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Abstract

Recent studies have shown promising performance
in open-vocabulary object detection (OVD) by utilizing
pseudo labels (PLs) from pretrained vision and language
models (VLMs). However, teacher-student self-training, a
powerful and widely used paradigm to leverage PLs, is
rarely explored for OVD. This work identifies two chal-
lenges of using self-training in OVD: noisy PLs from VLMs
and frequent distribution changes of PLs. To address these
challenges, we propose SAS-Det that tames self-training
for OVD from two key perspectives. First, we present a
split-and-fusion (SAF) head that splits a standard detec-
tion into an open-branch and a closed-branch. This design
can reduce noisy supervision from pseudo boxes. More-
over, the two branches learn complementary knowledge
from different training data, significantly enhancing per-
formance when fused together. Second, in our view, un-
like in closed-set tasks, the PL distributions in OVD are
solely determined by the teacher model. We introduce a
periodic update strategy to decrease the number of up-
dates to the teacher, thereby decreasing the frequency of
changes in PL distributions, which stabilizes the training
process. Extensive experiments demonstrate SAS-Det is
both efficient and effective. SAS-Det outperforms recent
models of the same scale by a clear margin and achieves
37.4 AP50 and 29.1 APr on novel categories of the COCO
and LVIS benchmarks, respectively. Code is available at
https://github.com/xiaofeng94/SAS-Det.

1. Introduction
Traditional closed-set object detectors [4, 13, 32] are re-
stricted to detecting objects with a limited number of cat-
egories. Increasing the size of detection vocabularies usu-
ally requires heavy human labor to collect annotated data.
With the recent advent of strong vision and language mod-
els (VLMs) [20, 30], open-vocabulary object detection
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(OVD) [11] provides an alternative direction to approach
this challenge. Typically, OVD detectors are trained with
annotations of base categories and expected to generalize to
novel categories with the power of pretrained VLMs.

One promising thread of recent studies for OVD [8, 9,
42, 49] leverages VLMs to obtain pseudo labels (PLs) be-
yond base categories. But they rarely explore self-training,
a powerful and widely used schema for utilizing PLs in
closed-set tasks [37, 38, 44, 45]. We investigate this and find
the vanilla self-training approach does not improve OVD
performance due to the following challenges.

First, the typical self-training in closed-set tasks sets a
confidence threshold to remove noisy PLs based on the fact
that the quality of PLs is positively correlated to their confi-
dences. However, VLMs employed in OVD are pretrained
for image-level alignment with texts instead of instance-
level object detection that requires the localization ability.
Thus, the confidence score from pretrained VLMs is usually
not a good indicator for the quality of box locations (i.e.,
pseudo boxes) provided by PLs. For example, prior stud-
ies [11, 49] show that CLIP [30] tends to output imperfect
object boxes as predictions with high confidence. Recent
methods for OVD [9, 49] just apply thresholding to VLMs’
confidence scores and ignore the poor quality of pseudo
boxes, which provides noisy supervision to the model. This
issue becomes even worse when self-training is applied di-
rectly, since the noise accumulates which degrades the per-
formance on novel categories. Moreover, these methods
handle noisy PLs in the same way as ground truth of base
categories during training, which further decreases the per-
formance on base categories [9, 23].

Second, self-training for closed-set object detection [19,
38, 45] usually follows an online teacher-student manner.
In each training iteration, the teacher generates PLs, and the
student is trained with a mixture of ground truth and PLs.
Then, the teacher is updated by the student with exponential
moving average (EMA). However, we find such EMA up-
dates degrade OVD models (see Table 4). Our hypothesis is
that, unlike closed-set tasks, OVD provides no ground truth
for target categories, and thus, the supervision for target cat-
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egories is fully decided by the distribution of PLs predicted
by the teacher. Hence, the EMA updates change the distri-
bution of PLs in each iteration, unstabilizing the training.

In this paper, we propose Self-training And Split-and-
fusion head for open-vocabulary Detection (SAS-Det) to
tame self-training for OVD. First, we present a split-and-
fusion (SAF) head to handle the noise of PLs. The SAF
head splits the standard detection head into two branches:
the closed-branch and the open-branch, which are fused at
inference. The closed-branch, akin to the standard detection
head, comprises a classification module and a box refine-
ment module. It is supervised solely by ground truth from
base categories, mitigating the impact of noisy PLs on the
performance of base categories. The open-branch is a clas-
sification module supervised by class labels of both ground
truth and PLs. It acquires complementary knowledge to the
closed-branch and can significantly boost the performance
when fused with the closed-branch. Moreover, this design
circumvents noisy locations of pseudo boxes, reducing the
accumulation of noise during self-training.

Second, instead of adopting the vanilla EMA update, we
reduce the number of the updates and periodically update
the teacher by the student. The quality of our PLs improves
along with the periodic updates, and our final PLs are better
than those of prior PL-based methods [9, 49] that introduce
external handcrafted steps. Fig. 1 shows the key differences.

The proposed SAS-Det outperforms recent OVD mod-
els of the same scale by a clear margin on two popular
benchmarks, i.e., COCO and LVIS. Without extra hand-
crafted steps, our pseudo labeling is more efficient than
prior methods, i.e., nearly 4 times faster than PB-OVD [9]
and 3 times faster than VL-PLM [49]. Extensive ablation
studies demonstrate the effectiveness of the proposed com-
ponents. On COCO, the thresholding of vanilla self-training
decreases the performance of novel categories by 3.6 AP,
and the EMA update decreases the performance by 6.9 AP.
Instead, SAS-Det eliminates the degradation with two sep-
arate detection heads and the periodic update. The fusion of
the SAF head boosts the performance by 6.0 AP.

The contributions of this work are summarized as fol-
lows. (1) We show two challenges of applying self-training
to OVD and propose two simple but effective solutions, i.e.,
using different detection heads to mitigate the noise in PLs,
and using periodic updates to reduce frequency of changes
in PLs’ distributions. (2) The proposed SAF head for OVD
handles the noisy boxes of PLs and enables fusion to im-
prove the performance. (3) We present the leading perfor-
mance on COCO and LVIS under widely used OVD settings
and provide detailed analysis of the proposed SAS-Det.

2. Related Work
Vision-language models (VLMs). VLMs are trained to
learn the alignment between images and text in a com-

mon embedding space. CLIP [30] and ALIGN [14] use
contrastive losses to learn such alignment on large-scale
noisy image-text pairs from the Internet. ALBEF [20] in-
troduces multi-modal fusion and additional self-supervised
objectives. SIMLA [16] employs a single stream architec-
ture to achieve multi-level image-text alignment. FDT [6]
learns shared discrete tokens as the embedding space. These
VLMs achieve impressive zero-shot performance on image
classification. But due to the gap between the pretraining
and detection tasks, VLMs have limited abilities in object
detection. In this work, we attempt to close the gap via
PLs. There are studies [15, 21, 34] focusing on aligning any
text phrases with objects. But they require visual ground-
ing data that are more expensive than detection annotations.
Our work scales up the vocabulary size for object detection
without requiring such costly data.

Open-vocabulary object detection (OVD). Zero-shot ob-
ject detection methods [3, 31, 46, 52] increase the vocabu-
lary size but with limited accuracy. Motivated by the strong
zero-shot abilities of VLMs, recent efforts focus on OVD.
Finetuning-based methods [17, 18, 28, 48, 50] add detection
heads onto pretrained VLMs and then finetune the detector
with concepts of base categories. Such methods are simple
but may forget the knowledge learned in the pretraining [2].
Distillation-based methods [7, 11, 40, 41] introduce addi-
tional distillation loss functions that force the output of a
detector to be close to that of a VLM and thus avoid forget-
ting. However, since the distillation losses are not designed
for the detection task, they may conflict with detection ob-
jectives due to gradient conflicts that are a common issue for
multi-task models. Methods like Feng et al. [8], Gao et al.
[9], Wu et al. [42], Zhao et al. [49] create pseudo labels (PL)
of novel concepts as supervision, and do not require extra
losses, which sidesteps both catastrophic forgetting and gra-
dient conflicts. But these methods need handcrafted steps to
generate high quality PLs, e.g. multiple runs of box regres-
sion [49], activation maps [9] from Grad-CAM [35], image
retrieval [8], or multi-stage training [42]. In this work, we
address the two challenges of using self-training for OVD
and enable an efficient end-to-end pseudo labeling pipeline.
Besides, we point out the noise due to the poor locations of
PLs and introduce the SAF head to handle such noise.

Self-training for object detection. Weakly-supervised ob-
ject detection methods [27, 33, 38, 39] usually explore
online self-training by distilling the knowledge from the
model itself. Recent semi-supervised object detection meth-
ods [19, 26, 45] adopt a teacher-student design, where
the teacher is an exponential moving average (EMA) of
the student. Self-training has been widely explored in the
above fields but rarely in OVD. Unlike semi-supervised ob-
ject detection, OVD encounters two challenges to use self-
training, i.e., more noisy PLs, and larger changes in PLs’
distributions. This work proposes the SAF head to address
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Figure 1. Left: Prior PL-based methods for OVD rely on handcrafted heuristics to leverage a frozen VLM for offline pseudo labels. This
is usually inefficient and does not allow for improving PLs throughout training. Right: We customize self-training and finetune VLMs for
OVD, which allows efficient on-the-fly computation of PLs that can be improved throughout training.

the noise, and adopts periodic updates to reduce the fre-
quency of changes in PLs’ distribution.

3. Approach

In open-vocabulary detection, an object detector is trained
with bounding boxes and class labels of base categories
CB . At inference, the detector is used for detecting objects
of open concepts including CB and novel categories CN ,
where CB ∩ CN = ∅. To make such detection practical,
recent studies [8, 11, 23, 48] adopt extra data (e.g., image-
text pairs and image-level tags) and/or external VLMs. We
follow their settings and leverage the pretrained CLIP [30]
to build our OVD detector.

3.1. Adapting CLIP to OVD

In this section, we introduce how to adapt the ResNet-based
CLIP into a Faster R-CNN [32] (C4) detector. For simplic-
ity, we do not use FPN [25], but it can be incorporated with
learnable gating from Flamingo [1]. Similarly, ViT-based
CLIP models can be adapted to detectors following [22].
Region proposals from an external RPN. CLIP is pre-
trained via image-text alignment. As shown in Sect. 4.3,
finetuning pretrained backbones to get region proposals de-
creases the performance, probably because such finetuning
breaks the image-text alignment learned in the pretraining.
To address this problem, F-VLM [18] freezes the pretrained
backbone and only finetunes detection heads. But this solu-
tion limits the capacity of the detector. Unlike F-VLM, we
follow the approach of Singh et al. [36], Zhong et al. [50]
and employ an external RPN to generate region proposals,
which is trained with ground truth boxes of base categories.
Prior studies adopt RPN mainly to accelerate inference [36]
or to improve region recognition [50]. By contrast, we aim
to leverage the RPN to preserve the knowledge learned in
the pretraining for better self-training.

Text embeddings as the classifier. For the i-th region pro-
posal from the external RPN, we apply RoIAlign [13] on the
4th feature maps of CLIP’s ResNet to get the proposal fea-
tures. Then, the features are fed to the last ResNet block and
the attention pooling of CLIP to get the region embedding
ri, which is later used for classification. Following prior
studies [11, 23, 50], we convert a set of given concepts with
prompt engineering into CLIP text embeddings, which act
as classifiers, as shown in Fig. 2b. A fixed all-zero embed-
ding is adopted for the background category. Assuming tc
is the embedding of the c-th category, the probability of ri
to be classified as the c-th category is,

pi,c =
exp(⟨ri, tc⟩/τ)∑C−1

j=0 exp(⟨ri, tj⟩/τ)
, (1)

where ⟨·, ·⟩ denotes the cosine distance, C denotes the vo-
cabulary size, and τ denotes the temperature. In our detec-
tor, ri may be further fed to a box refinement module to
predict the box shift based on the region proposal. With the
above adaptions, our initial detector gains zero-shot detec-
tion ability to some extent. Please refer to the supplement
for quantitative evaluations.

3.2. Taming Self-Training

Although self-training has been widely explored in closed-
set object detection, using it for OVD presents two chal-
lenges, i.e., noisy PLs and frequent changes of PLs’ dis-
tributions. In the following, we describe our self-training
pipeline and how to address the two challenges.
Self-training pipeline. Fig. 2a illustrates the pipeline of
our self-training with a teacher-student manner. Training
images are first fed into the RPN to obtain region proposals.
Then, the teacher model runs inference on those propos-
als, where the resulting predictions with confidences above
a threshold are selected as PLs. The student model adopts
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Figure 2. (a) Pipeline of our self-training. The teacher and the student are models of the same architecture. They are initialized with the
same pretrained CLIP model. The teacher generates PLs that are used to train the student, and the student updates the teacher periodically.
(b) Structure of our detector. The proposed SAF head is put on top of a CLIP image encoder. The open- and closed-branches take the
text embeddings from a CLIP text encoder as classifier.

the same region proposals, and is supervised with both base
ground truth and PLs generated by the teacher. The teacher
is periodically updated with the parameters of the student
model.

Handling noise in PLs. The noise of PLs from VLMs ex-
ists in both classification and localization. It is a common
practice to filter PLs with classification confidence, but this
only addresses noise in classification. To reduce the noise
in locations of PLs, we exclude the noisy boxes of PLs from
the training. That is, the classification loss is calculated on
class labels of both ground truth and PLs, but the box re-
gression loss is calculated only on ground truth boxes. Be-
sides, to mitigate the impact of PLs on the performance of
base categories, we propose SAF head and elaborate it in
Sect. 3.3.

Reducing changes in PLs’ distributions with periodic
updates. The teacher model is updated with the stu-
dent to enable self-training. The exponential moving av-
erage (EMA) is a widely used approach for object detec-
tion [19, 26, 45], which updates the teacher in every iter-
ation. But we observed empirically that it does not ben-
efit OVD (Table 4). We hypothesize that, unlike semi-
supervised object detection, OVD has no ground truth for
the target categories. Thus, the distribution of the target
data (i.e., PLs) is fully determined by the teacher. The EMA
update changes the PLs’ distribution in each iteration and
leads to a constantly shifting training target that has been
shown hard to optimize (i.e., destabilizing the training) in
deep Q-learning [29]. As a solution, we periodically update
the teacher after a set number of iterations to maintain con-
sistent distributions for PLs between updates. We call this

strategy as the periodic update and show it outperforms the
EMA update by a large margin in Sect. 4.3.

3.3. Split-and-Fusion (SAF) Head

Our SAF head first splits a detection head into two branches,
i.e. “closed-branch” and “open-branch”, with the goal to
better handle noisy PLs during training. At inference, pre-
dictions from both heads are fused to boost the perfor-
mance.
Splitting the detection head. The closed-branch follows
a standard detection head with a classification module and
a class-agnostic box refinement module. The former mod-
ule classifies region proposals based on Eq. 1, and the latter
one refines the proposal boxes for better locations. We train
the closed-branch with boxes and class labels of ground
truth for CB using standard detection losses, which include
a cross entropy loss for classification and a box regres-
sion loss for localization. Since no PLs are used to train
the closed-branch, the noise of PLs is unlike to impact
its performance on CB . Moreover, as shown in Gu et al.
[11], Zareian et al. [48], box regression modules trained on
CB can generalize to novel categories that are unseen dur-
ing training. Therefore, the closed-branch is able to provide
generalized boxes, as well.

The open-branch only contains a classification module.
It is trained using only the cross-entropy loss with class la-
bels from both CB and PLs, hence, learning broader con-
cepts beyond CB . Unlike distillation losses [7, 11], all
losses for the two branches are originally designed for de-
tection and are unlikely to conflict with each other. When
generating PLs, we use the classification scores from the
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open-branch and bounding boxes from the closed-branch.
Boxes of PLs are not directly used in our losses but are in-
volved to select foreground proposal candidates for the clas-
sification loss.
Fusing complementary predictions. The open- and
closed-branches are trained in different ways and learn com-
plementary knowledge. Therefore, we fuse their predictions
with the geometric mean at inference time. Specifically, as-
suming popeni,c and pclosedi,c are prediction scores of the open-
and closed-branches, respectively, the final score is calcu-
lated as

pfusedi,c =

{
(pclosedi,c )(1−α) · (popeni,c )α, if i ∈ CB

(pclosedi,c )α · (popeni,c )(1−α), if i ∈ CN
(2)

where α ∈ [0, 1] balances the two branches. The indices
i, c are the same as in Eq. 1. We keep a list of known base
categories CB and take other categories beyond the list as
novel. It’s important to note that fusion is a common strat-
egy. For instance, F-VLM [18] employs score fusion to en-
hance the location quality of CLIP’s predictions. In con-
trast, our approach focuses on fusing the complementary
predictions from the two branches. The primary contribu-
tion of our method lies in learning what to fuse rather than
the fusion process itself.

4. Experiments
4.1. Experiment Setup

Datasets. We conduct experiments on the two popular OVD
benchmarks COCO-OVD and LVIS-OVD, based on COCO
[24] and LVIS [12], respectively. (1) COCO-OVD: 65 out
of 80 COCO categories are divided into 48 base categories
and 17 novel categories. We report results on the valida-
tion set. (2) LVIS-OVD: 337 rare categories are used as the
novel concepts and the remaining 866 categories (frequent
and common) as the base concepts. We report results on the
whole LVIS validation set.
Evaluation metrics. Following prior studies [11, 41, 48,
50], we report AP at IoU threshold of 0.5 for COCO-OVD.
APnovel

50 , APbase
50 and APall

50 are the metrics for the novel,
the base and all (novel + base) categories, respectively. For
LVIS-OVD, we report the mean AP averaged on IoUs from
0.5 to 0.95. APr, APc, APf and AP are the metrics for rare,
common, frequent, and all categories.
Implementation details. We built our detector on Faster
R-CNN with the CLIP version of ResNet (RN50-C4 or
RN50x4-C4) as the backbone. Following prior studies [47,
49, 51], we assumed the novel concepts were available dur-
ing training and took them as our open concepts, but no an-
notations of novel concepts are used. Our method was im-
plemented on Detectron2 [43] and trained with 8 NVIDIA
A6000 GPUs. We trained our models with the 1× schedule
(90k iterations) for COCO-OVD and the 2× schedule for

LVIS-OVD. The batch size was 16 with an initial learning
rate of 0.002. The default data augmentation of Detectron2
was applied. Loss terms were equally weighted. By de-
fault, the teacher models were updated three times, usually
together with the decreases of the learning rate.

4.2. Comparison with the Existing Methods

COCO-OVD. We compare our method with prior work on
COCO in Table 1. With the same backbone and detec-
tor, SAS-Det outperforms the most recent method BARON
[41] by 4.3 APnovel

50 on novel categories and 3.7 APbase
50 on

base categories. Probably, BARON distills knowledge from
VLMs, but distillation may lead to gradient conflicts and
degrade the performance [49]. Compared to VLDet [23],
SAS-Det gains an improvement of 7.9 APbase

50 . It is likely
that VLDet employs noisy pseudo labels to train the detec-
tion head, impacting the detection of base classes in both
classification and localization. In contrast, the two-branch
design of our SAF head allows to train the closed-branch
with just ground-truth of base classes and reduces the im-
pact of the noise from pseudo labels. For more analysis
on where our improvements come, please refer to Sect. 4.3
and Table 3. The first block of Table 1 provides results
for methods with stronger backbones or detector architec-
tures. When compared with those methods, SAS-Det still
achieves the leading performance. Those results clearly
demonstrate the effectiveness of SAS-Det.
LVIS-OVD. We provide the main results on LVIS in Ta-
ble 2. When using ResNet50 as the backbone, SAS-Det
achieves similar performance as the recent method Det-
Pro [7]. DetPro proposes learnable prompts to generate bet-
ter text embeddings as the classifier for OVD. Our method
is orthogonal and can leverage DetPro’s prompts for fur-
ther improvement. The first block of Table 2 also shows
that SAS-Det outperforms ViLD by a large margin on novel
categories (indicated by APr) but gets lower APf for base
categories. This is also observed in the recent method
BARON [41]. The performance gap is probably due to the
training setup. ViLD is trained for 8 times more iterations
and adopts a strong data augmentation method [10], both
of which benefit detection on base categories. In contrast,
BARON and our approach adopt shorter training and stan-
dard data augmentations. When replacing the pretrained
CLIP ResNet50 with ResNet50x4 [30] as the backbone,
we improve APr by 8.2 from 20.9 to 29.1, which demon-
strates SAS-Det scales up nicely with stronger pretrained
VLM backbones.

4.3. Ablation Studies

In this section, the default baseline shares the same archi-
tecture and the training as our SAS-Det (with RN50-C4 as
the backbone), except that the SAF head is replaced with a
single detection head. The localization module of the detec-
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Method Training Setup Backbone Detector APnovel
50 APbase

50 APall
50

ViLD [11] 16×+LSJ RN50-FPN Faster R-CNN 27.6 59.5 51.2
VL-PLM [49] 1×+Default RN50-FPN Faster R-CNN 32.3 54.0 48.3
F-VLM [18] 0.5×+LSJ RN50-FPN Faster R-CNN 28.0 - 39.6
OV-DETR [47] (Not Given) RN50 Deform. DETR 29.4 61.0 52.7
CORA [42] 3×+Default RN50 DAB-DETR 35.1 35.5 35.4

OVR-CNN [48] (Not Given) RN50-C4 Faster R-CNN 22.8 46.0 39.9
RegionCLIP [50] 1×+Default RN50-C4 Faster R-CNN 26.8 54.8 47.5
Detic [51] 1×+Default RN50-C4 Faster R-CNN 27.8 51.1 45.0
PB-OVD [9] 6×+Default RN50-C4 Faster R-CNN 30.8 46.1 42.1
VLDet [23] 1×+LSJ RN50-C4 Faster R-CNN 32.0 50.6 45.8
BARON [41] 1×+Default RN50-C4 Faster R-CNN 33.1 54.8 49.1
SAS-Det (Ours) 1×+Default RN50-C4 Faster R-CNN 37.4 58.5 53.0

Table 1. Comparison with recent methods on COCO-OVD. We group methods into two blocks. The first block contains methods using
stronger backbones or detector architectures than ours. The second block contains models of the same scale as ours. Training setup indicates
training iterations (N×) and data augmentations. Large Scale Jittering (LSJ) [10] is a stronger data augmentation than Detectron2’s default.

Method Training Setup Backbone Detector APr APc APf AP

ViLD [11] 16×+LSJ RN50-FPN Faster R-CNN 16.7 26.5 34.2 27.8
DetPro [7] 2×+Default RN50-FPN Faster R-CNN 20.8 27.8 32.4 28.4
F-VLM [18] 9×+LSJ RN50-FPN Faster R-CNN 18.6 - - 24.2
BARON [41] 2×+Default RN50-C4 Faster R-CNN 17.3 25.6 31.0 26.3
SAS-Det (Ours) 2×+Default RN50-C4 Faster R-CNN 20.9 26.1 31.6 27.4

ViLD [11] 16×+LSJ RN152-FPN Faster R-CNN 19.8 27.1 34.5 28.7
OWL-ViT [28] 12×+LSJ ViT-L/14 OWL-ViT 25.6 - - 34.7
F-VLM [18] 9×+LSJ RN50x4-FPN Faster R-CNN 26.3 - - 28.5
CORA [42] 3×+Default RN50x4 DAB-DETR 22.2 - - -
SAS-Det (Ours) 2×+Default RN50x4-C4 Faster R-CNN 29.1 32.4 36.8 33.5

Table 2. Comparison with recent methods on LVIS-OVD. We group methods based on the scale of backbones. Training setup contains
training iterations (N×) and data augmentations. LSJ [10] is a stronger data augmentation than Detectron2’s default.

tion head is trained with base ground truth boxes only, but
the classification module is trained with class labels of both
ground truth and PLs. Thus, the baseline provides a naive
solution to exclude noisy pseudo boxes from the training.
All evaluations are conducted on COCO.

External RPN. We leverage an external RPN to generate
region proposals so that finetuning focuses on region-text
alignment that is similar to the pretraining task. In this way,
the detector is unlikely to forget the knowledge obtained in
the pretraining. To validate the effectiveness of the external
RPN, we follow F-VLM [18] to train a detector without an
external RPN (See the supplement for more details). Table 3
compares baseline with the detector in the row of (1). As
shown, without the external RPN, the performance drops on
both novel and base categories.

Removing boxes of PLs from training. Our baseline han-
dles location noise of PLs’ boxes by directly excluding them

from the training. As shown in Table 3, baseline outper-
forms (2)’s detector. The only difference between them
is the removal of pseudo boxes from training. This result
clearly shows that simply removing the pseudo boxes is an
effective way to deal with location noise.

Splitting the detection head. As shown in Table 3, com-
pared to baseline, the open-branch of the proposed SAF
head in (5) achieves similar performance on novel cate-
gories. This indicates that the split handles the noise in PLs’
location as well as the naive solution of baseline. This is
plausible because both solutions exclude the noisy boxes of
PLs from training. Additionally, the open-branch gains 1.7
APbase

50 on base categories. Compared to (3)’s, the closed-
branch in (4) gain improvements in terms of both APnovel

50

and APbase
50 . Note that (4)’s and (3)’s heads are trained with

the same data. Based on those results, the split benefits
OVD beyond handling the location noise. One advantage
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Ablation APnovel
50 APbase

50 APall
50

Baseline 31.4 55.7 49.4
(1) No external RPN, train the backbone for region proposals (-6.0) 25.4 53.4 46.1
(2) Noisy boxes of PLs as supervision for box regression (-3.6) 27.8 55.2 48.0
(3) No PLs, train with base data only (-8.2) 23.2 56.9 48.1
(4) W/ SAF head, use closed-branch’s predictions (pclosedi,c in Eq. 2) (-5.8) 25.6 57.9 49.5
(5) W/ SAF head, use open-branch’s predictions (popeni,c in Eq. 2) (+0.5) 31.9 57.4 50.7
(6) W/ SAF head, use fused predictions (pfusedi,c in Eq. 2) (+6.0) 37.4 58.5 53.0

Table 3. Ablation studies to analyze the effect of each component of SAS-Det on COCO-OVD. Results (4), (5), and (6) denote different
outputs from the same model.

Update strategy APnovel
50 APbase

50 APall
50

Baseline (w/ periodic update) 31.4 55.7 49.4
(7) No teacher and no pseudo labels (-8.2) 23.2 56.9 48.1
(8) Not update the teacher (-1.8) 29.6 55.9 49.1
(9) Take the EMA of the student as the teacher (-6.9) 24.5 53.9 46.2
(10) Replace the teacher with the student every iteration (-23.4) 8.0 53.3 41.5

Table 4. Comparison of different strategies for updating the teacher in self-training on COCO-OVD.

is that, due to the split, the closed-branch is less likely to
be influenced by the noise of PLs and learn how to better
localize objects.

Fusing predictions. Our SAF head fuses predictions of the
open-branch and the closed-branch at inference time. As
shown in Table 3, (6)’s outperforms all the others by a large
margin with the prediction fusion. Note that (4)’s, (5)’s
and (6)’s refer to the different outputs of the same model.
The improvement can be attributed to the fact that the two
branches are trained on different sets of data and learn com-
plementary knowledge. The closed-branch is trained with
class labels and boxes of base categories. The open-branch
is trained with class labels of more vocabularies including
base and novel classes. Thus, the former learns more about
how to localize objects and how to detect base classes. The
latter learns more about how to detect new objects, which
complements the former.

Update strategies for the teacher model. The teacher is
updated with the student model to improve PLs during fine-
tuning. We evaluated several strategies for updating the
teacher model in Table 4 and summarize our findings as
follows. First, the EMA update in (9), which is shown
effective and widely used in semi-supervised object detec-
tion [19, 26, 45], is just slightly better than training without
PLs in (7). It is worse than no update to the teacher (i.e. no
self-training) in (8). Second, if we replace the teacher with
the student every iteration as (10), APnovel

50 drops to 8.0 that
is much lower than that number in (7). These findings indi-
cate that it’s harmful to change the teacher frequently. We
hypothesize that frequent updates change the distribution of

PLs too often and makes the training unstable. Last but not
least, by reducing the number of updates, our periodic up-
date significantly outperforms the EMA update in OVD.
The number of updates to the teacher model. We trained
our detectors with different numbers of updates to teacher
models. Please see the supplement for how we distribute the
updates. As shown in Table 5, too many updates, e.g., 8 or
4 updates, lead to performance drops mainly due to the fol-
lowing. First, similar as the aforementioned EMA update,
too many updates change the distribution of PLs too often
and make the training unstable. Second, the more updates,
the earlier an update happens. However, the student model
is not well trained at the early stage of the training and thus
is not good enough to update the teacher. Table 5 shows that
2 and 3 updates achieve similar performance. But we set 3
updates as default to include as many updates as possible.

4.4. Further Analysis

Evaluation on the retained 15 COCO categories. Fol-
lowing prior studies [47, 49, 51], SAS-Det assumes novel
concepts are available during training and achieves good
performance. A natural question is if SAS-Det generalizes
to alien concepts that are unknown before the evaluation.
To answer the question, we follow the evaluation protocol
of MEDet [5] where an OVD detector is evaluated on the
whole COCO validation set with all 80 COCO concepts.
APretain

50 , APnovel
50 and APcoco

50 are reported as APs averaged
on 15 retained, 17 novel, and all 80 COCO categories, re-
spectively. As shown in Table 6, SAS-Det achieves leading
performance by a clear margin, which indicates the good
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# Update APnovel
50

8 27.6
4 30.6
3 (baseline) 31.4
2 31.6
1 30.9
0 (No update) 29.6

Table 5. Performance with varied numbers of updates to the
teacher model.

Method APretain
50 APnovel

50 APcoco
50

OVR-CNN [48] 11.5 22.9 38.1
Detic-80 [51] 11.5 27.3 38.3
MEDet [5] 18.6 32.6 42.4
Ours 23.0 37.1 47.2

Table 6. Generalization capability of OVD methods on retained 15
COCO categories. Text embeddings of 80 COCO categories are used
as the classifier. Numbers are from MEDet [5].
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Figure 3. Quality of PLs during training.

Method Time (s) APnovel
50

PB-OVD [9] 0.4848 18.7
VL-PLM [49] 0.4456 25.5
Ours 0.1308 26.7

Table 7. Mean time cost to get PLs per image. The quality of PLs
on the validation set of COCO-OVD are provided for reference. We
report the quality of our PLs after the last update.

generalization capability of the proposed method.
PL’s quality during self-training. We compare our PLs
and the prior state-of-the-art PLs from VL-PLM [49] on the
COCO validation set in terms of PLs’ quality. Following
VL-PLM, we take APnovel

50 as the metric and evaluate our
teacher models during training. As illustrated in Fig. 3, the
quality of our initial PLs is not as good as VL-PLM’s. But
ours get close to VL-PLM’s after two updates and become
the better by the third update. This is because the teacher is
initialized with CLIP, which is not pretrained for detection,
and thus cannot provide high quality PLs. With updates, the
teacher is equipped with the knowledge about detection and
generates promising PLs.
Time cost of pseudo labeling. We run two major PL-
based methods [9, 49] on our computational environment
and compare them with our pseudo labeling in terms of the
time cost in Table 7.
Reducing the time cost of external RPN. There is a sim-
ple solution to remove the extra computational cost of exter-
nal RPN adopted by SAS-Det. We first generate pseudo la-
bels with SAS-Det, and then follow VL-PLM [49] to train a
Faster R-CNN based on ResNet50 for OVD without the ex-
ternal RPN (“Faster R-CNN + PLs”). As shown in Table 8,
“Faster R-CNN + PLs” achieves slightly better or close per-
formance as SAS-Det.

5. Conclusion
In this paper, we highlight two challenges associated with
applying self-training to OVD: 1) noisy PLs from pretrained

Method APnovel
50 APbase

50 APall
50

SAS-Det 37.4 58.5 53.0
Faster R-CNN + PLs 38.1 58.3 53.0

Table 8. Training Faster R-CNN with PLs from SAS-Det on
COCO-OVD

VLMs and 2) frequent changes of PLs’ distributions. To ad-
dress the challenges, we introduce a split-and-fusion (SAF)
head and implement periodic updates. The SAF head splits
a standard detection head into an open-branch and a closed-
branch. The open-branch is trained with the class labels of
ground truth and PLs. The closed-branch is trained with
both class labels and boxes of ground truth. This approach
effectively eliminates the location noise of PLs during train-
ing. Furthermore, the SAF head acquires complementary
knowledge from different sets of training data, enabling fu-
sion to enhance performance. The periodic updates reduce
the number of updates to the teacher models, thereby de-
creasing the frequency of changes in PLs’ distributions. We
demonstrate that the proposed method SAS-Det is both effi-
cient and effective. Our pseudo labeling is much faster than
prior PL-based methods [9, 49]. SAS-Det also outperforms
recent models on both COCO and LVIS for OVD.
Acknowledgments: This research project has been par-
tially funded by research grants to Dimitris N. Metaxas
through NSF: 2310966, 2235405, 2212301, 2003874, and
FA9550-23-1-0417.
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