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Abstract

Refractive Index Tomography is the inverse problem of
reconstructing the continuously-varying 3D refractive in-
dex in a scene using 2D projected image measurements.
Although a purely refractive field is not directly visible, it
bends light rays as they travel through space, thus provid-
ing a signal for reconstruction. The effects of such fields
appear in many scientific computer vision settings, ranging
from refraction due to transparent cells in microscopy to the
lensing of distant galaxies caused by dark matter in astro-
physics. Reconstructing these fields is particularly difficult
due to the complex nonlinear effects of the refractive field
on observed images. Furthermore, while standard 3D re-
construction and tomography settings typically have access
to observations of the scene from many viewpoints, many
refractive index tomography problem settings only have ac-
cess to images observed from a single viewpoint. We in-
troduce a method that leverages prior knowledge of light
sources scattered throughout the refractive medium to help
disambiguate the single-view refractive index tomography
problem. We differentiably trace curved rays through a neu-
ral field representation of the refractive field, and optimize
its parameters to best reproduce the observed image. We
demonstrate the efficacy of our approach by reconstructing
simulated refractive fields, analyze the effects of light source
distribution on the recovered field, and test our method on a
simulated dark matter mapping problem where we success-
fully recover the 3D refractive field caused by a realistic
dark matter distribution.

1. Introduction
When light passes from one medium to another, such as
from air to water, it encounters a change in refractive index
(RI). As a result, light rays are bent, or refracted, accord-
ing to the magnitude of this change, causing effects like
the shimmering (caustics) at the bottom of a pool of water.
Media such as hot gas or translucent cell samples have RIs

that continuously vary in space, causing light to take paths
curved by the gradient of the underlying RI field. Although
the RI field is not directly visible, its effect on the scene’s
illumination provides clues to its structure.

Spatially varying RI fields are present in a diverse range
of scientific applications. For example, certain fiber optic
cables are designed to smoothly refract light away from the
cable’s outside padding [31]. In seismology, pressure waves
from earthquakes are refracted continuously as they travel
through ground structures of varying density [23]. In as-
trophysics, gravitational effects from massive dark matter
structures lens the light from faraway galaxies resulting in
observable effects in telescope images. When the degree of
these gravitational lensing effects is relatively weak, they
can be modeled as refraction [15].

In this work, we seek to tackle the problem of single-
view RI tomography: 3D reconstruction of RI fields where
image measurements are available only from a single view-
point. This problem setting occurs when using telescope
images or a single camera on scenes in the wild, and poses
several challenges. First, image measurements are produced
by rays traveling along continuously curving trajectories
through the scene, where curvature is due to the structure of
the underlying RI field. Unlike in linear tomography prob-
lems, where the projection geometry is independent of the
medium, in RI tomography the ray paths are dictated by the
unknown medium properties themselves. Thus the mea-
surements are a non-linear function of the targeted refrac-
tive field. Second, limiting image measurements to a single
viewing angle makes the problem severely ill-posed. That
is, there are many possible refractive fields which could
potentially produce the same image measurements. How-
ever, by leveraging the location of light sources distributed
throughout the scene we can better constrain the recovery.

We propose a novel approach using neural fields with
continuous ray tracing that leverages the physics of light
propagation to recover an underlying refractive field. In
particular, we represent the spatially varying RI field with
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Figure 1. We formulate and present an approach for single-view refractive field reconstruction that explicitly models curved ray paths
through a neural field. By leveraging spatial information and the emission profile of light sources located throughout the volume, we are
able to localize refractive structures in 3D with just a single viewpoint. Here we demonstrate our approach on a simulation involving a
realistic refractive field induced by simulated dark matter halos. Despite the large patches of space that are void of galaxy emitters, our
method is still able to recover the rough structure of the 3D dark matter distribution from a single simulated telescope image of refracted
galaxies. This reconstruction is also especially challenging because of the extremely weak degree of refraction, as seen in the relative
scale of the intensity difference plot; the refractive effects of dark matter result in an intensity change of at most ±0.3% of the maximum
intensity of the original image. This experiment uses a realistic dark matter distribution derived from IllustrisTNG [27], but we leave the
inclusion of realistic measurement noise to future work.

a coordinate-based neural network, which we optimize
through a differentiable rendering procedure that traces
paths of light through the refractive field to best reproduce
measurements. Coordinate-based neural networks are ad-
vantageous for this problem because they provide a contin-
uous, easily-differentiable representation of the refractive
field as a function of space. We also find empirically that
coordinate-based neural networks lead to better optimiza-
tion behavior out-of-the-box than other representations such
as linearly interpolated grids.

Our approach expands upon recent works in neural scene
representation [21, 25]. While in these works ray paths
through the scene are assumed to be known, our approach
explicitly models and solves for unknown refracted ray
paths. We first study the conditions under which single-
view reconstruction is possible, then test our approach by
analyzing its ability to recover weak refractive fields. Next,
we analyze the sensitivity of our approach to the density of
light sources in the scene. Finally, as shown in Fig. 1, we
include a case study motivated by the application of weak
lensing where our method recovers the refractive field gen-
erated by physically realistic simulations of dark matter.

2. Related Work
Image-Based Refractive Field Recovery The reconstruc-
tion of refractive objects and phenomena is an ongoing field
of study, both in applications that make use of standard con-
sumer cameras as well as scientific imaging applications.
In Background-oriented Schlieren (BoS) imaging, images
taken of a background with and without refractive effects
are correlated to estimate an optical flow describing a pro-
jected measurement of the refractive field [4]. Combin-
ing these projected measurements from multiple viewpoints

through tomography gives an estimate of the 3D gradients,
from which the 3D field can be estimated from a Poisson
solver. A similar type of tomography can be done to pas-
sively model 3D turbulence statistics by combining time re-
solved deflection measurements from multiple viewpoints
[1]. Optical flow estimates such as those in BoS can also
be used to detect refractive “wiggles” in fluid flow that can
then be used to track the projected motion of the refractive
media; by observing these wiggles with stereo cameras the
fluid’s depth can also be recovered [40]. Fluid refraction
from water can also be estimated by submerged cameras
viewing the sun as a guiding point [2].

While the aforementioned methods utilize the physics
behind ray optics, they don’t explicitly model the contin-
uously curved paths that rays take through these refractive
media during 3D reconstruction. A method using the re-
fractive curvature of traced rays to supervise an interpolated
grid model has been shown to be effective for reconstructing
and designing refractive media [37]. However, as with the
previous methods, this method still relies on access to mul-
tiple viewpoints to reconstruct the refractive volume. In this
work, we instead seek to tackle the challenge of accurately
reconstructing 3D refractive fields from a single viewpoint.

Applications Recent works in optics have used differen-
tiable rendering techniques to design refractive surfaces for
various applications. The materials making up the lens typ-
ically have a constant RI, meaning light is refracted a dis-
crete number of times at the interface between the lens and
the surrounding air. Thus, these works solve for the opti-
mal shape of the material rather than an RI field varying
within the lens. Fast differentiable ray tracing techniques
have been used for the design of a single lens to produce a
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target image [22], as well as compound lenses for camera
design [38]. These types of lens designs are aimed at repro-
ducing a target image or favorable image effects. While we
also aim to optimize a refractive field to match a set of ob-
served image measurements, we are interested in recovering
the properties of the refractive medium itself.

In biomedical imaging, Optical diffraction tomography
(ODT) uses the intrinsic optical variation in a sample to re-
construct its RI field [11, 34]. Holographic measurements
are taken from multiple illumination angles with coherent
light modeled by wave optics. For example, in [12], the au-
thors present a technique to recover RI by using intensity-
only measurements from multiple viewpoints. DeCAF [24]
uses a neural field representation to solve this inverse prob-
lem. Our problem setup differs from these biomedical ap-
plications in that we attempt to solve this problem with-
out access to active illumination and coherent light sources.
Additionally, we use ray optics rather than wave optics in
our characterization of light transport.

We are motivated in particular by the application of grav-
itational lensing, where light coming from small elliptical
sources (galaxies) curves on its path to Earth due to an in-
visible dark matter distribution. In the weak lensing regime,
the small ray deflections caused by dark matter can be well-
approximated as a refractive effect [15], allowing us to
model the large-scale structure of the dark matter distribu-
tion as an RI field. Existing works use a linear tomography
approach similar to that of BoS [4] by first computing a 2D
projected map of mass density, then backprojecting into 3D
to obtain a reconstruction. Because image measurements
are limited to a single viewpoint, filtered backprojection-
style methods [33, 39] are susceptible to heavy smearing
along the line of sight, even in the absence of noise. In
[19, 20] an approach is used that assumes the density field
can be sparsely represented by a dictionary of dark matter
halos. However, this assumption is only approximately true
in practice; our method can instead reconstruct 3D RI fields
induced by a general matter distribution.

Coordinate-based Neural Representations Recently
coordinate-based neural networks have gained traction for
applications in vision and graphics. These models typically
parameterize a three dimensional field, such as a scene’s ra-
diance, with the weights of a multi-layer perceptron (MLP).
Coordinate-based neural representations have been used in
graphics to model shapes with occupancy fields [10], as
well as three-dimensional realistic scenes with neural radi-
ance fields [25]. Both of these works rely on a fixed straight
ray assumption to render scenes for training and inference.
Coordinate-based MLPs have also been used in black hole
imaging [21] to reconstruct emission fields with curved ray
paths dictated by general relativity; however, the paths taken
by rays of light are calculated then fixed beforehand accord-
ing to a specific model of gravitational lens. In contrast, our

work seeks to optimize ray paths that are unknown and di-
rectly estimated during model training.

Eikonal ray-tracing with neural fields has been used for
refractive tomography in the context of novel-view synthe-
sis [6]. However, this work uses images of the scene from
multiple viewpoints for supervision. Additionally, it fo-
cuses on recovering scenes which have a piecewise con-
stant RI (e.g. a glass block with constant RI surrounded
by air), where no light emission occurs within the refractive
medium. While it achieves impressive results for rendering
images from novel viewpoints, the reconstructed refractive
indices of these volumes fail to match the ground truth. In
contrast, our method leverages visible light sources from
within the refractive medium to enable accurate reconstruc-
tion of a refractive volume from only a single viewpoint.

3. Forward: Image Formation Model
This section details the components of the image formation
(forward) model. First, we introduce the equations govern-
ing the refraction and intensity measurements of individ-
ual rays. Next, we detail the numerical integration used to
model image intensity measurements at a sensor.

3.1. Refractive Ray Tracing

Purely refractive media are translucent and affect light rays
by curving their paths rather than modifying their intensity.
Light travels more slowly through more optically dense ma-
terial, causing it to bend towards an increase in optical den-
sity. The RI η is a scalar used to quantify the optical density
of a material relative to a vacuum; in natural settings, η ≥ 1
as light cannot exceed its speed in a vacuum. In this work,
we are interested in volumes with a continuously varying
refractive index. The effect of a continuously varying RI η
on a light ray’s position x and direction v is described by
Hamilton’s equations for ray tracing [16]:

dx

ds
=

v(s)

η(s)

dv

ds
= ∇η(s)

(1)

(2)

Here the derivatives of the 3D ray position x and direc-
tion v are taken with respect to the ray path length s, and
are described in terms of the RI η and its gradient ∇η. The
directional derivative of Eq. (2) can be understood as an
attractive force towards local increases in RI.

Given an initial position and direction x0, v0 ∈ R3, equa-
tions (1) and (2) describe a first-order initial value problem
whose solution Γ(s) = (x, v) is a curve describing the tra-
jectory of a ray as a function of its path length s:

Γ(s) = (x0, v0) +

∫ s

0

(x′(s̃), v′(s̃)) ds̃ (3)

An illustration of refractive ray tracing is given in Figure 2.
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Figure 2. Illustration of ray tracing in a refractive field. Ray paths
are calculated iteratively by solving the Hamiltonian equations (1),
(2) parameterized by the refractive field η. Rays are curved locally
towards areas of high RI in the direction of ∇η.

3.2. Sensor and Light Emission Integration

The sensor is modeled as a single-wavelength pinhole cam-
era positioned outside of the scene. The intensity image I of
a given scene is represented as a discrete function indexed
by pixel coordinates i, j. The specific intensity of a pixel
I(i, j) is given by integration of light emission over a ray
path solution Γi,j , to Eq. (3). The initial conditions Γi,j(0)
are defined by the position and direction of a ray traveling
backwards from the sensor through the pixel center.

Within the scene, light emission e(x) is represented as a
continuous scalar function of a 3D coordinate x = (x, y, z),
and is assumed to be known. This assumption is commonly
used for refractive modeling problems in the forms of cal-
ibration images in BoS imaging [4] or galaxy catalogs in
dark matter mapping [15]. Given the ray path Γi,j starting
at the pixel in location (i, j), we model the specific intensity
I(i, j) by taking the line integral of emission coefficients e
along the path Γi,j :

I(i, j) =

∫
Γi,j

e(x(s)) ds (4)

Eq. (4) corresponds to a simplified model of light transport
in which the specific intensity is conserved along a ray’s
path. In gravitational lens theory [32], the emission term
in the integrand is decreased for sources in areas of high
refractive index due to gravitational redshift. However, for
gravitational RI fields with η close to 1, which we focus on
in this work, this effect is negligible and we thus exclude
it from our forward model [21]. In other applications of
refractive tomography [6, 28], the refractive radiative trans-
fer equation (RRTE) [3] may be more appropriate for the
rendering forward model. Further details, including experi-
ments with the RRTE, can be found in the supplement.

3.3. Numerical Integration

A ray path solution Γ = (x, v) to the Hamiltonian initial
value problem given by equations (1) and (2) is fully deter-
mined by the initial position and direction Γi,j(0) of the ray
traced through a pixel (i, j), the refractive field η, and its
gradient ∇η. Thus, we rewrite the integral in Eq. (3) as:

Γi,j = solveHam(Γi,j(0), η,∇η). (5)

Integrating the scene’s emission function e along the ray
path Γ as in Eq. (4) allows us to calculate image intensities:

I(i, j) = renderIm(Γi,j , e). (6)

In general, closed-form solutions for integrals (5) and (6) do
not exist, so they are solved numerically. We use an adap-
tive step-size Dormand-Prince integrator [13] to solve Eqs.
(5) and (6) in our experiments. Backpropagating through
the integrator using autograd requires memory in the order
of the number of solver steps. Instead, we follow previous
works [6, 9, 37] in using the adjoint formulation [30] which
has constant memory requirements for backpropagation.

4. Inverse: Estimating a Refractive Field
In this work, we focus on weakly refractive fields where the
deflections of a single source are on the order of fractions
of a pixel. Although this may seem small, we rely on the
combined signal across an ensemble of lensed sources.

To solve the inverse problem of refractive tomography
in this setting, we use an analysis-by-synthesis approach.
We model the continuous refractive field with a coordinate-
based MLP, which is optimized to fit a true observed image.
In the following section we describe the neural representa-
tion and optimization scheme.

4.1. Continuous Refractive Field Representation

To form a candidate continuously-varying 3D refractive
field, we use a coordinate-based MLP inspired by the NeRF
[25] model. The MLP, parameterized by weights θ, takes
as input spatial coordinates x and outputs a scalar index of
refraction. To ensure that our reconstruction is physically
plausible, we apply the Softplus function σ to restrict the
output of our network to be greater than 1:

η̂θ(x) = σ(MLP(γ(x)); θ). (7)

Here, γ(x) is a positional encoding layer mapping an in-
put coordinate to a set of Fourier basis functions [36] with
exponentially-increasing frequencies:

γ(x) = [sin(x), cos(x), . . . , sin(2L−1x), cos(2L−1x)]T .

(8)
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Figure 3. Refractive Tomography Pipeline. We model a 3D RI field η̂(x) as a continuous function using a neural network parameterized
by θ. This refractive field, along with the known visible emission field e(x) from point-like light sources, is fed through a ray tracing
simulator to produce a predicted 2D image measurement. An image loss is then taken between the model and true image measurements
to solve for θ. We differentiably trace rays through this refractive field and accumulate the light emitted along these curved ray paths to
produce a 2D image. This allows us to optimize MLP parameters θ to minimize the loss between the rendered and true image measurements.

Adding this positional encoding allows the MLP to fit con-
tinuous fields with higher spatial frequencies as the degree
L is increased [36]. We find empirically that a degree of
L = 4 is suitable for naturally smooth refractive fields.

Ray tracing through our model field requires integrating
equation (5) during each training iteration. This requires
evaluating the model η̂θ and its spatial gradient ∇η̂θ at con-
tinuous spatial locations over the course of optimization,
and for both of these functions to be differentiable with re-
spect to the model parameters θ for gradient descent. In
other words, we need to be able to evaluate ∇θ∇xη̂θ at ar-
bitrary points throughout the modeled refractive field. We
use the eLU activation function rather than a ReLU so that
this gradient is smooth during optimization, and can be eas-
ily evaluated with existing autograd frameworks.

4.2. Optimization

Our neural field model defines a continuous refractive field
η̂θ and its gradient ∇xη̂θ parameterized by its weights θ.
Thus, a rendered image Î obtained by ray-tracing through a
neural field η̂θ with Eqs. (5) and (6) is a function of θ.

An overview of our pipeline is shown in Fig. 3. To
train the neural network weights θ, we solve a minimiza-
tion problem whose objective is a mean-squared error be-
tween the observed image I(i, j), and the rendered im-
age Î(i, j; θ), plus a regularization term R(θ) to enforce
a boundary condition of η = 1 on the cube’s faces:

min
θ

L(θ) =
∑
i,j

||I(i, j)− Î(i, j, θ)||22 + λR(θ). (9)

This loss is fully differentiable with respect to model pa-
rameters θ, allowing us to use gradient descent to solve the
optimization. The term R(θ) acts only as a constraint on the
boundary conditions of the volume; unlike explicit regular-
izers, such as total variation, we rely on the implicit regu-

larization from the neural field for our reconstruction. More
details on the R(θ) term can be found in the supplement.

4.3. Implementation Details

In our experiments, we use an MLP with 4 layers, where
each layer is 256 units wide. The neural network is imple-
mented in JAX [7] and trained with the Adam optimizer
[17] with exponential learning rate decay from 10−4 to
5 × 10−6 over 10K iterations. The weights of the neu-
ral network were randomly initialized with the He uniform
variance scaling initializer [14]. Code implementation will
be publicly available on the project page.

Unmodeled Sources of Noise Because our method lever-
ages information about the location and shape of light
sources to enable reconstruction from a single viewpoint,
it is sensitive to noise in both our knowledge of light source
locations and in image measurements. An analysis of our
method’s sensitivity to these noise sources can be found in
the supplement. We plan to investigate ways to overcome
this sensitivity in future work.

5. Results
In this section we present results of our method on gen-
eral refractive tomography problems. We generate ground
truth refractive fields inside of a three-dimensional volume,
where the RI takes a constant value of 1 outside the region
of interest. Each ground truth refractive field is defined by
evaluating a continuous function at regularly spaced grid
points. The continuous field is then evaluated by linearly
interpolating between these grid points. Image measure-
ments are rendered using a pinhole camera with a 642 reso-
lution. Throughout this section, we quantify the accuracy of
our reconstructions by sampling the ground truth and recon-
structed fields on the same uniformly spaced grid of sample
points as the ground truth and report the PSNR. When cal-
culating the PSNR, we first subtract 1 from the RI.
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Figure 4. Measurement and Reconstruction Conditions. We compare our neural field reconstruction model to a linear voxel grid with
and without TV2 regularization for gas flow reconstruction under three different measurement conditions. While single-view recovery is
difficult with measurements of ray displacement, we find that image measurements of light sources spread throughout the refractive volume
makes recovery possible with our method. In addition, a neural field’s implicit regularization results in better-constrained reconstructions
than the linear voxel grid, even when an explicit regularizer is used. In each recovery we super-impose the ground-truth gas plume in blue
over the reconstruction in yellow for comparison. We note that all reconstructions shown fit the measurements almost perfectly; differences
in their structures highlight the ill-posedness of the problem.

5.1. Measurement and Reconstruction Conditions

In this section we compare refractive reconstructions un-
der nine conditions: three sets of measurement conditions
paired with three different reconstruction strategies. We
show that single-view RI tomography is made possible by a
combination of the measurement conditions of our problem
setting and the implicit regularization given by our neural
field model. Results are shown in Fig. 4.

Measurement Conditions: The first measurement con-
ditions mirror the astronomical domain that motivates our
work, in which image measurements are taken of light
sources distributed throughout the refractive volume (Fig. 4
top row). Secondly, we compare to image measurements
taken of light sources behind the volume (middle row).
Third, we investigate using ray displacement measurements
rather than image measurements; in this case, the displace-
ments correspond to a plane of light sources behind the vol-
ume (bottom row). To simulate the displacement measure-
ments, we ray trace through the ground truth refractive field
to recover a perfect optical flow map at the same resolution
as our sensor. Although this would be infeasible in practice,
we use these measurements to represent the ideal limit of
measurements from a single-view BoS setup [4].

Reconstruction Conditions: We also compare recon-
structions from three models: our neural field representa-

tion, a linear voxel grid, and a linear voxel grid with TV2

regularization, with regularizer weight chosen to maximize
PSNR with the ground truth volume. These correspond to
the last three columns of Fig. 4, respectively. The goal of the
regularized voxel grid is to show that our method can out-
perform even the highest-performing TV2 model; in prac-
tice, it would be infeasible to choose the regularizer weight
in this way as we don’t have access to the ground truth.
Data & Results In Fig. 4 we demonstrate the effect of
each pair of conditions in reconstructing the fuel injection
dataset (a 643 RI grid) from SFB 382 of the German Re-
search Council (DFG). Both a method using an unregu-
larized voxel grid as well as BoS have been shown to re-
construct this volume given access to multiple viewpoints
[4, 37]. We report the PSNR for each reconstruction, but
note that it isn’t fully representative of reconstruction qual-
ity, which should also be evaluated visually.

Effect of Measurement Conditions: When optimizing our
neural field model on image measurements of light sources
located throughout the refractive volume, accurate 3D re-
covery of the gas flow is possible with minimal artifacts (A).
However, in (B), where the light sources are instead located
behind the volume, the neural field is able to recover the
rough structure of the gas flow but not its absolute location.
When using displacement measurements, none of the recon-
structions (C, F, I) are able to correctly recover the shape
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Figure 5. Recovery of Smooth Refractive Fields. Each row
corresponds to a refractive tomography problem with a different
random refractive field against a random distribution of 290 light
sources. Although refractive recovery from a single viewpoint is
highly ill-posed, our method can leverage source location infor-
mation to detect and localize 3D refractive structure. However, as
can be seen in the third example, due to the ill-posed and highly
non-convex nature of this tomography problem, our model is still
be susceptible to error. The yellow cones indicate sensor direction.

of the gas flow from a single viewpoint, even with a per-
fect optical flow map. While it has been shown that voxel
grid optimization with displacement measurements can ac-
curately reconstruct this volume [37], having access to only
a single viewpoint causes the reconstruction to be smeared
along the optical axis. An analysis of the voxel grid recov-
ery with access to additional viewpoints can be found in the
supplement. We conclude that using image measurements
of light sources spread throughout the volume is a key ingre-
dient enabling 3D reconstruction from a single viewpoint.

Effect of Reconstruction Conditions: An image-based
loss on point-like light sources is highly nonconvex, and
thus models such as an unregularized voxel grid can be
prone to converging to bad minima. Although all recon-
structions in Fig. 4 fit the measurements almost perfectly,
each converges to a different refractive field. The unregu-
larized grid reconstructions (D, E) optimize locally along
ray paths to fit the image measurements, resulting in streak-
like artifacts and a highly non-smooth recovery. Even when
an explicit TV2 regularizer is used on the voxel grid, as in

recoveries (G) and (H), it still fails to recover the structure
of the gas flow along the optical axis. The implicit regular-
ization of our neural field model appears to favor compact
reconstructions, which matches the gas flow volume well.
In the following section, we show that this implicit regular-
ization also allows us to recover more general smooth fields.

5.2. Recovery of Smooth Refractive Fields

We demonstrate our approach by recovering randomly gen-
erated smooth refractive fields in a dense field of light
sources from a single viewpoint. We use Poisson Disk sam-
pling [8] to generate an emission field of 290 light source
locations. Light sources are amplitude scaled 3D Gaussians
with independent random elliptical orientations. Ground
truth refractive fields are generated from a random Gaus-
sian Process with a smooth covariance kernel described in
the supplement. These true fields were then scaled to an RI
range of 1 to 1.003. To put this RI magnitude into context,
the refractive effect of these fields causes a median devia-
tion of 0.03 to 0.07 pixels on a 642 pixel image for rays shot
parallel through the volume from the front to the back.

Fig. 5 shows that our method has the potential to accu-
rately reconstruct complex, smooth fields. However, due to
the ill-posedness and highly non-convex nature of this prob-
lem, our model is still susceptible to reconstruction artifacts,
as seen in the last row. Note that no explicit regularization
besides a boundary condition term was used in solving for
these refractive fields. Thus, our results suggest that our
neural network architecture combined with a low degree of
positional encoding act as an implicit prior on the smooth-
ness of our reconstruction, allowing it to effectively recover
smooth refractive fields.

5.3. Sensitivity to Light Source Density
From a single viewpoint, refractive fields are detected when
they lie between light sources and the sensor. Background
refractive structures become difficult to detect with a sparse
array of light sources since fewer light sources lie behind
them. Because we supervise our model with curved ray
paths throughout the scene, our model uses the deflections
between adjacent light sources to localize the refractive
field. Therefore, we expect that as available light sources
in the scene become sparser, our model will struggle to de-
tect and localize the structure of a refractive field.

We perform a refractive field reconstruction on a scene
containing five elliptical refractive objects in light source
emission fields of varying densities. We sample 250 light
source locations uniformly, and create emission fields of
decreasing density by taking random subsets of this initial
sample. We find that reconstruction quality of our approach
degrades with sparser light source fields, especially in the
background portion of the field. However, even with only
50 light sources in the volume, our method is able to accu-

25364



Ground Truth

50 Sources 100 Sources 250 Sources

22.2 dB 22.6 dB 25.3 dB

1.003

1

Figure 6. Sensitivity to Light Source Density. We analyze our
approach’s reconstruction of a refractive field given light source
fields with a range of densities. As the number of light sources
decreases, it becomes harder to detect and localize refractive ob-
jects, especially towards the back of the volume. However, even
with sparse light sources, our method is able to accurately resolve
refractive objects in the foreground. The yellow cones indicate
sensor direction.
rately resolve the structure of refractive objects in the fore-
ground. Results are shown in Fig. 6.

6. Case Study: Dark Matter Mass Mapping
In this section we show an application to astronomical
imaging of dark matter from simulations. In outer space,
clumps of invisible mass called dark matter permeate the
cosmic web. These clumps, called halos, are so massive
that their gravitational pull warps the surrounding space,
which lenses nearby passing rays of light. In the weak
lensing regime, the effects of gravitational lensing are well-
described by refraction from an “effective” RI field [26].
In fact, the degree of curvature in weak lensing is so small
that its effect on galaxy images is often modeled by a ro-
tation (rather than a translation) of the galaxy’s appearance
on the sky [5]. By combining telescope images with pho-
tometric redshift measurements of the distances of galaxies
from Earth, scientists are able to determine their approxi-
mate spatial locations. The inverse problem of dark matter
mass mapping is to reconstruct an invisible distribution of
dark matter given refracted images from telescope surveys
and photometric measurements of galaxy distances [15].

6.1. Simulated Dark Matter Halo Recovery

We now use our method to recover a realistic dark matter
refractive field. To generate this refractive field, we use
the cosmological hydrodynamical simulation IllustrisTNG,

which includes both dark and baryonic matter [27, 29].
We use the catalog of dark matter halos produced by the
TNG300-1 simulation, focusing on a 203 Mpc3 region con-
taining 1747 massive halos. As galaxy placement is known
to trace the dark matter distribution, we placed Gaussian
emission functions emulating galaxies at the center of the
300 most massive halos. We aim to reconstruct a realistic
dark matter distribution, but leave the inclusion of realistic
measurement noise to future work.

RI tomography in the weak lensing regime requires sen-
sors with sufficient resolution to detect the small shearing
effects from gravitational lensing. In our experiments, we
use an increased sensor resolution of 512 × 512; this reso-
lution in comparison with the scale of our scene is consis-
tent with that of current and upcoming weak lensing surveys
[18, 35]. We train our model using SGD, sampling batches
of 4096 rays per iteration due to memory constraints.

Our reconstruction of the invisible dark matter field is
shown in Fig. 1. Our method is able to accurately recover
the structure of the dark matter field with slight damping
on the largest peaks of halo centers. This recovery is es-
pecially challenging because of the distribution of galaxies
throughout the scene; large patches of the image are dark as
galaxies are not uniformly distributed throughout the vol-
ume. In addition, the amplitude of the refractive field gen-
erated by these halos is three orders of magnitude lower than
in our previous results, resulting in a weak refractive signal;
the median deflection caused by the refractive field is 6e−3
pixels. We find that despite these challenges, our method
is able to recover a refractive field that correlates strongly
with true simulated dark matter halos, and shows promise
for application to 3D dark matter recovery in the future.

7. Conclusion
In this paper we present a novel method for the tomogra-
phy of continuous refractive fields from single-view image
measurements with neural fields. Our method succeeds at
reconstructing simulated refractive fields with varying light
source density. By using the known location of light emit-
ters, our method reconstructs refractive volumes from a sin-
gle viewpoint that rival those of multiview methods. Finally,
our results on physically realistic simulations of dark mat-
ter show promise for the application of our method to real
weak lensing survey data for dark matter mapping. Beyond
dark matter fields, our method opens doors to reconstruct-
ing other refractive phenomena, underscoring the computer
vision community’s potential to drive significant advances
in scientific discovery with computational imaging.
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Genel, Jill Naiman, Rüdiger Pakmor, Lars Hernquist, Paul
Torrey, Mark Vogelsberger, Rainer Weinberger, et al. Simu-
lating galaxy formation with the illustristng model. Monthly
Notices of the Royal Astronomical Society, 473(3):4077–
4106, 2018. 8

[30] Lev Semenovich Pontryagin. Mathematical theory of opti-
mal processes. CRC press, 1987. 4

[31] William A Reed, Man F Yan, and Mark J Schnitzer.
Gradient-index fiber-optic microprobes for minimally inva-
sive in vivo low-coherence interferometry. Optics letters, 27
(20):1794–1796, 2002. 1

[32] Peter Schneider, Jürgen Ehlers, Emilio E Falco, et al. Gravi-
tational lenses [electronic resource]. 4

[33] Patrick Simon, AN Taylor, and Jan Hartlap. Unfolding
the matter distribution using three-dimensional weak grav-
itational lensing. Monthly Notices of the Royal Astronomical
Society, 399(1):48–68, 2009. 3

[34] Yongjin Sung, Wonshik Choi, Christopher Fang-Yen, Kam-
ran Badizadegan, Ramachandra R Dasari, and Michael S
Feld. Optical diffraction tomography for high resolution live
cell imaging. Optics express, 17(1):266–277, 2009. 3

[35] Masahiro Takada. Subaru hyper suprime-cam project. In AIP
Conference Proceedings, pages 120–127. American Institute
of Physics, 2010. 8

[36] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 4, 5

[37] Arjun Teh, Matthew O’Toole, and Ioannis Gkioulekas. Ad-
joint nonlinear ray tracing. ACM Transactions on Graphics
(TOG), 41(4):1–13, 2022. 2, 4, 6, 7

[38] Ethan Tseng, Ali Mosleh, Fahim Mannan, Karl St-Arnaud,
Avinash Sharma, Yifan Peng, Alexander Braun, Derek
Nowrouzezahrai, Jean-Francois Lalonde, and Felix Heide.
Differentiable compound optics and processing pipeline op-
timization for end-to-end camera design. ACM Transactions
on Graphics (TOG), 40(2):1–19, 2021. 3

[39] JT VanderPlas, AJ Connolly, Bhuvnesh Jain, and Mike
Jarvis. Three-dimensional reconstruction of the density field:
An svd approach to weak-lensing tomography. The Astro-
physical Journal, 727(2):118, 2011. 3

[40] Tianfan Xue, Michael Rubinstein, Neal Wadhwa, Anat
Levin, Fredo Durand, and William T Freeman. Refraction
wiggles for measuring fluid depth and velocity from video.
In Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part III 13, pages 767–782. Springer, 2014. 2

25367


	. Introduction
	. Related Work
	. Forward: Image Formation Model
	. Refractive Ray Tracing
	. Sensor and Light Emission Integration
	. Numerical Integration

	. Inverse: Estimating a Refractive Field
	. Continuous Refractive Field Representation
	. Optimization
	. Implementation Details

	. Results
	. Measurement and Reconstruction Conditions
	. Recovery of Smooth Refractive Fields
	. Sensitivity to Light Source Density

	. Case Study: Dark Matter Mass Mapping
	. Simulated Dark Matter Halo Recovery

	. Conclusion

