that our method can bet-
ter transfer the knowledge for both base classes and novel
classes. We hope that our work can help other researchers
gain better insight into the OVD problem and develop better
open vocabulary detectors.
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