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Abstract

Simultaneous localization and mapping (SLAM) is a

fundamental task for numerous applications such as au-

tonomous navigation and exploration. Despite many SLAM

datasets have been released, current SLAM solutions still

struggle to have sustained and resilient performance. One

major issue is the absence of high-quality datasets includ-

ing diverse all-weather conditions and a reliable metric for

assessing robustness. This limitation significantly restricts

the scalability and generalizability of SLAM technologies,

impacting their development, validation, and deployment.

To address this problem, we present SubT-MRS, an ex-

tremely challenging real-world dataset designed to push

SLAM towards all-weather environments to pursue the most

robust SLAM performance. It contains multi-degraded en-

vironments including over 30 diverse scenes such as struc-

tureless corridors, varying lighting conditions, and percep-

tual obscurants like smoke and dust; multimodal sensors

such as LiDAR, fisheye camera, IMU, and thermal camera;

and multiple locomotions like aerial, legged, and wheeled

robots. We developed accuracy and robustness evaluation

tracks for SLAM and introduced novel robustness metrics.

Comprehensive studies are performed, revealing new obser-

vations, challenges, and opportunities for future research.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is essen-

tial in robotics since it provides foundational perception and

spatial awareness, and enables machines to understand and

interact with the physical world in real-time. Therefore,

it has a wide range of applications such as autonomous

driving and space exploration. Despite significant advance-

ments in both geometric [5, 34, 41] and data-driven SLAM

methods [43, 48], existing solutions remain fragile in chal-

lenging conditions. One main reason is that existing SLAM
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algorithms are often developed and evaluated with datasets

from controlled environments [3, 12, 18, 21, 33, 35, 39, 54].

For example, KITTI [18, 21] dataset is mostly collected in

sunny weather and EuROC-MAV dataset [3] is collected in

small well-lit rooms. These datasets, unfortunately, fail to

capture the challenges in real-world scenarios, hindering the

development of robust SLAM solutions.

To bridge this gap and push SLAM towards all-weather

environments, we present an extremely challenging dataset,

SubT-MRS, including scenarios featuring various sensor

degradation, aggressive locomotions, and extreme-weather

conditions. The SubT-MRS dataset comprises 3 years of

data from the DARPA Subterranean (SubT) Challenge [1]

(2019−2021) and extends with an additional 2 years of di-

verse environments (2022−2023), containing mixed indoor

and outdoor settings, including long corridors, off-road sce-

nario, tunnels, caves, deserts, forests, and bushlands. Cu-

mulatively, this forms a 5-year dataset encompassing over

500 hours and 100 kilometers of terrain subjected to mul-

timodal sensors including LiDAR, fisheye cameras, depth

cameras, thermal cameras, and IMU; heterogeneous plat-

forms including RC cars, legged robots, aerial robots, and

wheeled robots; and extreme obscurant conditions such

as dense fog, dust, smoke, and heavy snow.

Additionally, we find there is no well-established metric

to evaluate the robustness of a SLAM system. Existing eval-

uation metrics such as absolute trajectory error (ATE) [3]

are not representative of the actual performance in robotic

applications. We argue that to ensure the safety control of

a robot, SLAM system evaluation should not only focus

on poses but also its velocity. Taking robot localization as

an example, while a momentary pose error spike may only

slightly undermine the overall ATE, however, it can lead to

a catastrophic crash in an aerial robotic platform. To ef-

fectively gauge the performance of a SLAM algorithm, we

introduce a new robustness metric to evaluate the reliability

of the SLAM system, particularly examining smoothness

and accuracy of velocity estimation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22647

https://superodometry.com/datasets


Darkness Stairs with Jerk Motion

SubT-Tunnel Multi Floors Dark  Long Corridor Dense Fog SubT-Urban SubT-Cavern

Laurel Cavern Textureless Corridor Dense Dust and Smoke Offroad with Aggressive Motion Snow with Slipping Motion 

Figure 1. Dense reconstruction from the SubT-MRS dataset, achieved through collaboration with diverse robots equipped with multimodal

sensors. Colors represent different challenging environments (tunnels, caves, urban, confined spaces) captured by various robot types

(aerial, legged, wheeled). The bottom section showcases a gallery with diverse visual, LiDAR, and mixed degradations.

Lastly, we perform extensive experiments using pro-

posed degradation datasets to benchmark visual and LiDAR

SLAM algorithms. These experiments identify the limita-

tions of the existing SLAM systems and evaluate their ro-

bustness across the degradation. Our contributions include:

• All-weather Environments To push SLAM toward all-

weather environments, we introduce SubT-MRS, an ex-

tremely challenging dataset. Spanning five years, it com-

prises over 500 hours and 100 kilometers of accurately

measured trajectories. To the best of our knowledge,

SubT-MRS is the first real-world dataset that specifically

addresses failure scenarios of SLAM by incorporating

a variety of degraded conditions, multiple robotic plat-

forms, and diverse sets of multimodal sensors.

• Robustness Metric To evaluate the actual performance

running on robots, we propose a robustness metric,

which, to the best of our knowledge, is the first metric

evaluating the reliability, safety, and resilience of SLAM.

• SLAM Challenge We provide a comprehensive bench-

mark1 based on the SubT-MRS dataset by conducting

ICCV’23 SLAM Challenge. Our evaluation reveals the

limitations of state-of-the-art visual and LiDAR SLAM

solutions. Furthermore, we conduct extensive experi-

ments to verify robustness metric against various sensor

degradation and length of trajectories.

1SubT-MRS dataset is completely real-world data. Simulated data in

the benchmark is to ensure evaluation completeness

2. Related Work

Multimodal Sensors Multimodal sensor datasets are cru-

cial for the development of robust SLAM systems, as sin-

gle sensor modalities are not comprehensive for all scenar-

ios. Existing datasets typically focus on a limited range of

modalities, such as monocular or stereo cameras [3, 49], Li-

DAR [19], event cameras [29], and depth cameras [42]. The

KITTI dataset [19], although covering most modalities, is

geared towards on-road scenarios and lacks thermal cam-

eras, limiting its applicability to simple, controlled environ-

ments. Conversely, the ViViD++ dataset [23] incorporates

thermal images in outdoor settings but is deficient in hard-

ware synchronization, posing challenges for SLAM sys-

tem development. The Weichen dataset [10] offers thermal

images in indoor environments with accurate ground truth

poses but is confined to motion capture room settings. In

contrast, our SubT-MRS dataset delivers a comprehensive

suite of time-synchronized multimodal sensors, including

LiDAR, monocular cameras, thermal cameras, depth cam-

eras, and IMU, along with centimeter-level ground truth,

catering to a diverse range of research needs.

Heterogeneous Platforms Developing a robust SLAM

system necessitates versatility in handling different motion

patterns and various robotic platforms. However, most ex-

isting datasets are tailored for single-robot scenarios. While

there are a few multi-robot datasets, they typically involve

homogeneous platforms [9, 15, 24, 44], posing challenges
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Dataset

Multi-Spectrum Multi-Degradation Multi-Robot

Camera IMU LiDAR/Depth Thermal Illumination
Snow

Structureless SubT Aggressive Motion Vehicle Drone Legged Handheld
Smoke

EuRoC MAV [3] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

PennCOSYVIO [33] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

TUM VIO [39] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

UZH-FPV [12] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

College Dataset [52] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

RobotCar [28] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

UMA VI [54] ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

UMich [6] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

KITTI [19] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Virtual KITTI [16] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

DARPA SubT [37] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Hilti SLAM [21] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

M3ED [7] ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

TartanAir [47] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

SubT-MRS (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of SLAM datasets on multi-sensors, multi robots, and multi degradation.

in evaluating SLAM performance across varied robotic plat-

forms. The AirMuseum dataset [13] includes drones and

ground robots but lacks data from legged robots. As a com-

parison, SubT-MRS dataset features diverse robotic plat-

forms including legged robots, aerial robots, and wheeled

robots, operating in varied environments and sensor setups.

Extreme Environmental Conditions Developing and test-

ing SLAM systems in extreme environmental conditions is

crucial for mitigating potential real-world failures. How-

ever, most existing SLAM datasets have been primarily lim-

ited to single, controlled environments. The TUM-VI [39]

and UMA-VI [54] datasets, being indoor-outdoor visual-

inertial datasets, pose challenges due to varying illumina-

tion and low-texture environments. The EuRoC MAV [3]

and UZH-FPV drone racing [12] datasets, popular in the

SLAM community, offer data on aggressive drone move-

ments but usually in consistently lit conditions. The KITTI

dataset [19], a staple in autonomous driving research for

its outdoor LiDAR-Visual-Inertial data. The Hilti SLAM

dataset [21] includes both indoor and outdoor LiDAR-

visual-inertial datasets with dynamic lighting and confined

spaces. However, both of them focus more on accuracy than

on a variety of environmental degradations. TartanAir [47]

covers most of the challenging environments but it is a sim-

ulation dataset that will pose the sim-to-real gap.

In contrast, the SubT-MRS dataset provides 30 var-

ied scenes, encompassing a wide array of environments.

These include SubT tunnels, urban areas, caverns, multi-

floor structures, dark corridors, and foggy conditions. It

also features textureless surfaces, dusty and smoky environ-

ments, off-road areas with aggressive motion, and snowy

terrains prone to slippage. We include challenging light-

ing conditions such as extreme darkness and overexposure,

along with geometrically challenging scenarios like fea-

tureless corridors, staircases, and self-similar cave layouts.

Additionally, the dataset incorporates perceptual challenges

posed by smoke, fog, dust, and various weather conditions.

3. SubT-MRS Dataset

We next present the SubT-MRS dataset from three aspects

including its collecting environments and settings, ground

truth collection, and the new robustness metric. A detailed

comparison with other datasets is listed in Table 1.

3.1. All­weather Environments

As mentioned in Sec. 2, the SubT-MRS dataset distin-

guishes itself through its multimodal sensor setups, hetero-

geneous robotic platforms, and extreme environmental con-

ditions. This section emphasizes this comprehensive nature

pushing SLAM towards all-weather environments.

3.1.1. Multimodal Sensors

Multimodal sensors provide a wealth of information for

SLAM systems operating in all-weather environments. This

diversity improves scene understanding and strengthens the

system’s perception ability. Therefore, We incorporate di-

verse sensors to ensure system robustness.

Sensor Pack We embedded 4 Leopard Imaging RGB fish-

eye cameras, 1 Velodyne puck, 1 Epson M-G365 IMU, 1

FLIR Boson thermal camera, and NVIDIA Jetson AGX

Xavier as a sensor pack shown in Figure 2.

Time Synchronization To ensure the overall consistency

of the fused data, we meticulously synchronize the sensors’

time using the ‘pulse per second (PPS)’ technique. As illus-

trated in Figure 2, the IMU, LiDAR, and thermal camera are

directly synchronized with the CPU clock, while the four

RGB camera are synchronized using an FPGA board. Con-

sequently, we can effectively manage the time synchroniza-

tion gap between each pair of sensors not to exceed 3ms.

Fisheye and Thermal Camera Calibration Camera cali-

bration plays an essential role in the efficiency of a SLAM

system. For calibrating the fisheye cameras, we employed

the open-source toolkit Kalibr [36], focusing on the intrinsic

and extrinsic parameters. Specifically, we use the radial-

tangential distortion model to rectify the omnidirectional

fisheye camera model. Calibrating thermal cameras, how-

ever, poses unique challenges, especially in gathering high-
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Z

• LiDAR: Velodyne VLP16

• 10 Hz,  360°X30° FOV

• Visual Cam: LI-XAVIER

• 24 Hz, 686X816 Pixels

• Thermal Cam: FLIR Boson

• 60 Hz, 512x640 Pixels

• Depth Cam: Inter L515

• 30 Hz, 1024X760 Pixels

• IMU: Epson-G365 200 Hz

• Xavier: 32 GB RAM, 8 CPU Core

X
Y

IMU

Depth

LiDAR

RGB

Thermal

Xavier

I HZ PPS I0 HZ Output

Y

Multimodal Sensors

Y

Figure 2. An overview of the sensor pack used in SubT-MRS dataset. It is equipped with a Xavier processing unit with hardware time

synchronization for multimodal sensors including LiDAR, fisheye cameras, thermal cameras, depth cameras (option), and an IMU.

quality thermal data. To tackle this, we set up a 7×9 chess-

board, heated by direct sunlight, to generate high-contrast

thermal data, ensuring accuracy in the calibration process.

IMU Calibration and Extrinsic Calibration For Lidar-

IMU extrinsic calibration, we utilize the CAD model to ob-

tain the calibration parameters. In the case of Camera-IMU

extrinsic calibration, we employ the Kalibr toolbox [36] to

estimate the extrinsic matrix. To estimate the sensors’ bias

and the random walk noise of the gyroscope and accelerom-

eter, we collected static data from the IMU and calibrated it

using an Allan variance-based IMU tool [14, 17].

3.1.2. Multi­degraded Environments

SubT-MRS includes multiple challenging environments in-

cluding visually degraded environments, geometrically de-

graded environments, and their combination.

Visual Degradation Poor-quality visual features can sig-

nificantly hinder the performance of feature extraction pro-

cesses and disrupt the accuracy of feature matching. Such

issues arise in low-light conditions with inconsistent bright-

ness or image noise introduced by air obscurants. SubT-

MRS encompasses these challenges and provides a wide

range of visual degradation. This includes environments

with limited lighting, such as hospital interiors and caves

(Figure 3 A-F), as well as smoky or dusty conditions that

cause visual obstruction (Figure 3 M-N), and snowy areas

with reduced visibility (Figure 3 H, K, and L).

Geometric Degradation Lack of geometrical features

poses significant challenges to LiDAR odometry. The root

of this issue often lies in the limited sensing capabilities of

LiDAR sensors and the constraints due to their mechanical

installation. SubT-MRS captures a variety of environments

that exemplify such challenges. It includes long, featureless

corridors (Figure 3 E) and staircases (Figure 3 C and G).

These scenarios illustrate various forms of geometric degra-

dation, contributing to the improvement of LiDAR odome-

try systems in challenging conditions.

Mixed Degradation A mixed visual and geometric degra-

dation can further hinder the performance of SLAM sys-

tems. Examples in SubT-MRS include long, dimly lit cor-

ridors (Figure 3 A, E, and F), poorly illuminated staircases

(Figure 3 C), and environments affected by snowy weather

(Figure 3 H, K, and L). In these settings, both LiDAR odom-

etry and visual odometry are prone to failure due to the

compounded effects of mixed degradation. The inclusion

of such scenarios in SubT-MRS is crucial for evaluating and

improving the resilience of multimodal SLAM algorithms.

3.1.3. Heterogeneous Robot Platforms

Most of current datasets focus on single-robot systems, lim-

iting multi-robot SLAM development as shown in Table

1. To address this, we employed diverse robot platforms,

including aerial, legged, and wheeled robots, navigating

through various environments from urban campuses to med-

ical facilities and natural terrains like caves. This diversity

offers a range of scenarios to enhance SLAM algorithms for

effective operation in challenging conditions.

Extrinsic Calibration for Multiple Robots To ensure the

multi-robot system shares a common coordinate system, we

perform the extrinsic calibration process [38]. It has 2 steps:

First, each robot runs Super Odometry [53] to generate its

local map using LiDAR data and share it with other robots

through a wireless network; Second, the remaining robots

identify overlapping regions between their local maps and

estimate the extrinsic parameters using GICP [40].

3.2. Ground Truth

Ground Truth Map As depicted in Figure 4, we utilized

the high-precision FARO Focus 3D S120 3D scanner for

creating ground-truth maps. This cutting-edge 3D scan-

ner can measure distances up to 120m, with a maximum

measurement rate of 976K points per second. The accu-

racy of the ground truth map is noteworthy, maintaining a

range error within ±2mm. We have developed ground truth

models for diverse environments, including subterranean ar-

eas like urban areas (350m×350m), caves (150m×200m),

and tunnels (100×200m), as well as indoor-outdoor spaces

(200m×200m) within the CMU campus. To reduce drift, a
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Figure 3. The SubT-MRS datasets were collected across diverse seasons, capturing environments with perceptual challenges such as poor

illumination, darkness, and water puddles, where visual sensors falter. They also include geometrically complex areas like long featureless

corridors and steep multi-floor structures, challenging LiDAR systems with potential drift. Moreover, these datasets cover conditions with

airborne obscurants like dust, fog, snow, and smoke in tough environments, including caves, deserts, long tunnels, and off-road areas.

Hawkins Multi-Floor Building

Ground Truth Trajectory

(a)

(c)

(b)

Figure 4. The SubT-MRS dataset facilitates the generation of high-precision ground truth maps and trajectories. Figure (a) shows the ground

truth trajectory in multi-floor settings. Figure (b) displays ground truth maps for indoor and outdoor areas, encompassing long corridors,

multi-floor structures, and open spaces. Figure (c) features photo-realistic scans based on our ground truth maps in cave environments.

loop closure algorithm was applied to correct the poses. No-

tably, 96% of the scans achieved a position uncertainty of

less than 2mm. This ground-truth map is crucial for SLAM

development where precision is of utmost importance.

Ground Truth Trajectory Ground truth trajectories for

all sequences are generated based on the ground truth map.

In this process, we establish point-to-point, point-to-plane,

and point-to-line correspondences[40] between the Ground

Truth map and the current LiDAR scan. Our estimated

ground truth trajectory is a comprehensive fusion of vari-

ous constraints derived from the ground truth map, visual

odometry, LiDAR odometry, and IMU measurements. This

approach ensures the robustness of our solution across di-

verse environmental conditions. To verify accuracy, we

reconstruct LiDAR maps from ground truth trajectory and

compare it with our ground truth maps.
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Table 2. SLAM Challenge Results (Blue shadings indicate rankings of ATE and Robustness Metric; L: LiDAR I: IMU C: Camera)

# Team Method
Odometry

Device RealTime (s) CPU/GPU (%) RAM (GB) ATE↓ Rv ↑/Rw ↑
Sensors

Type L I C

1 Liu et al FAST-LIO2 [51], HBA [27] Filter Intel i7-9700K 51.310 98.667 / 0 4.052 0.588 0.517/0.770 ✓✓

2 Yibin et al LIO-EKF [45] Filter Intel i7-10700 0.006 52.167 / 0 0.072 4.313 0.441/0.574 ✓✓

3 Weitong et al FAST-LIO[2], Pose Graph[11] Filter Intel Xeon(R)E3-1240v5 0.125 22.63 / 0 4.305 0.663 0.473/0.747 ✓✓

4 Kim et al FAST-LIO2[50], Point-LIO[20], Quatro[25] Filter Intel i5-12500 0.268 101.108 / 0 55.64 3.825 0.479/0.615 ✓✓

5 Zhong et al DLO[8], Scan-Context++[22] SW Opt AMD Ryzen 9 5900x 0.027 13.289 / 0 1.174 1.209 0.276/0.486 ✓✓

1 Peng et al DVI-SLAM [32] Learning Intel i9-12900 183.233 - / 149 11 (4) 0.547 0.473/0.788 ✓ ✓

2 Jiang et al LET-NET[26], VINS-Mono[34] Hybrid Intel i5-9400 0.064 40.35 / 0 4.337 1.093 0.078/0.322 ✓ ✓

3 Thien et al VR-SLAM[31] SW Opt Intel i9-12900 0.142 176.44 / 0 9.111 3.037 0.083/0.372 ✓ ✓

4 Li et al ORB-SLAM3[4] SW Opt. Intel i7-10700 0.019 65.028 / 0 0.386 8.975 0.163/0.474 ✓ ✓

Table 3. Accuracy Performance on Geometric Degradation. Red numbers represent ATE ranking. * denotes incomplete submissions.

Team
Geometric Degradation (Real World) Simulation Mix Degradation

Average
Urban Tunnel Cave Nuclear 1 Nuclear 2 Laurel Caverns Factory Ocean Sewerage Long Corridor Multi Floor Block Lidar

Liu et al1 0.307 0.095 0.629 0.122 0.235 0.260 0.889 0.757 0.978 1.454 0.401 0.934 0.588

Weitong et al2 0.26 0.096 0.617 0.120 0.222 0.402 0.998 0.770 1.586 1.254 0.577 1.056 0.663

Kim et al3 0.331 0.092 0.787 0.123 0.270 0.279 10.628 22.425 7.147 2.100 0.650 1.068 3.825

Yibin et al4 1.060 0.220 0.750 0.470 0.620 9.140 4.920 0.280 24.460 2.990 5.500 1.340 4.312

Zhong et al5 1.205 0.695 - 1.175 1.72 2.08 0.889 0.778 1.13 - - - 1.209*

Average 0.633 0.240 0.696 0.402 0.6134 2.432 3.665 5.002 7.060 1.950 1.782 1.099

3.3. Robustness Metric

As dicussed in Sec. 1, existing evaluation metrics such as

absolute trajectory error (ATE) [3] have limitations in eval-

uating the SLAM’s robustness in real-world applications.

ATE primarily focuses on the accuracy of trajectory and

does not consider the completeness of trajectory (recall).

Also, it can not effectively capture velocity changes that

have a direct impact on the robot’s safety. For example,

a pose spike error might not be immediately noticeable in

ATE evaluation, it may result in a crash in an aerial robot

control. To address these gaps, we introduce a new robust-

ness metric based on estimated velocity. That is because ve-

locity estimation from SLAM is crucial for the robot’s con-

trol system which directly impacts stability, affecting the

robot’s safety. The new robustness metric is the area under

the curve (AUC) of the F-1 score:

F1(e) =
2P (e < T )R(e < T )

P (e < T ) +R(e < T )
, (1)

where the precision P quantifies the precision of the esti-

mated velocity as a percentage: how closely the estimated

velocity points lie to the ground truth point and the recall

rate R quantifies the estimated velocity’s completeness: to

what extent all the ground-truth points are covered. A high

F-1 score can only be achieved by the velocity estimation

that is both accurate and complete throughout the entire run.

Specifically, an estimated error e is regarded as an inlier, if

it is smaller than a threshold T . To scale the threshold T

within the range of [0, 1], we apply exponential mapping

exp(−10T ) when calculating robustness metric.

Position Robustness Rp & Rotation Robustness Rr The

AUC of F-1 score can be defined using both linear veloc-

ity and angular velocity, which can reflect the robustness of

position and rotation estimation, respectively. Specifically,

we define Rp = AUC(F1(ve)) and Rr = AUC(F1(ωe)),
where ve and ωe are the estimated error of linear veloc-

ity and rotation velocity, respectively. Note that not all

SLAM solutions can output the velocity at the desired fre-

quency. To address this, we use B-splines [30, 46] to obtain

smooth trajectories, compute derivatives for smooth trajec-

tories, and derive estimated linear velocity and angular ve-

locity. For more details, please refer to the supplementary.

4. Open SLAM Challenge Results

In this section, we will present our works from two perspec-

tives: accuracy evaluation and robustness evaluation.

4.1. Accuracy Evaluation

The results of the ICCV SLAM challenge underscore the

necessity for advancements in system robustness. From 29

submissions, we identified 5 winners in the LiDAR category

and 4 in the visual category. However, in the sensor fusion

track, which addresses both visual and geometric degrada-

tion, no submissions met the criteria for success. This result

reveals the existing SLAM systems still have lots of space

to improve. Sequence characteristics will be detailed in the

supplementary material. Table 2 shows the results for both

the LiDAR and visual tracks. Unfortunately, there are no

current solutions that can balance high accuracy and real-

time performance in challenging environments. Since sev-

eral environments lack geometric features or visual features,
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Table 4. Accuracy Performance on Visual Degradation. Red numbers represent ATE ranking. * denotes incomplete submissions.

Visual Degradation (Real World) Simulation

Team Lowlight 1 Lowlight 2 Over Exposure Flash Light Smoke Room Outdoor Night End of World Moon Western Desert Average

Peng et al1 1.063 1.637 0.503 0.44 0.153 0.827 0.038 0.195 0.070 0.547

Thien et al2 1.081 2.054 1.733 1.054 10.532 7.692 0.753 1.228 1.209 3.037

Jiang et al3 1.019 1.126 1.911 2.341 3.757 11.821 2.154 0.604 4.010 3.193

Li et al4 5.768 7.834 1.757 1.295 5.370 10.766 - 30.07 - 8.98*

Average 2.232 3.163 1.476 1.282 4.953 7.776 0.982 8.024 1.763

Robustness Metric  �� Robustness Metric  �� Robustness Metric  �� Robustness Metric  ��

Figure 5. From left to right, it shows robustness metric Rp and Rr for LiDAR and visual sequences respectively. Note: This is a summary

of results for all sequences, with weights based on the trajectory length. The area under the curve (AUC) represents the robustness (Rp, Rr).

The x-axis shows velocity thresholds for classifying estimated velocities as inliers and the y-axis is F-1 score.

the algorithms required more processing times to achieve

reasonably high accuracy. Liu et al. at the University of

Hong Kong, who achieved the highest accuracy, recorded

an Absolute Trajectory Error (ATE) of 0.588m, but each it-

eration took 51.3 seconds. In the visual track, Peng et al.

from the Samsung Research Center attained a leading ATE

of 0.547m, but each iteration required 183 seconds.

LiDAR Track Discussion To enhance robustness in all-

weather environments, a pivotal question arises: what are

the limits of current LiDAR SLAM algorithms? Table 3

presents a summary of the ATE/RPE errors observed in real-

world geometrically degraded, simulated, and mixed degra-

dation scenarios across the top five teams. In real-world ge-

ometrically degraded environments, we observed the first

limitation: existing LiDAR solutions struggle in confined

spaces such as caves. Almost all algorithms perform worse

in Cave (Figure 3S) and Laureal Cavern environments (Fig-

ure 3N) with average ATE 0.696 and 2.432 meters respec-

tively. One reason is that cave environments is the most con-

fined space which may lack sufficient geometric features,

compared with other environments like tunnel (Figure 3J)

and Urban (Figure 3B) and Nuclear scenes (Figure 3U).

In simulated environments, we encountered the second

limitation: existing methods are tailored for fixed motion

patterns like vehicles and struggle with unpredictable mo-

tion patterns. Since our simulation sequence is derived

from TartanAir [47], featuring aggressive and random mo-

tion patterns, it might not follow the usual velocity distribu-

tion domain and has not been thoroughly tested. As shown

in Table 3 (simulation), it resulted in significantly higher

ATE errors (5.239m) compared to real-world’s (0.836m).

In mixed degradation environments, the third limita-

tion we found is that existing methods cannot actively se-

lect the most informative measurements to adapt to new en-

vironments. For example, in the Long Corridor sequence

(Figure 3 A) with low lighting and a featureless envi-

ronment, the scenario is intricately designed for collabo-

rative usage of LiDAR and Visual sensors. Algorithms

are expected to utilize visual information in geometrically

degraded environments while disregarding it in darkness.

Similarly, the Block LiDAR sequences (Figure 3 V) aim

to simulate sensor drop scenarios frequently encountered in

robotic applications. These sequences involve alternating

periods of LiDAR and Visual data loss, challenging algo-

rithms to promptly detect sensor failures and switch to the

other modality for SLAM. However, the average ATE er-

ror (1.61m) in Table 3 (mixed degradation) is much higher

than in geometric degradation scenarios (0.836m), suggest-

ing the above limitations. Details are in the supplementary.

Visual Track Discussion To improve the robustness, a piv-

otal question arises: what are the limits of current visual

SLAM? To what extent does image quality impact a visual

SLAM system? Table 4 shows a summary of ATE errors

from real-world and simulation scenarios from the awarded

4 teams. In real-world scenarios, the first limitation is

the lack of anti-noise capability in current methods, espe-

cially in low-quality image settings. We assessed visual

odometry accuracy in visually degraded environments, in-

cluding low lighting, sunlight overexposure, flashing lights,

smoke-filled rooms, and nighttime outdoor settings (Figure

3). Trajectories in conditions like the Smoke Room and

Outdoor Night exhibit significantly higher average ATE er-
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Table 5. Robustness Performance on Geometric Degradation. Red numbers are robustness ranking. Larger values indicate better robustness.

Geometric Degradation (Real World) Simulation Mix Degradation

Team Urban Tunnel Cave Nuclear 1 Nuclear 2 Laurel Caverns Factory Ocean Sewerage Long Corridor Multi Floor Block Lidar Average

Liu et al1

Rp ↑

0.811 0.865 0.736 0.747 0.504 0.816 0.157 0.135 0.135 0.396 0.529 0.371 0.516

Weitong et al2 0.773 0.838 0.690 0.871 0.739 0.152 0.153 0.149 0.081 0.407 0.456 0.345 0.471

Kim et al4 0.747 0.865 0.737 0.870 0.689 0.777 0.014 0.001 0.010 0.410 0.285 0.345 0.479

Yibin et al3 0.650 0.783 0.557 0.721 0.490 0.481 0.219 0.560 0.019 0.175 0.260 0.370 0.440

Zhong et al5 0.567 0.683 0.204 0.680 0.426 0.447 0.103 0.084 0.122 0 0 0 0.276

Liu et al1

Rr ↑

0.888 0.893 0.816 0.857 0.778 0.861 0.692 0.719 0.652 0.753 0.689 0.643 0.770

Weitong et al2 0.886 0.892 0.811 0.893 0.840 0.598 0.688 0.720 0.514 0.766 0.706 0.644 0.746

Kim et al4 0.680 0.893 0.816 0.893 0.803 0.808 0.198 0.125 0.300 0.802 0.422 0.642 0.615

Yibin et al3 0.624 0.707 0.462 0.733 0.540 0.467 0.862 0.962 0.496 0.477 0.342 0.213 0.573

Zhong et al5 0.731 0.745 0.437 0.757 0.603 0.523 0.688 0.704 0.643 0 0 0 0.485

Average Rp 0.710 0.807 0.585 0.778 0.570 0.535 0.130 0.186 0.073 0.278 0.306 0.286

Average Rr 0.762 0.826 0.668 0.827 0.713 0.651 0.626 0.646 0.521 0.560 0.432 0.428

Table 6. Robustness Performance on Visual Degradation. Red numbers are robustness ranking. Larger values indicate better robustness.

Visual Degradation (Real World) Simulation

Team Lowlight 1 Lowlight 2 Over Exposure Flash Light Smoke Room Outdoor Night End of World Moon Western Desert Average

Peng et al1

Rp ↑

0.357 0.227 0.264 0.203 0.536 0.270 0.699 0.893 0.806 0.472

Thien et al3 0.045 0.070 0.240 0.156 0.131 0.075 0 0.031 0 0.083

Jiang et al 4 0.046 0.039 0.194 0.088 0.242 0.095 0 0 0 0.078

Li et al2 0.342 0.187 0.257 0.208 0.322 0.142 0 0.006 0 0.162

Peng et al1

Rr ↑

0.641 0.581 0.744 0.650 0.878 0.670 0.975 0.975 0.974 0.787

Thien et al3 0.413 0.445 0.610 0.269 0.474 0.487 0.177 0.315 0 0.354

Jiang et al4 0.453 0.452 0.619 0.252 0.542 0.577 0.002 0 0.157 0.339

Li et al2 0.642 0.574 0.657 0.651 0.773 0.660 0.0 0.305 0 0.473

Average Rp 0.198 0.131 0.239 0.164 0.308 0.146 0.175 0.232 0.202

Average Rr 0.537 0.513 0.658 0.456 0.667 0.598 0.288 0.399 0.283

rors (4.95m, 7.76m respectively). Smoke and night scenes

challenge feature extraction and tracking and introduce sen-

sor noise, emphasizing the need for robust anti-noise al-

gorithms. The second limitation is that existing methods

struggle to overcome aggressive motion. Even in simula-

tions with relatively good image quality, most methods still

show significant average ATE errors (8.024m) on the Moon

sequence (Figure 3 Y). See more details in supplementary.

4.2. Robustness Evaluation

The F-1 robustness curve provides a detailed evaluation un-

der different error tolerances, while Rp and Rr provide an

overall measure of robustness that is not dependent on a spe-

cific decision threshold. This suggests the flexibility of our

new robustness metric. Figure 5 clearly shows the robust-

ness performance of all teams regarding position and rota-

tion, highlighting the differences in robustness between the

methods. The values of Rp and Rr, which are the AUC un-

der F-1 curves, are displayed in the brackets of the legends.

It reveals that Liu et al. and Peng et al. are the most robust

solutions for LiDAR and visual tracks, respectively.

Is the robustness metric robust? We did extensive ex-

periments on our robustness metric against diverse sensor

degradation settings. Table 5 and 6 present a summary

of robustness performance in real-world, simulated, and

mixed degradation scenarios for both LiDAR and visual se-

quences. In Table 5, we observe that the average values of

Rp and Rr for the mixed degradation environment (0.290,

0.473) are significantly lower than geometric degradation

environments (0.664, 0.754). This observation suggests that

the majority of SLAM algorithms exhibit reduced robust-

ness in mixed degradation environments as compared to ge-

ometrically degraded ones. This aligns with our expecta-

tions and verifies the effectiveness of the robustness metric.

Our robustness ranking, indicated by small red numbers,

differs from those on ATE ranking shown in Table 3 and

4. This is because our F-1 score-based metrics Rp and Rr

jointly consider precision and recall rate to provide a bal-

anced evaluation of SLAM performance, considering both

metrics across the full spectrum of thresholds. In contrast,

the ATE focuses solely on precision, neglecting the trajec-

tory’s completeness (recall). We also evaluate our metric on

various synthetic trajectories in the supplementary.

5. Conclusion

We introduce SubT-MRS, a comprehensive SLAM dataset

with various sensor data, locomotion patterns, and over 30

degradation types in simulation and real-world settings to

push SLAM towards all-weather environments. Addition-

ally, we introduce a new robustness metric to evaluate the

reliability of SLAM systems, enhancing robot safety con-

trol. 29 teams have tested SubT-MRS in the organized

SLAM challenge and we expect that it will serve as a criti-

cal benchmark for future SLAM development.
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José MM Montiel, and Juan D Tardós. Orb-slam3: An accu-

rate open-source library for visual, visual–inertial, and mul-

timap slam. IEEE Transactions on Robotics, 37(6):1874–

1890, 2021. 6

[5] Carlos Campos, Richard Elvira, Juan J. Gómez Rodrı́guez,
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[54] David Zuñiga-Noël, Alberto Jaenal, Ruben Gomez-Ojeda,

and Javier Gonzalez-Jimenez. The uma-vi dataset: Visual–

inertial odometry in low-textured and dynamic illumination

environments. The International Journal of Robotics Re-

search, 39(9):1052–1060, 2020. 1, 3

22657


	. Introduction
	. Related Work
	. SubT-MRS Dataset
	. All-weather Environments
	. Multimodal Sensors
	. Multi-degraded Environments
	. Heterogeneous Robot Platforms

	. Ground Truth
	. Robustness Metric

	. Open SLAM Challenge Results
	. Accuracy Evaluation
	. Robustness Evaluation

	. Conclusion

