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Abstract
Underwater images are subject to intricate and diverse

degradation, inevitably affecting the effectiveness of un-
derwater visual tasks. However, most approaches pri-
marily operate in the raw pixel space of images, which
limits the exploration of the frequency characteristics of
underwater images, leading to an inadequate utilization
of deep models’ representational capabilities in produc-
ing high-quality images. In this paper, we introduce a
novel Underwater Image Enhancement (UIE) framework,
named WF-Diff, designed to fully leverage the character-
istics of frequency domain information and diffusion mod-
els. WF-Diff consists of two detachable networks: Wavelet-
based Fourier information interaction network (WFI2-net)
and Frequency Residual Diffusion Adjustment Module (FR-
DAM). With our full exploration of the frequency domain in-
formation, WFI2-net aims to achieve preliminary enhance-
ment of frequency information in the wavelet space. Our
proposed FRDAM can further refine the high- and low-
frequency information of the initial enhanced images, which
can be viewed as a plug-and-play universal module to ad-
just the detail of the underwater images. With the above
techniques, our algorithm can show SOTA performance on
real-world underwater image datasets, and achieves com-
petitive performance in visual quality. The code is available
at https://github.com/zhihefang/WF-Diff.

1. Introduction
Underwater image restoration is a practical but challenging
technology in the field of underwater vision, widely used
for tasks, such as underwater robotics[26] and underwater
object tracking[6]. Due to light refraction, absorption, and
scattering in underwater scenes, underwater images are usu-
ally severely distorted, with low contrast and blurriness [2].
Therefore, clear underwater images play a critical role in
fields that need to interact with the underwater environment.
The main goal of underwater image enhancement (UIE) is
to obtain high-quality images by removing scattering and
correcting color distortion in degraded images. UIE is cru-
cial for vision-related underwater tasks.
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Figure 1. Our motivations. The amplitude and phase are produced
by Fast Fourier Transform (FFT) and the recombined images are
obtained by Inverse FFT (IFFT). We further explore the frequency
properties for underwater images in Wavelet space.

Table 1. Evaluation of using different frequency domain transfor-
mation strategies on the UIEBD [28]. S1 refers to swapping the
amplitude in original images, S2 refers to only swapping the am-
plitude of low-frequency sub-images in the wavelet space, and S3
refers to swapping the amplitude of low-frequency sub-images and
high-frequency sub-images in the wavelet space.

Strategy PSNR ↑ SSIM ↑ LPIPS↓ FID↓

S1 28.68 0.9027 0.0957 28.70
S2 27.10 0.8813 0.1023 33.04
S3 29.97 0.9343 0.0820 23.55

To address this problem, traditional UIE methods based
on the physical properties of the underwater images were
proposed [15, 17, 29–31]. These methods investigate the
physical mechanism of the degradation caused by color cast
or scattering and compensate for them to enhance the under-
water images. However, these physics-based models with
limited representation capacity cannot address all the com-
plex physical and optical factors underlying the underwa-
ter scenes, which leads to poor enhancement results under
highly complex and diverse underwater scenes. Recently,
some learning-based methods [7, 18, 28, 36] for UIE can
produce better results, since neural networks have power-
ful feature representation and nonlinear mapping capabili-
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ties. It can learn the mapping of an image from degenerate
to clear from a substantial quantity of paired training data.
However, most previous methods are based on the raw pixel
space of images, with limited exploration of the properties
of the frequency space for underwater images, which re-
sults in an inability to effectively harness the representation
power of the deep models for generating high-quality im-
ages.

Building on insights from previous Fourier-based works
[12, 48], we explore the properties of the Fourier frequency
information for the UIE task, as illustrated in Figure 1.
Given two images (an underwater image and its correspond-
ing ground-truth), we swap their amplitude components and
combine them with corresponding phase components in the
Fourier space. The recombined results show that the visual
appearance is swapped following the amplitude swapping,
which indicates the degradation information of underwater
images is mainly contained in the amplitude component.
We further explore the properties of the amplitude compo-
nents in the Wavelet space. Specifically, the images can
be decomposed into low-frequency sub-images and high-
frequency sub-images using discrete wavelet transforma-
tions (DWT), and then we swap amplitude components of
low-frequency sub-images. From visual results, we can
find a similar phenomenon, which means the color degrada-
tion information is mainly contained in low-frequency sub-
images, and the texture and detail degradation information
is mainly contained in high-frequency sub-images. Table 1
shows the quantitative evaluation of the different frequency
domain strategies, proving that our discovery is objective.
Consequently, how to adequately exploit the properties of
frequency domain information and effectively incorporate
them into a unified image enhancement network is a crucial
issue.

Recently, diffusion-based methods [10, 35] have gar-
nered significant attention due to their outstanding perfor-
mance in image synthesis [23, 24, 32, 34, 52] and restora-
tion tasks [5, 40, 46, 51]. These methods rely on a hier-
archical denoising autoencoder architecture, enabling them
to iteratively reverse a diffusion process and achieve high-
quality mapping from randomly sampled Gaussian noise
to target images or latent distributions [10]. Tang et al.
[36] present an image enhancement approach with diffusion
model in underwater scenes. While standard diffusion mod-
els exhibit sufficient capability, unforeseen artifacts may
arise as a result of the diversity introduced during the sam-
pling process from randomly generated Gaussian noise to
images [45]. Furthermore, the diffusion model needs to re-
cover both the high and low-frequency information of im-
ages, which limits their ability to focus on fine-grained in-
formation, missing out on texture and details. Thereby, it is
very crucial that the powerful representation capabilities of
diffusion models can be fully utilized.

In this paper, we develop a novel UIE framework to fully
exploit the properties of frequency domain information and
diffusion models, called WF-Diff, which mainly consists
of two stages: frequency preliminary enhancement and fre-
quency diffusion adjustment. The first stage aims to prelim-
inarily enhance the high-frequency and low-frequency com-
ponents of underwater images by utilizing the frequency do-
main characteristics. Specifically, we first convert the input
images into the wavelet space using discrete wavelet trans-
formations (DWT), obtaining an average coefficient that
represents the low-frequency content information of the in-
put image and three high-frequency coefficients that repre-
sent sparse vertical, horizontal, and diagonal details of the
input image. Then, we design a wavelet-based Fourier in-
formation interaction network (WFI2-net), fully integrating
the characteristics of Transformer [22] and Fourier prior in-
formation to enhance high- and low-frequency content, re-
spectively. Moreover, to achieve interaction of high- and
low-frequency information, we propose a cross-frequency
conditioner (CFC) to further improve the generation qual-
ity. The target of the second stage is to make adjustment
to the initial enhanced coarse results in terms of details and
textures via diffusion model. Consequently, we propose a
frequency residual diffusion adjustment module (FRDAM).
Unlike previous diffusion-based work, FRDAM learns the
residual distribution of high- and low-frequency informa-
tion between the ground-truth and the initial enhanced re-
sults using two diffusion models in the wavelet space, which
can not only increase the model’s focus on fine-grained in-
formation but also mitigate the adverse effects of the diver-
sity of the sampling process.

In summary, the main contributions of our method are as
follows:

• We explore in depth the properties of the frequency do-
main for underwater images. Based on the properties
and diffusion model, we propose a novel UIE framework,
named WF-Diff, with the goal of achieving frequency en-
hancement and diffusion adjustment.

• We propose a frequency residual diffusion adjustment
module (FRDAM) to further refine the high- and low-
frequency information of the initial enhanced images.
FRDAM can be viewed as a plug-and-play universal mod-
ule to adjust the detail of the underwater images.

• We propose a cross-frequency conditioner (CFC) to
achieve the cross-frequency interaction of high- and low-
frequency information.

• Experimental results compared with SOTAs considerably
show that our developed WF-Diff performs the superior-
ity against previous UIE approaches, and extensive abla-
tion experiments can demonstrate the effectiveness of our
contributions.
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Figure 2. Overall framework of WF-Diff. It contains two detachable networks, Wavelet-based Fourier information interaction net-
work (WFI2-net) and Frequency Residual Diffusion Adjustment Module (FRDAM). FRDAM consists of low-frequency diffusion branch
(LDFB) and high-frequency diffusion branch (HDFB), which aims to further adjust the high- and low-frequency information of the initial
enhanced images. Furthermore, the proposed cross-frequency conditioner (CFC) aims to achieve the cross-frequency interaction of high-
and low-frequency information.

2. Related Works

2.1. Underwater Image Enhancement

Currently, existing UID methods can be briefly catego-
rized into the physical and deep model-based approaches
[15, 18, 28–30, 36]. Most UID methods based on the physi-
cal model utilize prior knowledge to establish models, such
as water dark channel priors [29], attenuation curve priors
[38], fuzzy priors [4]. In addition, Akkaynak and Treib-
itz [1] proposed a method based on the revised physical
imaging model. However, the depth map of the underwa-
ter scene is difficult to obtain. This leads to unstable per-
formance, which usually suffers from severe color cast and
artifacts. Therefore, the manually established priors restrain
the model’s robustness and scalability under the compli-
cated and varied circumstances. Recently, deep learning-
based methods [18, 28, 36] have achieved acceptable per-
formance. To alleviate the need for real-world underwa-
ter paired training data, many methods introduced GAN-
based framework for UIE [7, 14, 21, 49], such as Water-
GAN [21], UGAN [7] and UIE-DAL [37]. Recently, some
complex frameworks were proposed and achieve the-state-
of-the-art performance [15, 29]. Ucolor [19] combined the
underwater physical imaging model in the raw space and
designed a medium transmission guided model. Yang et al.

[43] proposed a reflected light-aware multi-scale progres-
sive restoration network to obtain images with both color
equalization and rich texture in various underwater scenes.
Huang et al. [13] proposed a mean teacher based semi-
supervised network, which effectively leverages the knowl-
edge from unlabeled data. However, most previous methods
are based on the spatial domain, with limited exploration of
the frequency space for underwater images, which results in
an inability to effectively harness the representation power
of the deep models.

2.2. Diffusion Model

Recently, Diffusion Probabilistic Models (DPMs) [10, 35]
have been widely adopted for conditional image generation
[5, 40, 42, 46, 50]. Saharia et al. [33] proposed Palette,
which has demonstrated the excellent performance of diffu-
sion models in the field of conditional image generation,
including colorization, in-painting and JPEG restoration.
Tang et al. [36] presented an image enhancement approach
with diffusion model in underwater scenes. However, the
reverse process starts from randomly sampled Gaussian
noise to full images [45], which can lead to unexpected ar-
tifacts due to the diversity of the sampling process. Fur-
thermore, the diffusion model needs to recover both the
high and low-frequency information in images, which lim-
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its their ability to focus on fine-grained information. Conse-
quently, how to incorporate diffusion models into a unified
underwater image enhancement network is a vital issue.

3. Methodology

3.1. Overall Framework

Given an underwater image as input, our goal is to learn
a network to generate an output that eliminates the color
cast from input while enhancing the image details. The
overall framework of WF-Diff is shown in Figure 2. WF-
Diff is designed to fully leverage the characteristics of fre-
quency domain information and powerful ability of diffu-
sion models. Specifically, WF-Diff consists of two de-
tachable networks: Wavelet-based Fourier information in-
teraction network (WFI2-net) and Frequency Residual Dif-
fusion Adjustment Module (FRDAM). We first convert the
input into the wavelet space using discrete wavelet transfor-
mations (DWT), obtaining a low-frequency coefficient and
three high-frequency coefficients. WFI2-net is dedicated to
achieving preliminary enhancement of frequency informa-
tion. We fully integrate the characteristics of Transformer
and Fourier prior Information, and design wide transformer
block (WTB) and spatial-frequency fusion block (SFFB) to
enhance high- and low-frequency content respectively. FR-
DAM consists of low-frequency diffusion branch (LDFB)
and high-frequency diffusion branch (HDFB), which aims
to further adjust the high- and low-frequency information
of the initial enhanced images. Note that, our proposed
FRDAM learns the residual distribution of high- and low-
frequency information between the ground-truth and the ini-
tial enhanced results using two diffusion models, respec-
tively. Additionally, the proposed cross-frequency condi-
tioner (CFC) strives to achieve cross-frequency interaction
between high- and low-frequency information.

3.2. Discrete Wavelet and Fourier Transform

Discrete Wavelet transform (DWT) has been widely applied
to low-level vision tasks [11, 16]. We firstly use DWT to de-
compose an input into multiple frequency sub-bands so that
we can achieve the color correction of low-frequency in-
formation and detail enhancement of high-frequency infor-
mation, respectively. Given an underwater image as input
I ∈ RH×W×c, we use DWT with Haar wavelets to decom-
pose the input. Haar wavelets consist of the low-pass filter
L, and the high-pass filter H , as follows:

L =
1√
2

[1, 1]T , H =
1√
2

[1,−1]T . (1)

We can obtain four sub-bands, which can be expressed
as:

ILL, {ILH , IHL, IHH} = DWT(I), (2)

where ILL, {ILH , IHL, IHH} ∈ RH
2 ×

W
2 ×c represent the

low-frequency component of the input and high-frequency
components in the vertical, horizontal, and diagonal direc-
tions, respectively. More specifically, the low-frequency
component contains the content and color information of
the input image, and the other three high-frequency coeffi-
cients contain details information of global structures and
textures [31]. The sub-bands are downsampled to half-
resolution of the input but do not result in information
loss due to the biorthogonal property of DWT. For low-
frequency component ILL, we will explore its properties
in Fourier space.

Then, we introduce the operation of the Fourier trans-
form [48]. Given a image x ∈ RH×W×1, whose shape is
H ×W , the Fourier transform F which converts x to the
Fourier space X can be expressed as:

F (x) (u, v) = X(u, v) =
1

√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e
−j2π( h

H
u+ w

W
v
),

(3)

where h,w are the coordinates in the spatial space and u, v
are the coordinates in the Fourier space. F−1 denotes the
inverse transform ofF . Complex componentX(u, v) in the
Fourier space can be represented by a amplitude component
A(X(u, v)) and a phase componentP(X(u, v)) as follows:

A(X(u, v)) =
√
R2(X(u, v)) + I2(X(u, v)),

P(X(u, v)) = arctan[ I(X(u,v))
R(X(u,v)) ],

(4)

whereR(x) and I(x) represent the real and imaginary parts
of X(u, v), respectively. Note that, the Fourier operation
can be computed alone in each channel for feature maps.

According to Figure 1 and Table 1 (our motivation), we
conclude that the color degradation information of under-
water images is mainly contained in the amplitude compo-
nent of low-frequency sub-band, and the texture and de-
tail degradation information is mainly contained in high-
frequency sub-bands.

3.3. Frequency Preliminary Enhancement

Based on the above analysis, in frequency preliminary en-
hancement stage, we design a simple but effective WFI2-
net with a parallel encoder-decoder (U-Net-like) format to
restore the amplitude component of low-frequency infor-
mation and high-frequency components, respectively. We
also utilize skip connections to connect the features at
the same level in the encoder and decoder. For high-
frequency branch, we utilize advantage of transformer mod-
eling global information to enhance high-frequency coef-
ficients. We design wide transformer block (WTB) using
multi-scale information, aiming to model long range de-
pendencies. Our low-frequency branch aims to restore the
amplitude component in Fourier space. In order to obtain
rich frequency and spatial information, we design spatial-
frequency fusion block (SFFB).
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Figure 3. The architecture of (a) Wide Transformer Block, (b) Spatial-Frequency Fusion Block and (c) Cross-Frequency Conditioner.

Wide Transformer Block. Unlike low-frequency coef-
ficients, high-frequency components contain global struc-
ture and texture details. Consequently, the high-frequency
branch focuses on modeling global and local features.
WTB is shown in Figure 3 (a). Given ILH , IHL, IHH ∈
RH

2 ×
W
2 ×c, WTB firstly obtains their embedding features

Tin ∈ R3×H2 ×
W
2 ×C through convolution projection. To be

specific, WTB are composed of an attention (Atten) module
and a feed-forward network (FFN) module, and the compu-
tation can be denoted in the WTB as:

Q,K, V, L = Split(WdWp

(
Norm(Ti−1))), (5)

T̂i = SA(Q,K, V ) + CA(L) + Ti−1, (6)

Ti = FFN(Norm(T̂i)) + T̂i, (7)

where SA and CA refer to self-attention and channel at-
tention, respectively. Norm refers to normalization. Ti−1
represents the input embeddings of the current WTB. Wd

and Wp denote 1×1 point-wise convolution and multi-scale
kernel depth-wise convolution, respectively; Split refers to
the split operation. L aims to focus on local information.
Spatial-Frequency Fusion Block. We show the structure
of SFFB in Figure 3 (b), which has a spatial domain unit
(SDU) and a frequency domain unit (FDU) for interaction
of dual domain representations. In spatial domain unit, we
employ multi-scale convolution kernels in order to enlarge
the limited spatial receptive field. After obtaining the spa-
tial embeddings Fs, we firstly utilize the FFT to obtain the
amplitude A(Fs) and phase P(Fs) components. Then, the
A(Fs) and P(Fs) are fed into two layers 1*1 conv to obtain
A′(Fs) and P ′(Fs). Finally, we use the IFFT algorithm to
map A′(Fs) and P ′(Fs) to image space and obtain the fre-
quency embeddings Ff . The fusion embeddings of spatial
domain and frequency domain can be expressed as:

Fsf = Fs + Ff . (8)

Loss Function. We denote I
′

LL as output of low-
frequency branch, and I

′

LH , I
′

HL and I
′

HH as output of
high-frequency branch. Ground-truth (G) can be de-
composed GLL, GLH , GHL, GHH by DWT. The high-
frequency loss can be expressd as:

Lh =
∥∥∥I ′(i) −G(i)

∥∥∥
2
, (9)

where i ∈ {LH,HL,HH}. For low-frequency informa-
tion, we only constrain the amplitude components. Conse-
quently, the low-frequency loss can be expressd as:

La = ||A(I
′

LL))−A(GLL)||1, (10)

where A() refers to the amplitude component in Fourier
transform. Finally, We further use an adversarial loss in
Wasserstein GAN as reconstruction Loss Lrec.

3.4. Cross-Frequency Conditioner

The detailed structure of CFC is shown in Figure 3 (c).
The purpose of CFC is to facilitate information interac-
tion between high and low frequency features, achieving
cross-frequency mutual reinforcement between high and
low frequency branches, thus enhancing overall represen-
tation power. We denote Tin and Fin as the input features
of CFC, which represent high- and low-frequency embed-
dings. For the high-frequency embedding features Tin ∈
R3×H2 ×

W
2 ×C , we can obtain TLH , THL, THH ∈ RH

2 ×
W
2 ×c

via split operation. By adding these extracted coefficients,
we obtain the aggregated high-frequency embeddings. We
use different linear projections to construct Q and K in
CFC:

Q = Conv1×1(TLH + THL + THH), (11)

K = Conv1×1(Fin). (12)

Similarly, VT of high-frequency embeddings and VF of
low-frequency embeddings can be obtained:

VT = Conv1×1(TLH + THL + THH), (13)

VF = Conv1×1(Fin). (14)

The output feature map Tout and Fout can then be obtained
from the formula:

Tout = R(Softmax(
QKT

√
dk

)VT ), (15)

Fout = Softmax(
QKT

√
dk

)VF , (16)

where R denotes a replication operation, and
√
dk is the

number of columns of matrix Q.
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3.5. Frequency Diffusion Adjustment

FRDAM aims to further adjust the high- and low-frequency
information using the powerful representation of diffusion
model. Generally, FRDAM can be divided into two branch,
namely low-frequency diffusion branch (LDFB) and high-
frequency diffusion branch (HDFB). We adopt the diffu-
sion process proposed in DDPM [10] to construct the resid-
ual distribution of high- and low-frequency information for
each branch, which can be described as a forward diffusion
process and a reverse diffusion process.
Forward Diffusion Process. The forward diffusion pro-
cess can be viewed as a Markov chain progressively
adding Gaussian noise to the data. Given the initial en-
hanced frequency components I

′

i and its ground truth Gi,
i ∈ {LL,LH,HL,HH}, we calculate their residual distri-
bution x0 = Gi − I

′

i , then introduce Gaussian noise based
on the time step, as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (17)

where βt is a variable controlling the variance of the noise.
Introducing αt = 1− βt, this process can be described as:

xt =
√
αtxt−1 +

√
1− αtεt−1, εt−1 ∼ N (0,Z). (18)

With Gaussian distributions are merged, We can obtain :

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (19)

Reverse Diffusion Process. The reverse diffusion process
aims to restore the residual distribution from the Gaussian
noise. The reverse diffusion can be expressed as:

pθ(xt−1|xt, x(l)c ) = N (xt−1;µθ(xt, x
(l)
c , t), σ

2
tZ), (20)

where we take the LDFB as an example, and x(l)c refers to
the conditional image I

′

LL. µθ(xt, x
(l)
c , t) and σ2

t are the
mean and variance from the estimate of step t, respectively.
In LDFB and HDFB, we follow the setup of [35], they can
be expressed as:

µθ(xt, x
(l)
c , t) =

1√
αt

(xt−
βt

(1− αt)
εθ(xt, x

(l)
c , t)), (21)

σ2
t =

1− αt−1
1− αt

βt, (22)

where εθ(xt, x
(l)
c , t) is the estimated value with a Unet.

We optimize an objective function for the noise esti-
mated by the network and the noise ε(l) actually added in
LDFB. Therefore, the diffusion loss process is:

Ldm(θ) = ‖ε(l)−εθ(
√
αtx0+

√
1− αtε(l), x(l)c , t)‖. (23)

Generally, the frequency diffusion adjustment process is
to refine the high- and low-frequency component of the ini-
tial enhancement. The whole diffusion process can be for-
mulated:

Î(i) = FHDFB(ε(h)s , I
′

(i)), i ∈ {LH,HL,HH}, (24)

ÎLL = FLDFB(ε(l)s , I
′

LL), (25)

where ε(h)s ∈ R3×H2 ×
W
2 ×3 and ε(l)s ∈ RH

2 ×
W
2 ×3 are Gaus-

sian noise.
Ultimately, the refined frequency components are ob-

tained as the addition of the diffusion generative residual
distribution and the initial enhanced frequency components.
Then, we employ IDWT to obtain the final generated image:

Ifinal = IDWT (I
′

(i)+Î(i), I
′

LL+ÎLL), i ∈ {LH,HL,HH}
(26)

4. Experiments
4.1. Setup

Implementation details. Our network, implemented using
PyTorch 1.7, underwent training and testing on an NVIDIA
GeForce RTX 3090 GPU. We employed the Adam opti-
mizer with β1 = 0.9 and β2 = 0.999. The patch size was
configured as 256 × 256, and the batch size was set to 2. The
diffusion model’s total time steps, denoted as T, were set to
1000, and the number of training iterations reached one mil-
lion. The initial learning rate was established at 0.0001.
Datasets. We utilize the real-world UIEBD dataset [28]
and the LSUI dataset [18] for training and evaluating our
model. The UIEBD dataset comprises 890 underwater im-
ages with corresponding labels. Out of these, 700 images
are allocated for training, and the remaining 190 are desig-
nated for testing. The LSUI dataset is randomly partitioned
into 4500 images for training and 504 images for testing.
In addition, to verify the generalization of WF-Diff, we use
non-reference benchmarks U45 [20], which contains 45 un-
derwater images for testing.
Comparison methods. We conduct a comparative anal-
ysis between WF-Diff and eight state-of-the-art (SOTA)
UIE methods, namely UIECˆ2-Net [39], Water-Net [28],
UWCNN [3], SCNet [8],UIEWD [25], U-color [19], U-
shape [18], and DM-water [36]. To ensure a fair and rigor-
ous comparison, we utilize the provided source codes from
the respective authors and adhere strictly to the identical ex-
perimental settings across all evaluations.
Evaluation Metrics. We primarily utilize well-established
full-reference image quality assessment metrics: PSNR and
SSIM [41]. PSNR and SSIM offer quantitative comparisons
of our method with other approaches at both pixel and struc-
tural levels. Higher PSNR and SSIM values signify supe-
rior quality of the generated images. Additionally, we in-
corporate the LPIPS and FID metrics for full-reference im-
age evaluation. LPIPS [47] is a deep neural network-based
image quality metric that assesses the perceptual similarity
between an image and a reference image. FID [9] measures
the distance between the distributions of real and generated
images. A lower LPIPS and FID score indicates a more ef-
fective UIE approach. For non-reference benchmarks U45,
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Table 2. Quantitative comparison of different UIE methods on the UIEBD, LSUI and U45 datasets. The best results are highlighted in
bold and the second best results are underlined.

Methods UIEWD UWCNN UIECˆ2-Net Water-Net SCNet U-color U-shape DM-water Ours

U
IE

B
D

FID↓ 85.12 94.44 35.06 37.48 33.66 38.25 46.11 31.07 27.85
LPIPS↓ 0.3956 0.3525 0.2033 0.2116 0.2497 0.2337 0.2264 0.1436 0.1248
PSNR↑ 14.65 15.40 20.14 19.35 20.41 20.71 21.25 21.88 23.86
SSIM↑ 0.7265 0.7749 0.8215 0.8321 0.8235 0.8411 0.8453 0.8194 0.8730

L
SU

I

FID↓ 98.49 100.5 34.51 38.90 158.99 45.06 28.56 27.91 26.75
LPIPS↓ 0.3962 0.3450 0.1432 0.1678 0.283 0.123 0.1028 0.1138 0.1096
PSNR↑ 15.43 18.24 20.86 19.73 22.63 22.91 24.16 27.65 27.26
SSIM↑ 0.7802 0.8465 0.8867 0.8226 0.9176 0.8902 0.9322 0.8867 0.9437

U
45 UIQM↑ 2.458 2.379 2.780 2.957 2.856 3.104 3.151 3.086 3.181

UCIQE↑ 0.583 0.567 0.591 0.601 0.594 0.586 0.592 0.634 0.619

UIEWDInput UWCNN UIECˆ2-Net SCNet U-color U-shapeWater-Net DM-water Ours

Figure 4. Qualitative comparison with other SOTA methods on real underwater images.

we introduce UIQM [27] and UCIQE [44] to evaluate our
method.

4.2. Results and Comparisons

Table 2 shows the quantitative results compared with dif-
ferent baselines on UIEBD, LSUI and U45 datasets, in-
cluding with UIECˆ2-Net, Water-Net, UIEWD, UWCNN,
SCNet, U-color, U-shape, and DM-water. We mainly use
PSNR, SSIM, LPIPS and FID as our quantitative indices for
UIEBD and LSUI datasets, and UIQM and UCIQE for non-
reference dataset U45. The results in Table 2 show that our
algorithm outperforms state-of-the art methods obviously,
and achieve state-of-the-art performance in terms of image

quality evaluation metrics on UIE task, which verifies the
robustness of the proposed WF-Diff. To better validate the
superiority of our methods, in Figure 4, we show the visual
results comparison with state-of-the-art methods on real un-
derwater images. The six examples are randomly selected
on the UIEBD and LSUI datasets. Our methods consistently
generate natural and better visual results on testing images,
strongly proving that WF-Diff has good generalization per-
formance for real-world applications.

4.3. Ablation Study

Ablation study with WFI2-net. In order to evaluate the
effectiveness of each part in WFI2-net, we conduct two ab-
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Table 3. Ablation study with nerwork structure of WFI2-net on
UIEBD dataset.

WTB SFFB UIEBD

SA CA SDU FDU PSNR ↑ SSIM↑

× X X X 20.94 0.8541
X × X X 20.82 0.8473
X X × X 21.11 0.8586
X X X × 20.23 0.8346

X X X X 21.87 0.8622

Table 4. Ablation study with loss of WFI2-net on UIEBD dataset.

Methods UIEBD

Lh Lrec La CFC PSNR ↑ SSIM↑

× X X X 20.46 0.8274
X × X X 20.65 0.8399
X X × X 19.81 0.8213
X X X × 20.97 0.8425

X X X X 21.87 0.8622

Table 5. Ablation study with FRDAM on UIEBD dataset. DM
refers to diffusion model (DM), RDM refers to residual DM. D-
L refers to refining low-frequency component in wavelet space,
and D-H refers to refining high-frequency components in wavelet
space.

Method DM RDM D-L D-H CFC PSNR↑
A X × × × × 20.86
B × X × × × 22.37
C × X X × × 22.32
D × X × X × 22.58
E × X X X × 23.44

F × X X X X 23.86

Figure 5. Visual results of ablation study with FRDAM.

lation experiments with WFI2-net on the UIEBD dataset in
Table 3 and 4. CFC is cross-frequency conditioner. Note
that, we do not discuss the effect of our proposed FRDAM

Table 6. Comparison results of inference speed.

Method SCNet Ushape DM-water WFI2-net WF-Diff

Inference time (s) 0.0149 0.0353 0.1441 0.0739 0.2816

Table 7. Comparison results of FLOPs.

Method SCNet WaterNet Ucolor Ushape WFI2-net

FLOPs (G) 5.88 193.7 443.8 66.2 94.1

here. We regularly remove one component to each configu-
ration at one time, and our strategy achieves the best perfor-
mance by using all loss functions and blocks, proving that
each part of WFI2-net is useful for UIE task.
Ablation study with FRDAM. In this section, we will dis-
cuss the effectiveness of FRDAM. Table 5 shows the quan-
titative results on the UIEBD dataset, and Figure 5 shows
the visual results. Note that, Model A and B achieve dif-
fusion process in the pixel level, and model C, D, E and E
achieve diffusion process in wavelet space. Model A ob-
tains relatively poor results in PSNR and generates images
with color distortion or artifacts in Figure 5 due to the di-
versity of the sampling process. Model B does not yield
fully satisfactory results, because it needs to adjust both the
high and low-frequency information in images, which lim-
its their ability to focus on fine-grained information. Com-
pared to model C, model D achieves better results, sug-
gesting that the degradation information is mainly in the
high-frequency information in frequency diffusion adjust-
ment stage. Model F achieves the best performance, prov-
ing that our designed FRDAM is best for UIE task.

5. Conclusion

In this paper, we develop a novel UIE framework, namely
WF-Diff. With fully utilizing the frequency domain char-
acteristics and diffusion model, WFI2-net can achieve en-
hancement and adjustment of frequency information. Our
proposed FRDAM is a plug-and-play universal module to
adjust the details of the underwater images. WF-Diff shows
SOTA performance on UIE task, and extensive ablation ex-
periments prove that each of our contributions is effective.
Limitations. As a result of employing two diffusion mod-
els, our approach doesn’t confer an advantage in terms of
inference speed. Table 6 presents the actual values of infer-
ence speed for WF-Diff, indicating that our model does not
outperform recent approaches in terms of inference time.
Furthermore, Table 7 provides a comparison of FLOPs for
WFI2-net. It should be mentioned that the implicit sam-
pling step is set to 10 for WF-Diff. Hence, in the future, we
will delve into methods to expedite the sampling process.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China (Grant No.
62276138 and 62371232).
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